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Abstract This paper proposes an optimized least mean
absolute third (OPLMAT) algorithm to improve the capabil-
ity of the adaptive filtering algorithm against Gaussian and
non-Gaussian noises when the unknown system is a time-
varying parameter system under low signal–noise rate. The
optimal step size of the OPLMAT is obtained based on min-
imizing the mean-square deviation at the current time. In
addition, the mean convergence and steady-state error of the
OPLMAT algorithm are derived theoretically, and the com-
putational complexity ofOPLMAT is analyzed. Furthermore,
the simulation experimental results of system identifica-
tion presented illustrate the principle and efficiency of the
OPLMAT algorithm. Simulation results demonstrate that the
proposed algorithmperformsmuchbetter than theLMATand
NLMAT algorithms.

Keywords LMAT · Optimal step size · Low signal–noise
rate · Most of the noise densities · System identification

1 Introduction

Adaptive filter (AF) algorithms are frequently employed in
equalization, active noise control, acoustic echo cancelation,
biomedical engineering and many other fields [1]. The step
size is a critical parameter in addressing the issue of obtaining
either fast convergence rate or low excess mean-square error.
Although a large step size responds quickly to plant changes,
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it may lead to a large MSD and even cause loss of conver-
gence, while a small step sizemay degrade the tracking speed
of the AF algorithm. To address this issue, a relatively large
step size can be selected during the initial convergence of an
AF algorithm and then a small step size used as the algo-
rithm approaches its steady state. Selection of the step size
should balance low steady-state error with a fast convergence
rate. So the variable step size method attracts considerable
attentions from scholars. There are various methods that can
be adopted to get the step size formula. Shin et al. [2] made
use of a special function to update step size. Kwong and
Johnston [3] proposed a method based on the input data to
obtain the step size. Ang [4] presented an approach based
on squared instantaneous estimation errors to update the step
size. step size parameter was selected in [5] such that the
sum of the squares of the measured estimation errors was
minimized at the current instant in time. Liu et al. [6] and
Benesty et al. [7] utilized the various nonparametric vari-
ance estimates and proposed the nonparametric variable step
size NLMS algorithms. In [8], Huang and Lee presented a
method based on the mean-square error and the estimated
system noise power to obtain the step size. Many of these
algorithms were developed in a system identification con-
text, and the reference signal is considered as the output of
a time-invariant system, usually corrupted by additive noise.
However, in practical engineering applications, the system
is often non-stationary. Moreover, it makes more sense to
minimize the system misalignment, instead of the classical
error-based cost function. The approximating optimal step
size is selected in [9] such that the MSDwas minimized. Lee
and Park [10] made use of mean-square deviation to update
the step size of the APA algorithm. Zhi et al. [11] proposed
the optimal step size of the PAP algorithm. Ciochină et al.
[12] proposed an optimized NLMS algorithm which takes
advantage of the joint optimization problem with both the
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normalized step size and regularization parameters. More
recently, research has focused on AF algorithms based on
high-order error power (HOEP) conditions [13–15]. Among
HOEP algorithms, the LMAT algorithm can achieve themost
robust against the unknown noise of several different proba-
bility densities [16]. For example, in [17,18], impulsive noise
is modeled by an α-stable random process. Besides, some
algorithms for impulsive noise environments are introduced.
The LMAT algorithm is based on the minimization of the
mean of the absolute error value of the third power. The error
function is a perfect convex function with respect to filter
coefficients, so there is no local minimum for the LMAT
algorithm. The feature of unknown system, the character-
istics of the additive noise, SNR and the input excitation
govern the effectiveness of the LMAT-type algorithm. How-
ever, in practical engineering applications, the measurement
noise of an unknown system is non-Gaussian, and the sys-
tem is often non-stationary with low SNR. So on the basis of
work presented in [9–12,16], the optimal step size rather than
approximating optimal step size is selected in this paper such
that theMSD at the current in time is minimum. The purpose
of the OPLMAT algorithm is to deal with the Gaussian, uni-
form, Rayleigh and exponential noise distributions, which is
different from the literature [17,18]. The mean convergence
and MSD of the OPLMAT algorithm are also derived. The
computational complexity of the OPLMAT algorithm is ana-
lyzed theoretically. Finally, we have carried out four system
identification simulation experiments to illustrate significant
superiorities of the OPLMAT algorithm over the LMAT and
NLMAT algorithms.

