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Abstract In this paper, C-means algorithm is fuzzified and
regularized by incorporating both local data andmembership
information. The local membership information is incorpo-
rated via two membership relative entropy (MRE) functions.
These MRE functions measure the information proximity
of the membership function of each pixel to the member-
ship average in the immediate spatial neighborhood. Then
minimizing these MRE functions pushes the membership
function of a pixel toward its average in the pixel vicin-
ity. The resulting algorithm is called the Local Membership
Relative Entropy based FCM (LMREFCM). The local data
information is incorporated into the LMREFCM algorithm
by adding to the standard distance a weighted distance com-
puted from the locally smoothed data. The final resulting
algorithm, called the Local Data and Membership Rela-
tive Entropy based FCM (LDMREFCM), assigns a pixel to
the cluster more likely existing in its immediate neighbor-
hoods. This provides noise immunity and results in clustered
images with piecewise homogeneous regions. Simulation
results of segmentation of synthetic and real-world noisy
images are presented to compare the performance of the
proposed LMREFCM and LDMREFCM algorithms with
several FCM-related algorithms.
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1 Introduction

Image segmentation is a principle process in many image,
video, scene analysis and computer vision applications [1].
It is the process of assigning a label to every pixel in an
image such that pixels with the same label share certain char-
acteristics [2]. Several image segmentation methods have
been developed but still no satisfactory performance attained
especially in noisy images [2–7], which makes development
of segmentation algorithms to handle noise an active area
of research. The existing segmentation algorithms can be
categorized into threshold-based, region-based and edge-
based, probabilistic-based, artificial neural-network-based
and clustering-based methods [2–5]. Metaheuristic algo-
rithms such as artificial bee colony (ABC) and genetic-based
fuzzy ones have been used for segmentation to add diversity
to the algorithms [6,7].Clustering and fuzzy-based clustering
techniques have been widely adopted by many researchers
since clustering needs no training examples [8–12].

C-means clustering algorithm is unsupervised approach in
which data are basically partitioned based on locations and
distance between various data points. Partitioning the data
into C-clusters is carried out by compacting data in the same
clusters and separating data in different ones. C-means clus-
tering provides crisp segmentation which does not take into
account fine details of infrastructure such as hybridization or
mixing of data [13].

Fuzzy C-means (FCM) is one of the methods widely used
for image segmentation. FCM’s success is chiefly attributed
to the introduction of fuzzy sets and membership of belong-
ing [14,15]. Compared with the C-means algorithm which
yields hard or crisp segmentation, the FCM one is able to
provide soft one by incorporating membership degree of
belonging [16]. However, one disadvantage of the standard
FCM is not considering any spatial or local information
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in image context, which makes it very sensitive to noise
and other imaging artifacts. To solve this problem differ-
ent techniques have been developed [11,12,16–19]. Spatial
or local data information has been involved for the enhance-
ment and regularization of the performance of the standard
FCM [11,12,16]. Local membership information has also
been employed to generate a parameter to weight the mem-
bership function in order to give more weight to the pixel
membership if the immediate neighborhood pixels are of the
same cluster [16]. In [17–20], membership entropy and rel-
ative entropy have been used to fuzzify the hard C-means
algorithm. In [6] a spatial fuzzy genetic algorithm (SFGA)
has been presented for the segmentation of color images. The
algorithm is not taking into account any spatial data informa-
tion. The algorithm seeks the cluster-centers by employing
the GA algorithm for optimizing both compactness and sep-
aration of classes. However, the membership functions are
computed by the FCM algorithm after the cluster-centers
are obtained. In [7], the artificial bee colony (ABC) search
algorithm has been used for image segmentation. The ABC
algorithm searches for the cluster-centers based on the mini-
mization of the membership-weighting distances as a fitness
measure. The membership functions are computed based on
the obtained cluster-centers as type-2 fuzzy set.

