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Abstract Recently, the normalized subband adaptive filter
(NSAF) algorithm has attracted much attention for han-
dling colored input signals. Based on the first-order Markov
model of the optimal weight vector, this paper provides some
insights for the convergence of the standard NSAF. Follow-
ing these insights, both the step size and the regularization
parameter in the NSAF are jointly optimized by minimizing
the mean-square deviation. The resulting joint-optimization
step size and regularization parameter algorithm achieves a
good tradeoff between fast convergence rate and low steady-
state error. Simulation results in the context of acoustic echo
cancelation demonstrate good features of the proposed algo-
rithm.

Keywords Normalized subband adaptive filter · Variable
step size · Variable regularization parameter · Echo
cancelation

1 Introduction

Adaptive filtering algorithms have been found in awide range
of practical applications such as system identification, chan-
nel equalization, beamforming, and echo cancelation [1–3].
Among these algorithms, one of the popular algorithms is the
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normalized least mean square (NLMS), due to its low com-
putational complexity and robust performance. In order to
obtain fast convergence rate and low steady-state misadjust-
ment (i.e., the final weights estimation error) simultaneously,
many modified NLMS methods controlling the step size
have been proposed, e.g., [4–7,25] and references therein.
However, theseNLMS-type algorithms suffer fromslowcon-
vergence when the input signals are colored.

To solve this problem, in the recent decade, themultiband-
structure of the subband adaptivefilter (SAF) has beenwidely
used [3]. This is because the SAF divides the colored input
signal into multiple mutually almost exclusive subband sig-
nals, and each decimated subband input signal used in the
update process of theweights is approximatelywhite.What’s
more, compared with the conventional subband structure,
the multiband-structure has no band edge effects [3]. On
the basis of this multiband-structure, the normalized SAF
(NSAF) algorithm [8] was developed from the least pertur-
bation principle by Lee and Gan. The NSAF exhibits faster
convergence rate than the NLMS for the colored input sig-
nals, due mainly to the inherent decorrelating property of
SAF [9]. Moreover, for long adaptive filter applications, the
computational complexity of the NSAF is almost the same
as that of the NLMS such as in echo cancelation, the echo
path is long and the speech input signal is highly colored. It
is worth mentioning that the NSAF will be equivalent to the
NLMS when number of subbands is one. Subsequently, the
theoretical models of the NSAF including the transient and
steady-state behavior were provided in [10,11]. Similar to
the NLMS, the performance of the standard NSAF depends
on two important parameters: the step size and the regu-
larization parameter. The fixed step size governs a tradeoff
between convergence rate and steady-state misadjustment.
Specifically, for the NSAF, a large (small) step size leads to
fast (slow) convergence rate but large (small) misadjustment
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in the steady-state. This tradeoff motivated the development
of NSAF algorithm with a variable step size (VSS) [12–
17]. The original purpose of the regularization parameter
was to prevent the NSAF from diverging numerically when
the l2-norm of the input vector is very small or zero (this
case is common in echo cancelation). Note that its value also
reflects a compromise in the algorithm’s performance simi-
lar to the step size. Nevertheless, the only difference is that
the directions of the step size and the regularization para-
meter controlling the algorithm’s performance are opposite.
Therefore, several variable regularization (VR) NSAF algo-
rithms have also been proposed [18–21], which in a certain
degree overcome the tradeoff of fast convergence rate and
low misadjustment, caused by the fixed regularization para-
meter. Although researchers have made some achievements
in the optimization of these two parameters, many of the pre-
sented VSS-NSAF and VR-NSAF algorithms are essentially
equivalent. Moreover, these algorithms are obtained based
on the approach that one of the two parameters is optimized
while fixing the other.

In this paper, we first analyze the convergence per-
formance of the standard NSAF based on the first-order
Markov model of the optimal weight vector. Second, a joint-
optimization scheme of the step size and the regularization
parameter is proposed by minimizing the mean square devi-
ation (MSD) of the NSAF. The resulting algorithm is called
the joint-optimization step size and regularization parameter
NSAF (JOSR-NSAF) algorithm, which achieves improved
performance.

