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Abstract In multimedia forensics, it is important to identify
those images that were captured by a specific camera from
a given set of N data images as well as detecting the tam-
pered region in these images if forged. This paper presents a
new technique based on Zernike moments feature extraction
for blindly classifying correlated PRNU images as well as
locating the tampered regions in image under investigation.
The proposed clustering algorithm is based on estimating the
Zernike moments and applying a hierarchical clustering for
classification. The forgery detection algorithm is based on
picking up the peak Euclidean distance between the Zernike
moments vector of blocks of the scaled-down forged image
and its corresponding ones in the capturing camera PRNU.
As Zernike moments are scale and rotational invariant, its
feature when computed using scaled-down PRNU images
lead to considerable computation time saving. Simulation
examples are given to verify the effectiveness of the pro-
posed techniques when compared to other state-of-the-art
techniques even in case of very weakly correlated PRNU.

Keywords Camera identification · Forgery detection ·
Camera fingerprint · Zernike moments

1 Introduction

There is an increasing demand for a series of reliable digital
forensic techniques for using in security and privacy applica-
tions. This is due to the ease of manipulating digital images.
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Investigating the sources cameras and detecting the tampered
regions in forged images are the most important forensic
tasks. This goal is achieved using the Photo Response Non-
Uniformity (PRNU) [1–3] as it uniquely identifies images
captured by this camera and can be used to identify the forged
regions in those images.

The paper objectives are concerned with image cluster-
ing and forgery detection. Image clustering can be defined
as: given a group of data images captured by a set of
unknown cameras, it is required to assign each source image
to its mother camera. In forgery detection case, the goal is
to find the tampered region, if found, in the image under
investigation. Many techniques were proposed for image
classifications. These techniques depend on setting a cer-
tain threshold to decide whether an image belongs to a
specific cluster or not [4–7]. Another clustering algorithm
based on hierarchical clustering that does not require a pre-
defined number of clusters was proposed in [8,9]. Different
classification systems based on Multi-Class Spectral Cluster-
ing MCSC and its improved version using the Normalized
Cuts were proposed in [10,11]. However, in view of no
prior knowledge about the images, all these clustering tech-
niques suffer from poor performance and requiring a stopping
criterion to limit the number of clusters. Recently, a Hu’s
moments-based clustering algorithm was proposed [12,13].
Although it overcomes most of previous drawbacks, it is com-
putationally expensive and suffers from poor performance in
case of weakly correlated images.

Part I of this paper addresses the proposed clustering tech-
nique. It is based on incorporating hierarchical clustering
with Zernike moments in the clustering algorithm [21–23].
Simulation results of several examples have indicated that
this technique significantly reduce the computation time
needed beside overcoming most of the shortcomings of other
proposed clustering techniques.
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Part II is concerned with forgery detection. In this respect,
many forgery detection techniques were proposed [14–19].
The basic idea of forgery detection is to check whether or
not the PRNU of a certain region matches its corresponding
region in the camera PRNU. In [14], the decision thresh-
old cmin is based on incorporating Bayesian estimation with
Neyman–Pearson criterion. Quite recently [17], the estima-
tion of the decision threshold has been improved through
modeling the pixel’s spatial dependencies using Markov Ran-
dom Field (MRF), together with employing non-local means
denoizing. Some techniques suggested using adaptive block
sizes [18]. Recently, a Natural Preserving Transform [20]
forgery detection technique was proposed [19] to detect forg-
eries in weakly correlated images. The main drawbacks of
these approaches, apart from excessive computation time, are
that they are all of the second-order-based techniques and,
therefore, failed to locate forgeries when the PRNUs are very
weakly correlated with its mother camera.

In this paper, the proposed forgery detection algorithm is
based on identifying the peak Euclidean distances between
the Zernike moments of blocks of the forged image and
its corresponding ones in the camera PRNU. Simulation
results have shown that the proposed algorithm is capable
of detecting forgeries copy-paste, copy-move and spliced
forged images.

The paper is organized as follows: Sect. 2 briefly describes
the theory of Zernike moments. In Sect. 3, the proposed
Zernike-based clustering algorithm is described. Section
4 describes the proposed Zernike-based forgery detection
scheme. Simulation results for the proposed techniques are
given in Sect. 5. Section 6 concludes the paper. In this paper,
capital letters will denote matrices, e.g., K while bold letters
denote vectors, e.g., x and small italic letters for variables.