In this paper, C-means clustering algorithm is modified by
incorporating both localmembership relative entropy (MRE)
and local spatial data information. The modified objective
clustering function consists of minimizing the standard C-
means function plus twoMRE functions for fuzzification and
regularization. The rest of the paper is organized as follows.
In Sect. 2, several FCM-related clustering algorithms are pre-
sented. In Sect. 3, the proposed Local Data and Membership
Relative Entropy based FCM (LDMREFCM) algorithm is
discussed. In Sect. 4, simulation results of clustering and seg-
mentation of synthetic and real-world images are presented.
In Sect. 5, the conclusion is drawn.

2 FCM-related algorithms

2.1 Conventional FCM

The standard fuzzy C-means (FCM) clustering objective
function is given by [14,15]

JFCM =
C∑

i=1

N∑

n=1

umindin (1)

where din is the Euclidean distance given by din =
(xn − vi )

2, uin ∈ U = {uin ∈ [0, 1],∑C
i=1 uin = 1

∀n , 0 <
∑N

n=1 uin < N ∀i} represents the membership
of the nth pixel to the i th cluster and m > 1 is an exponent
number to control fuzziness. If m = 1, the FCM algorithm

reduces to the hard C-means one. The membership uin and
the cluster-center vi ∈ V = {v1, v2, ..., vC } that minimize
the standard FCM function in (1), are given by [14,15]

uin = (din)−(m−1)

∑C
j=1 (d jn)

−(m−1)
(2)

vi =
∑N

n=1 u
m
inxn∑N

n=1 u
m
in

(3)

It is obvious from (2) and (3) that no local data information
is involved in the computation of the pixel memberships and
the cluster-centers. This makes classification of the nth pixel
is independent of its neighbors and therefore prone to noise.

2.2 Membership Entropy based FCM (MEFCM)

In [20], the entropy of the membership and the entropy of
the complement of the membership have been incorporated
into the hard clustering version of the FCM (i.e., FCM with
m = 1) for fuzzification. The Membership Entropy based
FCM (MEFCM) is given by [20]

JMEFCM =
C∑

i=1

N∑

n=1

uindin + γ

N∑

n=1

C∑

i=1

[uinlog(uin)

+ (1 − uin)log(1 − uin)] (4)

where γ is a weighting parameter that controls the amount of
fuzziness. The membership and the cluster-center functions
obtained by the minimization of (4) are given by

uin =
1

exp(din/γ )+1
∑C

j=1

(
1

exp(d jn/γ )+1

) (5)

vi =
∑N

n=1 u
m
inxn∑N

n=1 u
m
in

(6)

It is obvious from (5) and (6) that themembership and cluster-
center functions are independent of the local data and spatial
membership information. This implies that additive noise can
deteriorate their values. This has motivated us to seek modi-
fying the MEFCM algorithm.

2.3 Spatial based fuzzy C-means (SFCM)

The SFCM [11] is a direct modification of the conventional
FCM by replacing din in (1) by Din given by

Din = (1 − λ)din fin + λdin, (7)

where λ ∈ [0, 1] is an experimentally selected weight, and
fin is a local data function given by [11]

fin =
∑

kεNn
dik

min
{∑

kεNn
dlk, 1 ≤ l ≤ c

} (8)
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The membership uin associated with the SFCM method is
given by replacing din by Din in (2). The cluster-center vi is
given exactly by (3).

3 Proposed FCM algorithms

3.1 Local Membership Relative Entropy based FCM
(LMREFCM)

In [17,19], a single Kullback–Leibler (KL) membership dis-
tance (i.e., a membership relative entropy (MRE) function)
has been used for fuzzifying and regularizing the hard C-
means clustering algorithm.Here,wepropose to add a second
MRE function for more fuzziness and regularization. The
objective function of the proposed Local Membership Rela-
tive Entropy based FCM (LMREFCM) clustering algorithm
is given by