The main contributions of this work are as follows: (a) an
OPLMAT algorithm based on minimizing the MSD at the
current in time; (b) the step size of the OPLMAT algorithm
can achieve minimum steady-state error; (c) the stability of
the proposed algorithm is studied; (d) the steady-state errors
are derived from both Gaussian and non-Gaussian noises;
and (e) the obtained results may also have some potential
value in practical applications.

Briefly, this paper is organized as follows. The proposed
OPLMAT algorithm is introduced in Sect. 2. The perfor-
mance of the OPLMAT algorithm is studied in Sect. 3. The
numerical simulations are carried out in Sect. 4, and conclu-
sions are presented in Sect. 5.

2 Proposed OPLMAT algorithm

The coefficient vector of the unknown system is defined as
Wopt = [w0, w1, . . . , wL−1]T. L is the filter length. X(n) =
[x(n), x(n + 1), . . . , x(n + L − 1)]T denotes the input data
vector of the unknown system at times instant n, and d(n)

denotes the observed output signals, respectively.

d(n) = Wopt
TX(n) + ξ(n) (1)

where ξ(n) is a stationary additive noise with zero mean and
variance of σ 2

ξ . In addition, ξ(n) is assumed to be uncorre-
lated with any other signal. X(n) is also stationary with zero
mean, a variance of σ 2

x , and X(n) is Gaussian with a definite
positive autocorrelation matrix.

The cost function used for obtaining the OPLMAT algo-
rithm is given by

W(n) = arg min J (W(n))

= arg min
1

3
E [|e(n)|]3 (2)

where

e(n) = d(n) − y(n) (3)

The corresponding filter output is

y(n) = WT(n)X(n) (4)

Assuming

V(n) = Wopt − W(n) (5)

So

e(n) = VT(n)X(n) + ξ(n) (6)

The updated recursion of coefficients vectors can be
derived as Eq. (7):

W(n + 1) = W(n) − μ(n)
∂ J (W(n))

∂W(n)

= W(n) + μ(n)X(n)e2(n)sgn (e(n)) (7)

In Eq. (7), sgn (e(n)) denotes the sign function of the vari-
able e(n) [13].

Combine Eqs. (5) and (7),

V(n + 1) = V(n) − μ(n)X(n)e2(n)sgn (e(n)) (8)

The following assumptions are used in the subsequent
analysis [15,19].

Assumption A1 W(n) is independent of X(n).

Assumption A2 the error sequence e(n) conditioned on the
weight vector V(n) is a zero mean and Gaussian.
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Based onAssumptionA2, the distribution function of Y =
e2(n) is shown as Eq. (9).

F (y) = p
(
e2 (n) ≤ y

)

=
√
y∫

−√
y

1√
2πσe|V (n)

exp

(
− e2 (n)

2σ 2
e|V (n)

)
d e (n)

= er f

( √
y√

2σe|V (n)

)
(9)

Based on Eq. (9), the probability density function of Y =
e2(n) is shown as Eq. (10).

p (y) = ∂F (y)

∂y

= 1√
2πσe|V (n)e (n)

exp

(
− e2 (n)

2σ 2
e|V (n)

)
(10)

So

E [V(n + 1)]

= E [V(n)] − μ(n)E
[
X(n)e2 (n)sgn (e(n))

]

= E [V(n)] − μ(n)E
{
E

[
X(n)e2 (n)sgn (e(n)) |V(n)

]}

= E [V(n)] − μ(n)E
{
E

[
e2(n)|V(n)

]

×E
[
X(n)sgn (e(n)) |V(n)

]}

= E [V(n)] − 2

√
2

π
μ(n)σeRxx E [V(n)] (11)

where Rxx = E
[
X(n)XT(n)

]
and Rxx = σ 2

x I. I denotes the
identity matrix of proper dimension.