2 Preliminary knowledge

Consider the observed data d(n) that originates from the
model

d(n) = uT (n)wo + η(n), (1)

where (·)T indicates the transpose, wo is the unknown M-
dimensional vector to be estimated, u(n) = [u(n), u(n −
1), . . . , u(n − M + 1)]T is the input signal vector, and η(n)

is the measurement noise which is assumed to be white
Gaussian noise with zero-mean and variance σ 2

η .
Figure 1 shows the multiband-structure diagram of the

SAF, where N denotes number of subbands. The observed
data d(n) and the input data u(n) are partitioned into mul-
tiple subband signals di (n) and ui (n) through the analysis
filter bank, namely, di (n) = d(n)∗hi and ui (n) = u(n)∗hi ,
where i = 0, 1, . . . , N − 1 and hi is the impulse response
of the i th analysis filter Hi (z), with the linear convolution ∗.
The subband output signals yi (n) are obtained by filtering the
subband input signals ui (n) through an adaptive filter whose
weight vector is w(k) = [w1(k), w2(k), . . . , wM (k)]T .
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Fig. 1 Multiband-structure diagram of the SAF

Then, the signals yi (n) and di (n) are N -fold decimated [3,8]
to yield the signals yi,D(k) and di,D(k) which are, respec-
tively, formulated as yi,D(k) = uTi (k)w(k−1) and di,D(k) =
di (kN ), where ui (k) = [ui (kN ), ui (kN − 1), . . . , ui (kN −
M + 1)]T . In this paper, we use n to indicate the original
sequences and k to indicate the decimated sequences. As
shown in Fig. 1, the decimated subband error signals are
expressed by subtracting yi,D(k) from di,D(k) as

ei,D(k) = di,D(k) − uTi (k)w(k − 1), i = 0, 1, . . . , N −1.

(2)

As reported in [8], the update equation of the standard NSAF
algorithm is expressed as

w(k) = w(k − 1) + μ

N−1∑

i=0

ei,D(k)ui (k)

δ + ‖ui (k)‖2
(3)

where ‖·‖ denotes the l2-norm of a vector, μ is the step size,
and δ > 0 is a small regularization parameter.

3 Proposed JOSR-NSAF algorithm

In this section, the proposed JOSR-NSAF algorithm will be
derived,whose inspiration comes from the joint-optimization
NLMS (JO-NLMS) algorithm developed by Ciochină et al.
[7].

3.1 Some insights for convergence of the NSAF

Let us assume that the unknown vector wo is time-varying
and follows a simplified first-order Markov model [24], i.e.,

wo(k) = wo(k − 1) + q(k) (4)
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where q(k) is a white Gaussian noise vector with zero-
mean and covariance matrix E

[
q(k)qT (k)

] = σ 2
q IM with

IM being an M × M identity matrix and E [·] denoting the
mathematical expectation. Evidently, the quantity σ 2

q char-
acterizes the randomness in wo(k), and q(k) is independent
of wo(k − 1).

Subtracting (4) from (3), we obtain

w̃(k) = w̃(k − 1) − μ

N−1∑

i=0

ei,D(k)ui (k)

δ + ‖ui (k)‖2
+ q(k) (5)

where w̃(k)
�= wo(k)−w(k) denotes the weight error vector.

Based on (1), (2) and (4), the decimated subband error signals
can be rewritten as

ei,D(k) = uTi (k)w̃(k − 1) + uTi (k)q(k) + ηi (k) (6)

where ηi (k) for i = 0, 1, . . . , N − 1 are the subband noises
that can be obtained by partitioning the measurement noise
η(n) and have zero-mean and variancesσ 2

ηi
= σ 2

η /N [11,22].
Taking the squared l2-norm andmathematical expectation

on both sides of (5), and removing the uncorrelated product
of q(k) and w̃(k − 1), we get

MSD(k) = MSD(k − 1) + Mσ 2
q

− 2μ
N−1∑

i=0

E

[
ei,D(k)w̃T (k − 1)ui (k)

δ + ‖ui (k)‖2
]