JLMREFCM =
C∑

i=1

N∑

n=1

uindin

+ γ

(
N∑

n=1

C∑

i=1

uinlog
uin
πin

+ ûinlog
ûin
π̂in

)
(9)

where γ is a parameter weighting fuzziness of the MRE
terms; ûin = 1 − uin is the complement of uin ; πin and
π̂in are the spatial moving averages of the membership and
the membership-complement functions uin and ûin , respec-
tively, computed by

πin = 1

Nk

∑

kεNn

uik (10)

π̂in = 1

Nk

∑

kεNn

(1 − uik) = 1 − πin (11)

where Nn is a set of pixels falling in a neighboring square
windowaround thenth pixelwith thenth pixel itself excluded
from the set and Nk is the cardinality of it. The first mem-
bership relative entropy term in (9) measures the proximity
between the membership of a pixel in a cluster and its local
average, while the second term ensures the proximity of the
complement membership and its local average. This second
term provides more fuzzification and regularization. This is
since the first term in (9) pulls the membership toward {0, 1},
the second (the firstMRE) term pulls themembership toward
{0, πin}, and the third (the secondMRE) term pulls the mem-
bership toward {1, πin}. Besides, computing uin based on
the local average membership πin of the immediate neigh-
borhood pixels can smooth out additive noise and bias the
solution to piecewise homogeneous labeling. Thus, this leads
to a segmented image with piecewise homogeneous regions.
The minimization of the LMREFCM objective function in
(9) yields

uin =
πin

(1−πin) exp(din/γ )+πin∑C
j=1

π jn
(1−π jn) exp(d jn/γ )+π jn

(12)

vi =
∑N

n=1 u
m
inxn∑N

n=1 u
m
in

(13)

It is obvious from (12) that if γ −→ ∞ (i.e., infinite
fuzzification), then uin −→ πin . In this case, u(t)

in =
1
Nk

∑
kεNn

u(t−1)
ik and u(t)

in = u(t)
in∑C

j=1 u
(t)
jn

, with t is the itera-

tion number and is the twofold process for the computation
of the membership function uin . This computation is indeed
independent of or not influenced by the data to be clustered
but dependent on the random process assigned to the initial
membership u0in . If u

0
in is generated from a random process

with mean greater than zero, then u(∞)
in converges, because

of recursive averaging and normalizing, to a normal distrib-
ution variable with mean equal to 1/C . This has been proved
experimentally by using a synthetic image of 4 clusters and
γ = 1010. Finally, as shown by (13), the computation of the
cluster-centers is still not involving any local data informa-
tion.

3.2 Local Data and Membership Relative Entropy
based FCM (LDMREFCM)

For more noise robustness, local spatial data information can
be incorporated into the LDMREFCM algorithm described
above. The proposed LDMREFCM is given by

JLDMREFCM =
C∑

i=1

N∑

n=1

uin(din + αdin)

+ γ

(
N∑

n=1

C∑

i=1

uinlog
uin
πin

+ûinlog
ûin
π̂in

)
(14)

where din = (xn − vi )
2 is a new distance of the locally

smoothed pixel xn computed in advance prior to iterating
the minimization of (14) and α is a weighting parameter.
The membership uin and cluster-center vi provided by (14)
are, respectively, given by

uin =
πin

(1−πin) exp((din+αdin)/γ )+πin∑C
j=1

π jn

(1−π jn) exp((d jn+αd jn)/γ )+π jn

(15)

vi =
∑N

n=1 u
m
in(xn + αxn)

(1 + α)
∑N

n=1 u
m
in

(16)

The difference between the LMREFCM and the LDMRE-
FCM algorithms is that the later incorporates the locally
smoothed data in the computation of the membership and
cluster-center functions which can handle additive noise. In
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Fig. 1 Clustering of the synthetic image: a noise-free image; b the
image plus zero-mean and 0.08 variance WGN; c FCM; d MEFCM; e
SFCM; f LMREFCM; g LDMREFCM. It is obvious that the clustered
images in panels f and g, generated by the LMREFCM and LDMRE-

FCM algorithms, show a very small number of misclassified pixels
(almost noise-free clustered images) compared with the other three
clustered images. Clustering validation coefficients are summarized in
Table 1

the next section, the simulation results are presented.Wewill
examine the benefit of using both the two local membership
relative entropy fuzzification functions.Wewill also examine
and present a procedure for initializing the membership and
cluster-center functions of both the LMREFCM and LDM-
REFCM algorithms.