Ultimately, it is easy to show that the mean behavior of the
weight vector converge to the optimal weight vectorWopt if
μ(n) is bounded by:

0 < μ(n) <

√
π

2

1

λmaxσe
(12)

whereλmax represents themaximumeigenvalueof the regres-
sor covariance matrix Rxx .

As seen from Eq. (11), we will get E [V(∞)] when n →
∞.

E [V(∞)] = 0 (13)

Now we will derive the optimal μ(n).

VT(n + 1)V(n + 1)

=
[
V(n) − μ(n)X(n)e2(n)sgn (e(n))

]T

×
[
V(n) − μ(n)X(n)e2(n)sgn (e(n))

]

= VT(n)V(n) − μ(n)VT (n)X(n)e2(n)sgn (e(n))

−μ(n)sgn (e(n)) e2(n)XT(n)V(n)

+μ2(n)XT(n)X(n)e4 (n) (14)

Assuming tr (Rxx ) is the trace of theRxx andwhen L � 1,
then tr (Rxx ) = Lσ 2

x [7].
Taking the statistical expectation of both sides with (14),

Eq. (15) can be obtained.

E
[
VT(n + 1)V(n + 1)

]

= E
[
VT(n)V(n)

]
+ μ2(n)Lσ 2

x E
[
e4(n)

]

−2μ(n)E
[
VT(n)X(n)e2(n)sgn (e(n))

]
(15)

Based onEqs. (9), (10) andEqs. (11), (16) can be obtained.

E
[
VT(n)X(n)e2(n)sgn (e(n))

]

= E
{
E

[
VT (n)X(n)e2(n)sgn (e(n)) |V(n)

]}

≈ E

{
2σ 2

e

√
2

π

1

σe
E

[(
VT(n)X(n)XT(n)V(n)

+VT(n)X(n)ξ(n)
)

|V(n)
]}

= 2

√
2

π
σeσ

2
x E

[
VT(n)V(n)

]
(16)

Based on Eq. (6),

E
[
e4(n)

]

= E

{[
VT(n)X(n) + ξ(n)

]4}

= E

{[
VT(n)X(n)

]4} + 4E

{[
VT(n)X(n)

]3
ξ(n)

}

+ 6E

{[
VT(n)X(n)

]2
[ξ(n)]2

}

+ 4E
{[

VT(n)X(n)
]
[ξ(n)]3

}
+ E

{
[ξ(n)]4

}
(17)
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CombiningAssumptionA1–AssumptionA2withEq. (17),
we get Eq. (18).

E
[
e4(n)

]
= E

{[
VT(n)X(n)

]4}

+ 6E

{[
VT(n)X(n)

]2}
σ 2

ξ + E
{
[ξ(n)]4

}
(18)

Substituting Eqs. (16) and (18) into Eq. (15), we get Eq.
(19).

E
[
VT(n + 1)V(n + 1)

]

= E
[
VT(n)V(n)

]
− 4

√
2

π
μ(n)σeσ

2
x E

[
VT(n)V(n)

]

+μ2(n)Lσ 2
x E

{[
VT(n)X(n)

]4}

+μ2(n)Lσ 2
x E

{
[ξ(n)]4

}

+ 6μ2(n)Lσ 2
x E

{[
VT(n)X(n)

]2}
σ 2

ξ (19)

Based on Eq. (8) in [16],

⎧
⎨
⎩
E

{[
VT(n)X(n)

]4} = 3σ 4
x E2

[
VT(n)V(n)

]

E
{[
VT(n)X(n)

]2} = σ 2
x E

[
VT(n)V(n)

] (20)

Substituting Eq. (20) into Eq. (19), we obtain Eq. (21).