− 2μ
N−1∑

i=0

E

[
ei,D(k)qT (k)ui (k)

δ + ‖ui (k)‖2
]

+μ2
N−1∑

i=0

E

[
e2i,D(k)uTi (k)ui (k)
(
δ + ‖ui (k)‖2

)2

]
(7)

where MSD(k)
�= E

[
‖w̃(k)‖2

]
denotes the MSD of the

algorithm at the kth iteration. In (7), we also use the diagonal
assumption, i.e., E

[
uTi (k)u j (k)

] ≈ 0, i �= j , which was
made in the derivation of the standard NSAF [8]. For a long
adaptive filter, it is assumed that the fluctuation of ‖ui (k)‖2
from one iteration to the next is small enough [12,16] so that
(7) becomes

MSD(k) = MSD(k − 1) + Mσ 2
q

− 2μ
N−1∑

i=0

E
[
ei,D(k)w̃T (k − 1)ui (k)

]

E
[
δ + ‖ui (k)‖2

]

− 2μ
N−1∑

i=0

E
[
ei,D(k)qT (k)ui (k)

]

E
[
δ + ‖ui (k)‖2

]

+μ2
N−1∑

i=0

E
[
e2i,D(k)uTi (k)ui (k)

]

E
[(

δ + ‖ui (k)‖2
)2] . (8)

Owing to the inherent decorrelating property of SAF, we can
assume that each decimated subband input signal is close to a
white signal, i.e., ui (k)uTi (k) ≈ IMσ 2

ui (k) and u
T
i (k)ui (k) ≈

Mσ 2
ui (k) [14]. Hence, (8) is changed as

MSD(k) = MSD(k − 1) + Mσ 2
q

− 2μ
N−1∑

i=0

E
[
ei,D(k)w̃T (k − 1)ui (k)

]

δ + Mσ 2
ui (k)

− 2μ
N−1∑

i=0

E
[
ei,D(k)qT (k)ui (k)

]

δ + Mσ 2
ui (k)

+μ2
N−1∑

i=0

E
[
e2i,D(k)uTi (k)ui (k)

]

(
δ + Mσ 2

ui (k)
)2 . (9)

To further proceed, the commonly used independence
assumption [1,7,10,22] that w̃(k − 1), ui (k), q(k) and
ηi (k) are statistically independent is necessary. Applying
this assumption and the Gaussian moment factoring theorem
[1,7], and after some manipulations, we have

E
[
ei,D(k)w̃T (k − 1)ui (k)

]
≈ σ 2

ui (k)MSD(k − 1), (10)

E
[
ei,D(k)qT (k)ui (k)

]
≈ Mσ 2

q σ 2
ui (k), (11)

E
[
e2i,D(k)uTi (k)ui (k)

]
≈ Mσ 2

ui (k)σ
2
ηi

+(M + 2)σ 4
ui (k)

[
MSD(k − 1) + Mσ 2

q

]
. (12)

Substituting (10)–(12) into (9) yields

MSD(k) = h̄(μ, δ)MSD(k − 1) + ϕ(μ, δ) (13)

where

h̄(μ, δ) =
[
1 − 2μ

N−1∑

i=0

σ 2
ui (k)

δ + Mσ 2
ui (k)

+μ2
N−1∑

i=0

(M + 2)σ 4
ui (k)(

δ + Mσ 2
ui (k)

)2

]
, (14)

ϕ(μ, δ) = h̄(μ, δ)Mσ 2
q + μ2

N−1∑

i=0

Mσ 2
ui (k)σ

2
ηi(

δ + Mσ 2
ui (k)

)2 . (15)

The relation (13) consists of two parts h̄(μ, δ) and ϕ(μ, δ),
which reveal the convergence and misadjustment behavior
of the NSAF, respectively.