2 Zernike moments theory

The most important task in the proposed classification design
and forgery detection systems is feature extraction from the
image under investigation. It is well known that images are
uniquely identified from its 2-D moments. There are various
kinds of moments, such as geometric moments and orthog-
onal moments [21–23]. In this paper, orthogonal Zernike
moments were used due to its unique features of being rota-
tional or scaling down invariant. This means that the features
of a large image are the same as the feature of its scaled-down
one when computed by Zernike moments. The orthogonal
Zernike polynomial Vr,s(x, y) decomposes a 2-D function
f (x, y) as

f (x, y) =
∑

r

r∑

s=−r

Ar,sVr,s(x, y)

where Vr,s(x, y) is given by

Vr,s(x, y) = Vr,s(ρ cos θ, ρ sin θ)

= Rr,s(ρ)e jsθ , r − |s| = even

Rr,s(ρ) is known as the radial polynomial and is given by

Rr,s(ρ) =
r−|S|

2∑

k=0

(−1)k
(r − k)!

k!( r+|s|
2 − k

)!( r−|s|
2 − k

)!ρ
r−2k (1)

where ρ is the vector from the origin to the (x, y) point, while
θ is its angle with the x-axis (0 ≤ θ ≤ 2π). The Zernike
polynomials constitute a set of polynomials, orthogonal on
the unit disk

√
x2 + y2 ≤ 1, i.e.,

∫∫
√

x2+y2≤1
Vr,s(x, y)

(
Vp,q(x, y)

)∗
dxdy = π

r + 1
δrpδsq

where the asterisk * denotes the complex conjugate Ar,s is
known as the Zernike moment of order r and repetition s
(r − |s| = even, |s| ≤ r). It is given by

Ar,s = r + 1

π

∫∫

x2+y2≤1
f (x, y)

(
Vr,s(ρ, θ)

)∗
dxdy

= r + 1

π

∫ 2π

0

∫ 1

0
f (ρ, θ)R∗

r,s(ρ, θ)e− jsθρdρdθ (2)

Due to the condition r − |s| = even and |s| ≤ r , the number
of Zernike moments for an order r is (r+1)(r+2)

2 elements.
However, as A∗

r,s = Ar,−s , we only need to compute the
Zernike moments for s ≥ 0. If f (x, y) is rotated by an angle
θ0, i.e., f ′(ρ, θ) = f (ρ, θ − θ0). Then the rotated Zernike
moment Arot

r,s is

Arot
r,s = r + 1

π

∫ 2π

0

∫ 1

0
f ′(ρ, θ)R∗

r,s(ρ, θ)e− jsθρdρdθ

= r + 1

π

∫ 2π

0

∫ 1

0
f (ρ, θ + θ0)R

∗
r,s(ρ, θ)e− jsθρdρdθ

= Ar,se
− jsθ0 (3)

Equation (3) indicates that the magnitude of the Zernike
moments of a rotated function remains invariant. Similarly,
one can easily show that in case of scaling down function,
its Zernike moments still invariant. At this point, it is worth
mentioning that if f (x, y) is an N × L digital image, then
the double integration in Eq. (2) is replaced by a double sum-
mation, i.e.,

Ar,s =r + 1

π

L−1∑

j=0

N−1∑

i=0

f (xi , y j )V
∗
r,s(xi , y j )ΔxiΔy j

subject to x2
i + y2

j ≤ 1 (4)
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Fig. 1 a 8×8 image.b Image included unit circle. cUnit circle includes
image

The (xi , y j ) is the (i, j) pixel when mapped into the unit disk
by a mapping transform. If the center of a pixel fall inside
the border of unit disk x2 + y2 ≤ 1, this pixel will be used
in computing Eq. (4), otherwise it is discarded. This leads to
a geometric error as not all pixels in the N × L image are
included in the unit disk [21,22]. This geometric error can
be eliminated by including the whole image inside the unit
disk [21,22]. Figure 1 illustrates these concepts. Similarly,
one can easily show that in case of scaling down function, its
Zernike moments still invariant.