E
[
VT(n + 1)V(n + 1)

]

= E
[
VT(n)V(n)

]
− 4

√
2

π
μ(n)σeσ

2
x E

[
VT(n)V(n)

]

+6μ2(n)Lσ 4
x E

[
VT(n)V(n)

]
σ 2

ξ

+3μ2(n)Lσ 6
x E2

[
VT(n)V(n)

]

+μ2(n)Lσ 2
x E

{
[ξ(n)]4

}
(21)

The MSD at times instant n is defined as MSD (n) =
E

[‖V (n)‖2]. So Eq. (21) can be derived as Eq. (22).

MSD (n + 1)

=
[
1 − 4

√
2

π
μ(n)σeσ

2
x + 6μ2(n)Lσ 4

x σ 2
ξ

]
MSD (n)

+μ2(n)Lσ 2
x E

[
ξ4(n)

]
+ 3μ2(n)Lσ 6

x MSD2 (n) (22)

When the algorithm tends to be stable, MSD(n) is very
small. So, Eq. (22) can be rewritten as Eq. (23) when dis-
carding MSD2(n).

MSD (n + 1)

= f
(
L , μ(n), σ 2

x , σe, σ
2
ξ

)
MSD (n)

+g
(
L , μ(n), σ 2

x , ξ(n)
)

(23)

where

f
(
α(n), L , μ(n), σ 2

x , σe, σ
2
ξ

)

= 1 − 4

√
2

π
μ(n)σeσ

2
x + 6μ2(n)Lσ 4

x σ 2
ξ (24)

g
(
L , μ(n), σ 2

x , ξ(n)
)

= Lσ 2
x μ2(n)E

[
ξ4(n)

]
(25)

In the real practical world, σ 2
e (n) and σ 2

x (n) are unknown;
however, we can estimate σ 2

e (n) and σ 2
x (n) by using Eq. (26)

[8].

{
σ 2
e (n)= 1

ρ+σ 2
x (n)

pT (n)p(n)

σ 2
x (n) = χσ 2

x (n − 1) + (1 − χ)XT (n)X(n)
(26)

where p(n) = E [e(n)X(n)], ρ is a small positive number
to guarantee that the denominator of Eq. (26) remains finite
when σ 2

x (n) = 0.
Although in Eq. (26), p(n) is also unknown, we can esti-

mate this parameter by using Eq. (27).

p(n) = χp(n − 1) + (1 − χ)e(n)X(n) (27)

Based on NPVSS-NLMS algorithm [7], we can get
(1 − 1

2L ) ≤ χ < 1.
The result fromEq. (23) illustrates a “separation” between

the convergence and misadjustment components. Therefore,

the term f
(
L , μ(n), σ 2

x , σe, σ
2
ξ

)
influences the convergence

rate of the algorithm. It can be noticed that the fastest conver-
gencemode is obtainedwhen the function of Eq. (24) reaches
its minimum.

μ(n) =
√

2

π

σe

3Lσ 2
x σ 2

ξ

(28)

The stability condition can be found by imposing∣∣∣ f
(
L , μ(n), σ 2

x , σe, σ
2
ξ

)∣∣∣ < 1 which leads to Eq. (29).

0 < μ(n) <

√
2

π

2σe
3Lσ 2

x σ 2
ξ

(29)

There are two important issues to be considered: (1) in the
context of system identification, it is reasonable to follow a
minimization problem in terms of the system misalignment
and (2) we have main parameters μ(n) which influences the
overall performance of the OPLMAT algorithm.
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Thus, based on Eq. (23),

∂MSD(n)

∂μ(n)
= 0 (30)

Substituting Eqs. (23), (24) and (25) into Eq. (30), the
optimal step size is then given by

μ(n) = 2

L

√
2

π

σe MSD (n)

6σ 2
x σ 2

ξ MSD (n) + E
[
ξ4(n)

] (31)

Using Eq. (31) in Eq. (23), followed by several straight
forward computations, it results in

MSD (n + 1) = MSD (n)

− 16

Lπ

σ 2
e σ 2

x MSD2 (n)

6σ 2
x σ 2

ξ MSD (n) + E
[
ξ4(n)

]

+ 8

Lπ

σ 2
e σ 2

x MSD2 (n)E
[
ξ4(n)

]
{
6σ 2

x σ 2
ξ MSD (n) + E

[
ξ4(n)

]}2

+ 48

Lπ

σ 2
e σ 4

x σ 2
ξ MSD3 (n)

{
6σ 2

x σ 2
ξ MSD (n) + E

[
ξ4(n)

]}2

(32)

Denoting lim
n→∞MSD (n) = MSD (∞) anddevelopingEq.