Remark 1 The term h̄(μ, δ) controls the convergence rate of
the NSAF in the mean-square sense, i.e., the convergence
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rate is dependent on the step size, regularization parameter,
filter length, number of subbands, and subband input vari-
ances. Interestingly, the convergence rate is not influenced
by the subband noise variances σ 2

ηi
and the model uncertain-

ties σ 2
q . In addition, certain classical convergence results can

be obtained by analyzing the convergence term h̄(μ, δ):

1. The fastest convergence rate of the NSAF is achieved
when the value of h̄(μ, δ) is at its minimum. Therefore,
setting the derivative of h̄(μ, δ) with respect to the step
size to zero, the optimal step size for ensuring the fastest
convergence rate is obtained as

μopt−con=
∑N−1

i=0 σ 2
ui (k)

[
δ+Mσ 2

ui (k)
]
/
[
δ + Mσ 2

ui (k)
]2

∑N−1
i=0 (M + 2)σ 4

ui (k)/
[
δ + Mσ 2

ui (k)
]2 .

(16)

After neglecting the regularization parameter (i.e., δ = 0)
and supposing a long filter, i.e., M � 2, which is char-
acteristic of echo cancelation application, e.g., M = 512
in the following simulation section, (16) can be approxi-
mated as μopt−con ≈ 1, which is a well-known result for
the standard NSAF [3].

2. To ensure the mean-square stability of the NSAF, the
range of the step size can be formulated by imposing
|h̄(μ, δ)| < 1 as

0 < μstability < 2μopt−con. (17)

By, again, taking δ = 0 and M � 2, we obtain the
stability range presented in [3,8], i.e., 0 < μstability < 2.

Remark 2 The term ϕ(μ, δ) in (13) determines the misad-
justment of the NSAF. It is evident that the misadjustment
depends on σ 2

q and σ 2
ηi
, which increases as these two quanti-

ties increase. It is noticeable that the smallest misadjustment
of the algorithm can be obtained from the minimization
of ϕ(μ, δ). Thus, by setting the derivative of ϕ(μ, δ) with
respect to the step size to zero, the optimal step size for
obtaining the smallest misadjustment is expressed as

μopt−mis

= σ 2
q

∑N−1
i=0 σ 2

ui (k)
[
δ+Mσ 2

ui (k)
]
/
[
δ+Mσ 2

ui (k)
]2

∑N−1
i=0

[
(M+2)σ 2

q σ 4
ui (k)+σ 2

ui (k)σ
2
ηi

(k)
]
/
[
δ+Mσ 2

ui (k)
]2 .

(18)

Assuming that the unknown system is stationary, i.e., σ 2
q ≈

0, (18) will lead to μopt−mis ≈ 0. This result implies that the
step size should be very small (e.g., close to zero) to obtain
small misadjustment.

Remark 3 From Remarks 1 and 2, it is concluded that the
fixed step size determines the convergence rate and mis-
adjustment of the NSAF in opposite directions. In other
words, using a fixed step size is unrealistic to obtain an
ideal NSAF performance, i.e., both fast convergence rate
and small misadjustment. Hence, this conclusion motivates
the VSS methods to meet these two performance consid-
erations. In all the VSS schemes, the step size gradually
decreases as the algorithm converges from the starting stage
to the steady-state. Although the regularization constant in
(3) is originally introduced to avoid the numerical instability
of the NSAF when the l2-norm of the subband input sig-
nals is very small (in the extreme case, it is zero), its value
also influences the convergence rate and misadjustment of
the algorithm [20]. Interestingly, the influence of the reg-
ularization constant on these two performances is opposite
to that of the step size. That is to say, as the regularization
constant increases, the misadjustment decreases, while slow-
ing the convergence rate. As a result, a potential scheme is
to control these two parameters simultaneously to improve
the performance of the NSAF, which will be described in
following subsection.