4 Simulation results

4.1 Clustering validity

To evaluate the performance of a fuzzy clustering algorithm,
several quantitative measures have been adopted in [21] and
references therein. Among these measures are the partition
coefficient VPC and the partition entropy VPE given, respec-
tively, by

VPC = 1

N

C∑

i=1

N∑

n=1

u2in (17)

VPE = − 1

N

C∑

i=1

N∑

n=1

uin log uin (18)

The best clustering is achieved when VPC = 1 and VPE = 0.
In synthetic image where the labels of pixels are known, in
addition to VPC and VPE coefficients, several measures have
also beenused such as the accuracy, sensitivity and specificity
[18].

4.2 Synthetic image

The noisy images used in this simulation are generated by
adding zero-mean white Gaussian noise (WGN) with differ-
ent variances to the noise-free synthetic one shown in Fig. 1a.
The noisy image for 0.08 noise variance is shown in Fig. 1b.
The performance of the conventional FCM, MEFCM, the
spatial distance-weighted FCM (SFCM), LMREFCM and
LDMREFCM algorithms with m = 2 and C = 4 in seg-
menting these noisy images has been studied. For MEFCM,
γ = 1000; SFCM, λ = 0.5; LMREFCM and LDMREFCM,
γ = 10,000. These values have been selected experimen-
tally. The neighboring window of size 3 × 3 has been used
to compute the locally smoothed data xn . The same win-
dow size has been used for computing the locally smoothed
membership function πin . For the FCM algorithm, the initial
values of the membership functions U are generated from a
uniformly distributed random process with 0.5 mean and the
initial values of the cluster-centers V are uniformly distrib-
uted random process with mean equal to the image mean.
We have executed 25 runs of each algorithm. In each run,
the initial values of U and V of the FCM are new samples,
while the ones of the rest algorithms are generated by the
FCM algorithm after a small number of iterations. Simula-
tion results, omitted for space limitation, have shown that
with these initial values the algorithms provide better perfor-
mance than with the randomly generated ones. Also in each
run, a new random sample ofWGN is added to the noise-free
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Table 1 Clustering validation coefficients