3 The proposed Zernike clustering technique

In this section, a clustering technique based on incorporating
hierarchical clustering with Zernike moments is proposed.
The hierarchical has an important feature that it does not
require a predefined number of clusters. On the other hand,
the higher order moment features of Zernike moments yield
more information about the image than the correlation-based
second-order techniques. The Silhouette coefficient are used
in the hierarchy process.

The proposed clustering algorithm starts by an initializa-
tion step that:

1. Estimate the image PRNU KI , for each image I j for an
N image dataset as described in [1–3].

2. Each KI is resized using a decimation factor L .
3. Estimate the Zernike moments A j

r,s, j = 1, . . . , N for
each decimated KI as described in Sect. 2.

The clustering process now proceeds as follows:

(a) Compute the N × N distance matrix Dist = [di, j ], i, j
= 1, . . . , N

di, j = ||Ai
r,s − A j

r,s ||

(b) The first cluster CL(1) is constructed by picking up
the pair of PRNU images (m, n) that have smallest
Dist . The centroid of this cluster has an average cen-
ter KCL(1) = Km+Kn

2 where Km , Kn are the PRNU of

images (m, n). The Zernike moments vector ACL(1)
r,s is

computed for KCL(1).

(c) The distance matrix Dist is updated between a new
PRNU image j and cluster CL(1) according to:

dCL(1), j = ||ACL(1)
r,s − A j

r,s || (5)

where CL(1) is the cluster that contains images m&n.
(d) The Silhouette coefficient is computed for each PRNU

image j using the updated matrix Dist . Note that the
Silhouette coefficient is defined as [8]

sil j = coh j − sep j (6)

– coh j is for cohesion (i.e., the average Euclidean dis-
tance of a new PRNU image j and all the other PRNUs
in L(1)).

– sep j for separation (i.e., the average Euclidean dis-
tance of the PRNU j and all the other PRNUs in other
clusters).

The image j that has the most negative (in amplitude) sil j ,
which means it has minimum distance with L(1), is joined
to cluster L(1).

These steps are repeated until the cohesion of the PRNU
image j with cluster L(1) is very small. In this paper, the
results of more than 800 simulations suggest that the cutting
threshold is coh j < 0.1coh1 where coh1 is the cohesion of
first joined image to this cluster and the first cluster L(1)

is constructed. The new clusters L(q), q = 2, . . . , p were
formed by repeating computation for the remaining PRNUs
until the cohesion coefficient of every cluster is very small
negative.

4 The proposed Zernike forgery detection
technique

The proposed forgery detection scheme is based on detecting
dissimilarity between the Zernike moments of blocks of the
forged image K f and its corresponding camera PRNU Kc.
The dissimilarity is measured by the Euclidean distance. The
forgery detection technique is summarized as follows:

Initialization Step In this step, the forged image PRNU K f

as well as the mother camera PRNU Kc are estimated as
described in [1–3]. In order to speed up computations, resize
K f and Kc using a decimation factor L. Decompose each of
decimated Kf and Kc into P × P non-overlapping blocks.
Denote these blocks by BLf (i),BLc(i), i = 1, 2, . . . , N ,
respectively. N is the total number of these blocks. Extract
the features of each BL f (i), BLc(i) through estimating their

Ar,s order Zernike moments vector A f
r,s(i)&Ac

r,s(i), respec-
tively, i.e., BLc(i) = ∑

r
∑r

s=−r A
c
r,s(i)Vr,s&BL f (i) =

∑
r
∑r

s=−r A
f
r,s(i)Vr,s where Vr,s is the orthogonal radial

polynomial given in Eq. (1). This results in d(i) =
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||BLc(i) − BL f (i)|| = ||Ac
r,s(i) − A f

r,s(i)||. The detection
process is carried out as follows:

1. Construct N × 1 vector D. Its elements represent the
Euclidean distances d(i) = ||Ac

r,s(i)− A f
r,s(i)||. Plot the

graph that represent d(i) against the block numbers. If the
image under investigation is tampered, then there will be
abrupt change in the distance distribution. The minimum
threshold T that determines whether a block is genuine
or tampered is estimated at the pedestal of this curve.

2. Construct a binary image BI that represents tampered
blocks whose d(i) ≥ T through setting these blocks to
1, while zeroing all other blocks.

3. Morphological labeling techniques are applied to BI to
determine the number of its connected components Nc

[13]. If the number of the connected components of BI is
Nc = 0, this means that the image is genuine, otherwise
it is tampered. In this case, determine the centroids of
each of these components. Retain only components that
are in the neighborhood of each other, i.e., that lie within
P pixels of each other.