(32), we obtain Eq. (33).

σ 2
e σ 2

x

{
6σ 2

x σ 2
ξ MSD (∞) + E

[
ξ4(∞)

]}
MSD2 (∞) = 0

(33)

Based on Eq. (33), we know MSD (∞) = 0. It means
that our aforementioned step size adjusting mechanism can
achieve zero steady-statemean-square deviation. For aGaus-
sian desired signal, E

[
ξ4(n)

] = 3σ 4
ξ [15]. For a uniform

desired signal, E
[
ξ4(n)

] = 9σ 4
ξ /5 [15]. For a Rayleigh

desired signal, E
[
ξ4(n)

] = 8σ 4
ξ [20]. For an exponential

desired signal, E
[
ξ4(n)

] = 3σ 4
ξ [20].

The excess mean-square error (EMSE) at times instant n
is given by Eq. (34).

EMSE (n) = E
[
e2 (n)

]

= E
{[

VT (n)X (n) + ξ (n)
]

×
[
XT (n)V (n) + ξ (n)

]}

= σ 2
ξ + σ 2

x MSD (n) (34)

Table 1 OPLMAT algorithm summary

Initialization: W(0) = 0, ρ, χ

Desire output: d(n) = XT(n)Wopt + ξ(n)

Filter output: y(n) = XT(n)W(n)

Error: e(n) = d(n) − y(n)

Update:

p(n) = χp(n − 1) + (1 − χ)e(n)X(n)

σ 2
x (n) = χσ 2

x (n − 1) + (1 − χ)XT(n)X(n)

σ 2
e (n)= 1

ρ+σ 2
x (n)

pT (n)p(n)

μ(n) = 2
L

√
2
π

σe MSD(n)

6σ 2
x σ 2

ξ MSD(n)+E[ξ4(n)]

f
(
L , μ(n), σ 2

x , σe, σ
2
ξ

)
= 1 − 4

√
2
π

μ(n)σeσ
2
x + 6Lσ 4

x σ 2
ξ μ2(n)

g
(
L , μ(n), σ 2

x , ξ(n)
) = Lσ 2

x μ2(n)E
[
ξ4(n)

]

MSD (n + 1)= f
(
L , μ(n), σ 2

x , σe, σ
2
ξ

)
MSD (n)+

g
(
L , μ(n), σ 2

x , ξ(n)
)

W(n + 1) = W(n) + μ(n)X(n)e2(n)sgn (e(n))

Finally, the steady-state EMSEEMSE(∞) is given by using
Eqs. (33) and (34).

EMSE (∞) = σ 2
ξ (35)

A summary of the procedure for the OPLMAT algorithm
based on the analysis presented above is given in Table 1.

3 Computational complexity

The updated step size and σe formulas are added to the
OPLMAT algorithm compared to the LMAT algorithm,
meaning that the computational complexity of OPLMAT
algorithm is greater than that of the LMAT algorithm. Fur-
thermore, unlike the NLMAT algorithm, there is also no
recursion required to compute XT(n)X(n) in OPLMAT
algorithm. The computational complexity of the OPLMAT
algorithm is slightly greater than that of the LMATalgorithm.
However, the computational complexity of the OPLMAT
algorithm is less than the complexity of the NLMAT algo-
rithmwhen L is large. FromTable 2, the OPLMAT algorithm
has a considerable complexity advantage over NLMATwhen
L > 4. Besides, the NLMAT algorithm also needs to esti-
mate σe. So compared to the NLMAT algorithm, there is no
recursion to compute XT(n)X(n) and there are no compar-
isons. For convenience, the computational complexity of the
OPLMAT algorithm and that of other existing LMAT-type
algorithms are listed in Table 2.