Algorithm Image type VPC VPE

FCM Synthetic 0.8105 ± 0.0007 0.3517 ± 0.0012

Simulated MR 0.7921 ± 0.0011 0.3986 ± 0.0020

Real MR 0.8930 ± 0.0140 0.1998 ± 0.0240

Lena 0.8286 ± 0.0004 0.2824 ± 0.0006

MEFCM Synthetic 0.8616 ± 0.0012 0.2271 ± 0.0019

Simulated MR 0.8873 ± 0.0012 0.1841 ± 0.0018

Real MR 0.9602 ± 0.0113 0.0650 ± 0.0183

Lena 0.9268 ± 0.0004 0.1198 ± 0.0007

SFCM Synthetic 0.8370 ± 0.0010 0.3017 ± 0.0017

Simulated MR 0.8674 ± 0.0009 0.2409 ± 0.0014

Real MR 0.9204 ± 0.0006 0.1440 ± 0.0012

Lena 0.8936 ± 0.0006 0.1786 ± 0.0009

LMREFCM Synthetic 0.9853 ± 0.0011 0.0270 ± 0.0028

Simulated MR 0.8958 ± 0.0088 0.1721 ± 0.0146

Real MR 0.9625 ± 0.0087 0.0441 ± 0.0128

Lena 0.9609 ± 0.0012 0.0643 ± 0.0020

LDMREFCM Synthetic 0.9874 ± 0.0011 0.0227 ± 0.0022

Simulated MR 0.9234 ± 0.0030 0.1258 ± 0.0049

Real MR 0.9519 ± 0.0016 0.0604 ± 0.0025

Lena 0.9730 ± 0.0026 0.0446 ± 0.0026

image. Figure 1c–g shows the resulting clustered images pro-
duced by the five algorithms for noise case of 0.08 variance.
It is obvious that the LMREFCM and LDMREFCM algo-
rithms provide almost noise-free segmented images (i.e., a
very small number of misclassified pixels). Also, the LDM-
REFCM algorithm provides the superior segmented image.
Table 1 summarizes themeans and variances of the clustering
validation measures VPC and VPE (i.e., μ ± σ ). The LMRE-
FCM and LDMREFCM algorithms provide the superior VPC
and VPE values.

The averages of the accuracy, sensitivity and the speci-
ficity performance measures of all algorithms have been
studied against noise variance. These measures are shown in
Fig. 2. It is seen that both the LMREFCM and the LDMRE-

FCM MEFCM SFCM LMREFCM LDMREFCM
0

0.5

1

1.5

2

T
,S
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Fig. 3 The average runtime T

FCM algorithms provide the superior performance and the
LDMREFCM algorithm offers the highest noise robustness.

The average runtime T of each algorithm has been mea-
sured via simulation. In each run, all algorithms are set to
start from the same initial conditions, randomly generated
once and used for all algorithms and to stop at the same
fixed point. Figure 3 shows T versus noise variance. It is
seen that the proposed two algorithms need more runtime
than the other algorithms and the LDMREFCM one offers
shorter runtime among the two algorithms. This implies that
incorporating local data information as done in the LDM-
REFCM algorithm is vital for noise handling as well as for
convergence rate improvement.

4.3 MRI

A simulated magnetic resonance image (MRI) from [22],
shown in Fig. 4a, has been considered as a noise-free image.
Additive WGN with zero-mean and 0.005 variance has been
added to generate the noisyMRI shown in Fig. 4b. This noisy
MRI has been segmented by the FCM, SFCM, MEFCM,
LMREFCM and the LDMREFCM algorithms. The parame-
ters of all algorithms have been taken similar to the ones
used in the synthetic image simulation except γ = 200 for
the MEFCM algorithm and γ = 1000 for both the LMRE-
FCM and LDMREFCM algorithms. We have also executed
25 runs of each algorithm. The initial values of uin and vi
have been set asmentioned in the synthetic image simulation.
Figure 4c–g shows the resulting clustered images produced
by the five algorithms in a single run, and Table 1 summarizes
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Fig. 2 The average versus noise variance of the accuracy (a); sen-
sitivity (b); specificity (c); right pointed triangle FCM; plus symbol
MEFCM; star symbol SFCM; box LMREFCM; ◦, LDMREFCM. It

is clear that the proposed LMREFCM and LDMREFCM algorithms
provide the superior performance among the five algorithms and the
LDMREFCM one provides the highest noise robustness
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Fig. 4 Segmentation of simulated MRI: a noise-free image; b the
image in (a) plusWGNwith zero-mean and 0.005 variance. Segmented
images: c FCM; d MEFCM; e SFCM; f LMREFCM, g LDMREFCM.
It is obvious that the clustered images in panels f and g, offered by the
LMREFCM and LDMREFCM algorithms, show a very small number

of misclassified pixels compared with the other three clustered images.
The clustering validation coefficients summarized in Table 1 show that
the LMREFCM and LDMREFCM provide the maximum VPC and the
minimum VPE