3.2 A joint-optimization scheme

Using a time-varying step size μi (k) and a time-varying reg-
ularization parameter δi (k) for i = 0, 1, . . . , N − 1. Instead
of fixing their values, (13) can be rewritten as

MSD(k) =
{
1 − 2

N−1∑

i=0

μi (k)σ 2
ui (k)

δi (k) + Mσ 2
ui (k)

+
N−1∑

i=0

μ2
i (k)(M + 2)σ 4

ui (k)[
δi (k) + Mσ 2

ui (k)
]2

}
×

[
MSD(k − 1) + Mσ 2

q

]

+
N−1∑

i=0

μ2
i (k)Mσ 2

ui (k)σ
2
ηi[

δ + Mσ 2
ui (k)

]2 . (19)

To minimize the MSD of the NSAF at each iteration, the
following subband constraints are imposed, i.e.,

∂MSD(k)

∂μi (k)
= 0 and

∂MSD(k)

∂δi (k)
= 0, i = 0, 1, . . . , N − 1.

(20)

Applying (20), a joint-optimization strategy of μi (k) and
δi (k) for each subband is obtained as,

μi (k)

δi (k) + Mσ 2
ui (k)

= MSD(k − 1) + Mσ 2
q

(M + 2)σ 2
ui (k)

[
MSD(k − 1) + Mσ 2

q

]
+ Mσ 2

ηi

. (21)

123



SIViP (2017) 11:509–516 513

Substituting (21) into (3), we obtain a new weight update
expression

w(k) = w(k − 1)

+
N−1∑

i=0

[
MSD(k − 1) + Mσ 2

q

]
ei,D(k)ui (k)

(M + 2)σ 2
ui (k)

[
MSD(k − 1) + Mσ 2

q

]
+ Mσ 2

ηi

.

(22)

Likewise, substituting (21) into (19), and after some simple
computations, the MSD(k − 1) in (22) is updated as

MSD(k) =
[
MSD(k − 1) + Mσ 2

q

]

×
⎧
⎨

⎩1 −
N−1∑

i=0

[
MSD(k − 1) + Mσ 2

q

]
σ 2
ui (k)

(M + 2)σ 2
ui (k)

[
MSD(k − 1) + Mσ 2

q

]
+ Mσ 2

ηi

⎫
⎬

⎭ .

(23)

3.3 Convergence of the proposed algorithm

Let us define the decimateda priori error of the i th subband as

ea,i (k)
�= w̃T (k−1)ui (k), we have E

[
e2a,i (k)

]
= MSD(k−

1)σ 2
ui (k), then (23) can be changed as

MSD(k) = β(k)MSD(k − 1) + β(k)Mσ 2
q (24)

where

β(k)

= 1 −
N−1∑

i=0

E
[
e2a,i (k)

]
+ Mσ 2

q σ 2
ui (k)

(M + 2)
[
E

[
e2a,i (k)

]
+ Mσ 2

q σ 2
ui (k)

]
+ Mσ 2

ηi

.

(25)

By continuously iterating (24), we get

MSD(k) = (β(k) · · · β(2)β(1))MSD(0)

+Mσ 2
q

k∑

j=1

β( j) · · · β(k), (26)

and

MSD(k − 1) = (β(k − 1) · · · β(2)β(1))MSD(0)

+ Mσ 2
q

k−1∑

j=1

β( j) · · · β(k − 1). (27)

Combining (26) and (27) yields the following relation:

�MSD(k) = MSD(k) − MSD(k − 1)

= (β(k) − 1) (β(k − 1) · · · β(2)β(1))MSD(0) + Mσ 2
q β(k).

(28)

Again using the assumption of a long filter, from (25) we
obtain

β(k) ≈ 1 −
N−1∑

i=0

E
[
e2a,i (k)

]
+ Mσ 2

q σ 2
ui (k)

M
(
E

[
e2a,i (k)

]
+ Mσ 2

q σ 2
ui (k)

)
+ Mσ 2

ηi

<

(
1 − N

M

)
= βmax < 1. (29)

To ensure the mean-square stability of the proposed algo-
rithm, the MSD must decrease iteratively, i.e., �MSD(k) <

0. Thus, the quantity σ 2
q has to satisfy the inequality

σ 2
q <

(1 − β(k))

Mβ(k)
βk−1
maxMSD(0). (30)

Under the condition of (28), in the steady-state, the following
relation holds

MSD(∞) = lim
k→∞

⎛

⎝β(k) · · · β(2)β(1)MSD(0)

+Mσ 2
q

k∑

j=1

β( j) · · · β(k)

⎞

⎠

< lim
k→∞

(
βk
maxMSD(0) + Mσ 2

q
βmax − βk+1

max

1 − βmax

)

= Mσ 2
q

βmax

1 − βmax
. (31)

Equation (31) reveals that the convergence of the proposed
JOSR-NSAF is stable in the mean-square sense.