4 Simulation results

This section presents the results of simulations in the con-
text of system identification using various noise distributions
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Table 2 Computational complexity of OPLMAT, LMAT and NLMAT
algorithms

Algorithm × ÷ √ Comparisons +

LMAT 2L + 2 1 1 1 2L + 1

4L + 1 2 1 LlnL + 2 4L + 2

NLMAT 3L + 4 1 1 2 3L + 3

OPLMAT 2L + 8 1 1 0 2L + 3

Where × multiplications, ÷ divisions, + additions, √ square root

Table 3 MSD values

MSD/dB

LMAT NLMAT OPLMAT

Experiment 1 −14.95 −18.65 −29.27

Experiment 2 −12.38 −16.43 −25.54

Experiment 3 −4.62 −9.09 −21.35

Experiment 4 −9.25 −12.99 −20.70

of both stationary and non-stationary systems to illustrate
the accuracy of the OPLMAT algorithm. The length of
the unknown coefficient vector Wopt is L . The input sig-
nal x(n) is a Gaussian white noise with zero mean and
σ 2
x = 1. The correlated input signal y(n) is calculated by

using y(n) = 0.5y(n − 1) + x(n). In all of our experiments,
the coefficient vectors are initialized as zero vectors. Four
different noise distributions (Gaussian, uniform, Rayleigh
and exponential) are used in the experiments. MSD (n) =
10 log10

(∥∥W (n) − Wopt
∥∥2
2

)
is used to measure the per-

formance of algorithms. In addition, MSD error equals the
absolute of simulation values and theory value (Eq. 23). The
results are obtained via Monte Carlo simulation using 20
independent run sets and an iteration number of 5000. The
values of steady-state error of the three algorithms are rec-
ognized in Table 3.

Experiment 1

The system noise is Gaussian white noise, and the input
signal is x(n) with SNR=3dB. A time-varying system
is modeled, and its coefficients are varied from a random
walk process defined by Wopt(n) = Wopt + υ(n), where
υ(n) is an independent identically distributed (i.i.d.) Gaus-
sian sequence with mv = 0 and σ 2

v = 0.01. Wopt =
[0.8, 0.2, 0.7, 0.2, 0.1]T. The MSD curves for the LMAT
(μ = 0.02), NLMAT (μ = 0.02), and OPLMAT (χ = 0.98)
algorithms with the uncorrelated input signal are shown
in Fig. 1. Figure 2 depicts the MSD error curves for the
OPLMAT algorithm. In order to make case of the OPLMAT
algorithm more persuasive, we provide a plot elucidating the
evolution of μ(n) as a function of the number of iterations in
Fig. 3.
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Fig. 1 MSD comparisons under this condition of Experiment 1
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Fig. 2 Learning curves of MSD error under this condition of Experi-
ment 1
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Fig. 3 Evolution of μ(n) as a function of iteration number under the
condition of Experiment 1

Experiment 2

The system noise is a uniformly distributed noise over the
interval (−3, 3) and the input signal is correlated input sig-
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Fig. 5 Learning curves of MSD error under this condition of Experi-
ment 2

nal y(n) with SNR= −5dB. A time-unvarying system is
modeled, and its coefficients vector of the unknown system
isWopt = [0.8, 0.2, 0.7, 0.2, 0.1]T. The MSD curves for the
LMAT (μ = 0.05), NLMAT (μ = 0.05), and OPLMAT
(χ = 0.98) algorithms with the uncorrelated input signal are
shown in Fig. 4. Figure 5 shows theMSD error curves for the
OPLMAT algorithm. In order to make case of the OPLMAT
algorithm more persuasive, we provide a plot describing the
evolution of μ(n) as a function of the number of iterations in
Fig. 6.