Fig. 5 Segmentation of real MRI: a noise-free image; b the image
in (a) plus salt and pepper with variance of 0.05. Segmented images:
c FCM; d MEFCM; e SFCM; f LMREFCM, g LDMREFCM. It is
apparent that the clustered images in panels (f) and (g) provided by
the LMREFCM and LDMREFCM algorithms show a small number of

misclassified pixels compared with the other three clustered images.
The clustering validation coefficients summarized in Table 1 show that
the LMREFCM and LDMREFCM provide the maximum VPC and the
minimum VPE
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Fig. 6 Segmentation of Lena image: a noise-free image; b the image
in (a) plus WGN of zero-mean and 0.05 variance. Segmented images: c
FCM; dMEFCM; e SFCM; f LMREFCM, g LDMREFCM. It is visible
that the LMREFCM and LDMREFCM algorithms provide less noisy

clustered images. The clustering validation coefficients summarized in
Table 1 show that the LMREFCM and the LDMREFCM algorithms
provide the superior VPC and VPE

Fig. 7 Segmentation of real-world images [24]: a noise-free image; b
the image in (a) plus WGNwith zero-mean and 0.01 variance (top) and
salt and pepper noise with 0.04 variance (bottom). Segmented images: c

FCM; dMEFCM; e SFCM; fLMREFCM, gLDMREFCM. TopC = 2;
bottom C = 3

the clustering validation measures (μ ± σ ) of the five algo-
rithms. It is obvious that the LMREFCM and LDMREFCM
provide the less noisy segmented images, the maximum VPC
and the minimum VPE.

Real magnetic resonance image (MRI) from [23], shown
in Fig. 5a, has been used as a noise-free image. Additive salt
and pepper noise with 0.05 variance has been added to gen-
erate the noisy MRI shown in Fig. 5b. This noisy MRI has
been segmented by the five algorithms. The parameters of
all algorithms have been set equal to the ones used with the
synthetic image simulation except γ = 300 for the MEFCM
algorithm and γ = 800 for both the LMREFCM and LDM-
REFCM algorithms. We have also executed 25 runs of each
algorithm. The initial values of uin and vi have been adjusted
as mentioned in the synthetic image simulation. Figure 5c–g
shows the resulting clustered images of a single run. Table 1

summarizes the clustering validation coefficients. It is shown
that the LMREFCM and LDMREFCM algorithms provide
the smallest number of misclassified pixels, the maximum
VPC and the minimum VPE.

4.4 Lena image

The Lena image shown in Fig. 6a has been used as a noise-
free image. Additive WGN noise with zero-mean and 0.01
variance has been used to generate the noisy image shown
in Fig. 6b. All parameters of the five algorithms have been
adjusted similar to the previous simulations except C = 2,
γ = 1000 for the MEFCM algorithm and γ = 2000 for the
LMREFCM and the LDMREFCM algorithms. We have also
executed 25Monte Carlo runs of each algorithm as explained
above. Figure 6c–g shows the resulting segmented images
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obtained by the five algorithms. It is seen that the proposed
LMREFCM and LDMREFCM algorithms provide the less
noisy segmented images. The clustering validation measures
VPC and VPE summarized in Table 1 show that the proposed
two algorithms still provide the superior performance.

4.5 More images

Two images from Berkeley database [24] degraded by addi-
tiveWGN and salt and pepper noise have been segmented by
the five algorithms. The initial values have been adjusted as
aforementioned, and the algorithms’ parameters have been
experimentally selected. The resulting segmented images
illustrated by Fig. 7 show that the proposed two algorithms
continue providing the superior segmented images.

5 Conclusion

The C-means algorithm has been fuzzified by incorporating
local spatial membership information via two functions. The
first one measures the relative entropy between the mem-
bership of a pixel and its average in the immediate pixel
vicinity. The second function measures the relative entropy
between the complement of the membership and its average
over the immediate neighboring pixels. For regularization,
the local data information has been incorporated by modify-
ing the pixel distance to be computed from both the original
and locally smoothed image data. Incorporating both types
of local information imposes classifying each pixel in cor-
relation with its immediate neighbors. This handles additive
noise and yields segmented images with piecewise homo-
geneous regions. Results of segmentation of synthetic and
real-world images have been presented. These results have
shown that the proposed LMREFCM and LDMREFCM
algorithms outperform several widely used FCM-related
ones. The LDMREFCM algorithm has shown more noise
robustness and shorter runtime than the LMREFCM one.
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