4. If desired to get a localized tampered region, morpholog-
ical filling and dilation techniques can be applied to yield
the final binary image Bmrph .

5 Experimental results

To check the performance of the proposed techniques, the
following simulation experiments have been carried out.

5.1 Clustering algorithm

In this case, the proposed clustering algorithm is compared
with three other state-of-the-art methods [4,11,12]. Three
simulation examples have been carried out. These exam-
ples have been performed over random images drawn from
2 databases namely Dresden Image database and Image
Manipulation dataset [25,26].

Example 1 This example considers 300 images randomly
chosen fromDresden Image database [24] and captured by 5
cameras. The cameras are, Nikon D70 (6 MP) and 2 another
different Nikon D70S (6 MP) cameras, Canon Ixus70 (7.1
MP), and Kodak M1063 (10.3 MP). First, the Maximum
Likelihood Estimate (MLE) technique of [1,2] is used for
extracting the PRNU of each image. Each PRNU is deci-
mated by (L = 4). Their features were extracted using 10th
order Zernike moments (r = 10) as described in Sect. 2. The
clustering algorithm starts by assigning images using the pro-
posed clustering approach of Sect. 3. Table 1 compares the
proposed clustering technique with the Hu’s moments-based
technique of [12], the MCSC using Normalized Cuts tech-
nique in [11] and the classical clustering technique in [4].
The comparison for each camera j is shown in terms of TPR
and FPR [11] (the ideal case T PR = 100% & FPR = 0%)

where

TPR( j) = No. of images correctly assigned to a cluster j

No. of images actually belong to this cluster j

FPR( j) = No.of images erroneously assigned to a cluster j

No.of images actually belong to other clusters

Table 1 TPR% values and FPR% values of Example 1

MCSC technique Classical technique Hu’s moments technique Proposed technique

TPR FPR TPR FPR TPR FPR TPR FPR

Camera 1 90 2.8 60 6 96 1.2 100 0.2

Camera 2 88.5 2.6 64.5 9 95.8 1.3 98.7 0.4

Camera 3 92.5 1.9 72.5 5.9 100 0.3 100 0

Camera 4 91.5 2.5 78 9 98 0.42 100 0

Camera 5 87.5 3.1 75 11 96 0.92 97.6 0.5

Table 2 TPR% values and FPR% values of Example 2

MCSC technique Classical technique Hu’s moments technique Proposed technique

TPR FPR TPR FPR TPR FPR TPR FPR

Camera 1 90 1.25 70 6.2 94 0.75 100 0

Camera 2 88.6 4 73.3 12.5 96.6 0.9 99 0.5

Camera 3 91 3 77 7.5 96 0.5 98 0.2

Camera 4 94 1.8 71.4 4.65 100 0.7 100 0

Camera 5 91.2 2.1 68.7 4.5 98 1.1 100 0
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Table 3 TPR% values and FPR% values of Example 3

MCSC technique Classical technique Hu’s moments technique Proposed technique

TPR FPR TPR FPR TPR FPR TPR FPR

Camera 1 83.3 5.6 66.6 16.7 91.6 2.7 100 0

Camera 2 84.2 10.3 58 24 94.7 3.4 100 0

Camera 3 88.2 6.5 59 19.3 94.1 3.2 100 0
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Fig. 2 Distance distribution curve of Zernike moments (left), original, forged, the binary forged location Bmrph of the proposed technique as well
as the marked images of NPT and Classical techniques. The threshold T used in the proposed technique is a T = 0.15, b T = 0.13, c T = 0.17

These results indicate that the proposed technique manages to
accurately classify unknown images to their mother cameras.
The proposed technique takes an execution time 11 s against
8.5 s of the MCSC technique, 10 s of Hu’s moments technique
and 25 s for the classical technique. The computations have
been run on LENOVO-G510 laptop PC, equipped with an
Intel Core i5-4200M 64 bit CPU @2.50 Ghz, RAM 8GB.