Experiment 3

The system noise is a Rayleigh distribution with 3, and the
input signal is correlated input signal y(n)withSNR=14dB.
A time-varying system is modeled, and its coefficients are
varied from a random walk process defined by Wopt(n) =
Wopt +υ(n), where υ(n) is an i.i.d. Gaussian sequence with
mv = 0 and σ 2

v = 0.01. Wopt = [0.8, 0.2, 0.7, 0.2, 0.1]T.
The MSD curves for the LMAT (μ = 0.01), NLMAT
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Fig. 6 Evolution of μ(n) as a function of iteration number under the
condition of Experiment 2
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Fig. 7 MSD comparisons under this condition of Experiment 3

(μ = 0.01) and OPLMAT (χ = 0.98) algorithms with the
uncorrelated input signal are shown in Fig. 7. Figure 8 plots
the MSD error curves for the OPLMAT algorithm. In order
to make case of the OPLMAT algorithmmore persuasive, we
provide a plot showing the evolution of μ(n) as a function of
the number of iterations in Fig. 9.

Experiment 4

The systemnoise is an exponential distributionwith 2, and the
input signal is correlated input signal y(n)withSNR=14dB.
A time-varying system is modeled, and its coefficients are
varied from a random walk process defined by Wopt(n) =
Wopt +υ(n), where υ(n) is an i.i.d. Gaussian sequence with
mv = 0 and σ 2

v = 0.01. Wopt = [0.8, 0.2, 0.7, 0.2, 0.1]T.
The MSD curves for the LMAT (μ = 0.005), NLMAT
(μ = 0.005) and OPLMAT (χ = 0.98) algorithms with
the uncorrelated input signal are shown in Fig. 10. Figure 11
shows the MSD error curves for the OPLMAT algorithm. In
order to make case of the OPLMAT algorithm more persua-
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Fig. 8 Learning curves of MSD error under this condition of Experi-
ment 3
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Fig. 9 Evolution of μ(n) as a function of iteration number under the
condition of Experiment 3

sive, we provide a plot showing the evolution of μ(n) as a
function of the number of iterations in Fig. 12.

Figures 1, 4, 7 and 10 show the OPLMAT algorithm has
a smaller misalignment than the LMAT and NLMAT algo-
rithms in steady-state stage. The reason for this observation
is small μ(n) in steady-state stage. From Fig. 1 and Table 3,
the improvement due to implementation of the LMAT and
NLMATalgorithms can nearly approach 14.32 and 10.62dB,
respectively. Thus, compared to the LMAT and NLMAT
algorithms, the OPLMAT algorithm can perform better in
identifying the unknown coefficients under this condition.
From the other experimental results, the same conclusion
can be obtained.

Figures 2, 5, 8 and 11 show theMSD error. We observe an
excellent match between predictions provided by our newly
designed algorithm and results given by Monte Carlo simu-
lations.

From Figs. 3, 6, 9 and 12, we know that μ(n) has a large
value in the initial stage, which results in a high convergence
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Fig. 10 MSD comparisons under this condition of Experiment 4
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Fig. 11 Learning curves of MSD error under this condition of Exper-
iment 4
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Fig. 12 Evolution of μ(n) as a function of iteration number under the
condition of Experiment 4

rate as expected. After the algorithm converges on the point
where a low misalignment is desired, μ(n) automatically
decreases.
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5 Conclusions

In the context of system identification using the LMAT-type
algorithm, this paper described a way to derive the optimal
variable step size of the LMAT based on mean-square devi-
ation analysis. The OPLMAT algorithm is developed in this
paper in order to addresses both stationary and non-stationary
unknown systems in the presence of several types of noise
under low SNR. The optimal step size leads the proposed
algorithm to achieve the lowest steady-state error theoreti-
cally. The step size can be updated based on the number of
iteration. In addition, the computational complexity of this
algorithm is less when L > 4. Simulation results showed that
the proposed algorithm performed better than the LMAT and
NLMAT algorithms. The analytical result corroborated the
simulations.
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