Example 2 In this example, another set consisting of 500
images randomly drawn fromDresden Image data basewere
carried out. The images were captured by 5 different cameras.
The cameras are, Nikon D60 (10.2 MP), Nikon D200S (10.2
MP) cameras, Samsung NV15 (10 MP), Kodak M1063 (10.3
MP) and Panasonic FZ50 (10.1 MP). Table 2 compares the
performance of the proposed clustering technique with other
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Fig. 3 Comparison between proposed, the NPT technique in [19] and
the classical technique [14] for images captured by Canon camera from
dataset [26]

published techniques. The proposed technique takes an exe-
cution time 18 s against 14.8 s of the MCSC technique, 16 s of
Hu’s moments technique and 40 s for the classical technique.

Example 3 In this example, another set consisting of 48
images randomly drawn from Image Manipulation data
[25,26] set were carried out. The images were captured by 3
different cameras namely Nikon, Canon, Panasonic. Table 3
compares the performance of the proposed clustering tech-
nique with other techniques. The proposed technique takes
an execution time 2 s against 0.78 s of the MCSC technique,
1.2 s of Hu’s moments technique and 11 s for the classi-
cal technique. All these results indicate the superiority of
the proposed Zernike-based clustering technique over other
state-of-the-art techniques. Although the proposed technique
has slightly larger computation time than MCSC technique
and Hu’s moments technique, it manages to accurate classify
of images whereas other techniques fail.

5.2 Forgery detection algorithm

The performance of the proposed forgery detection scheme is
applied using images drawn from Dresden Image database
as well as Image Manipulation dataset. Forging has been
carried out using either copy-paste, copy-move or splicing
forging techniques. In the first simulation, three 2592×3872
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Proposed Tech. Binary Image Locations 

Binary Image of 
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Classical Tech. 

Marked Image of 
NPT Tech. 

Binary Image of 
NPT Tech. 

Fig. 4 Comparison between proposed, the NPT technique in [19] and
the classical technique [14] for images captured by Nikon camera from
dataset [26]

natural images captured by the same camera from Dresden
Image database. These images were manually forged by Pho-
toshop software. The normalized correlation between forged
fingerprint K f & the camera PRNU Kc of these image were
0.0015, 0.1779, 0.2032, respectively. Initially, both of K f &
Kc were decimated by L = 4. Next, the decimated K f & Kc

were decomposed into 16×16 non-overlapping blocks. Fifth-
order Zernike moments were computed for each of these
blocks. The threshold level T was estimated as described in
Sect. 4 step 1. Figure 2a–c show the original, forged images,
the distance distribution graph of its Zernike moments and
the binary forged location Bmrph of the proposed technique.
These figures also include their comparison with the NPT
forgery detection scheme in [19] and the classical forgery
detection technique [14]. In all cases, the forged regions are
masked in black. The proposed technique took about 25.2 s
to detect forgery, while the NPT forgery detection as well
as the classical technique of [14] took about 35.2 and 65 s,
respectively, and even so they failed to detect forgery, as Fig.
2a shows.

In the second simulation, the proposed algorithm is
applied for detecting forgeries for 9 images randomly drawn
from ImageManipulationDatabase. These images were cap-
tured by Canon, Nikon and Panasonic cameras, with typical
size 3000 × 2400 pixels. The tampered areas covering about
6% of each image, on average. Figures 3, 4 and 5 show the
performance of the proposed technique when compared with
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Fig. 5 Comparison between proposed, the NPT technique in [19] and
the classical technique [14] for images captured by Panasonic camera
from dataset [26]

Table 4 F-measure and Av. computation time

F-measure (%) Av. Comp. Time (s)

Proposed Zernike 97 29

Hu’s moments 92 37

Classical 80 68

other techniques [14,19]. In order to assess the algorithm per-
formance, we use the F-measure [16], defined as

F = 2T P

2T P + FN + FP
(7)

T P is number of detected forged images, FN is number
of undetected forged images and FP is number of wrongly
detected genuine images. The following table compares the
F-measure and average computation time of the proposed
technique, with the classical forgery detection and NPT
forgery detection techniques. Table 4 illustrates these results.

6 Conclusion

This paper proposes an efficient clustering technique for
grouping a set of images belonging to its capturing camera.
The main feature of this technique is the ability of classify-

ing images with very low correlation values. When applied
for forgery detection process, the proposed Zernike-based
technique is very fast and has superior performance when
compared with other state-of-the-art techniques. Besides, it
has the ability of checking whether the image under investi-
gation is genuine or forged.
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