3.4 Practical considerations

To implement the above-presented JOSR-NSAF algorithm,
some practical considerations about the parameters σ 2

ui (k),
σ 2

η , and σ 2
q are necessary which we list below.

1. The subband input variancesσ 2
ui (k) for i = 0, 1, . . . , N−

1 can be estimated by σ̂ 2
ui (k) = uTi (k)ui (k)/M [7,23].

2. The second consideration is to take the measurement
noise variance σ 2

η , which also appears in many VSS
andVR versions of the NSAF, e.g., [12,13,15,16,19,21].
Usually, in practical applications, σ 2

η can be easily esti-
mated. Several differentmethods based on an exponential
window have been developed to estimate this variance
[4,5,12]. For example, in echo cancelation, it can be
estimated during silences of the near-end talker, in a
single-talk scenario [12]. Detailed discussion the perfor-
mances of these estimation methods, concerning σ 2

η , is
outside the scope of this work.
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Table 1 Summary of the proposed JOSR-NSAF algorithm

Initializations w(0) = 0, MSD(0) = 1

Parameters σ 2
η , noise variance (known or estimated)

Adaptive process for i = 0, 1, . . . , N − 1

ei,D(k) = di,D(k) − uTi (k)w(k − 1)

σ̂ 2
ui (k) = uTi (k)ui (k)/M

end

g(k) = MSD(k − 1) + M σ̂ 2
q (k − 1)

πi (k) = g(k)
(M+2)σ 2

ui
(k)g(k)+Mσ 2

ηi

w(k) = w(k − 1) +
N−1∑
i=0

πi (k)ei,D(k)ui (k)

MSD(k) =
[
1 −

N−1∑
i=1

πi (k)σ 2
ui (k)

]
g(k)

M σ̂ 2
q (k) = ‖w(k) − w(k − 1)‖2

3. The only remaining consideration is how to choose σ 2
q ,

which plays a very important role in the performance
of the proposed JOSR-NSAF. For a small σ 2

q , the algo-
rithm has a small steady-state misadjustment but a poor
tracking capability; conversely, a large σ 2

q results in good
tracking performance but increases the steady-state mis-
adjustment. To address this compromise, σ 2

q is estimated
as [7,23]

σ̂ 2
q (k) = ‖w(k) − w(k − 1)‖2/M. (32)

This relation is obtained by taking the l2-norm on both
sides of (4) and replacing wo(k) with its estimate w(k).
As can be seen, in the initial stage of adaptation or when
the unknown system suddenly changes, the value of σ̂ 2

q
is large, thus leading to fast convergence rate and good
tracking capability. Moreover, when the algorithm goes
into the steady-state, the value of σ̂ 2

q is small, thus obtain-
ing low steady-state misadjustment.

Based on the above considerations, the proposed JOSR-
NSAF algorithm is summarized in Table 1. Note that, the
JOSR-NSAF reduces to the JO-NLMS in [7] when the num-
ber of subbands is one.

4 Simulation results

To evaluate the performance of the proposed algorithm,
extensive simulations were performed in the context of
acoustic echo cancelation. In our simulations, the unknown
vector wo to be identified is a room acoustic echo path with
M = 512 taps [26]. Also, to show the tracking capability
of the algorithm, the unknown vector is changed abruptly
from wo to −wo in the middle of the input samples. The col-

0 1 2 3 4 5 6

x 10
5

-60

-50

-40

-30

-20

-10

0

10

Input samples

N
M

S
D

 (d
B

)

JO-NLMS
JOSR-NSAF(N = 2)
JOSR-NSAF(N = 8)

Fig. 2 NMSD curves of the JO-NLMS and proposed JOSR-NSAF
(with N = 2 and 8) algorithms. SNR = 30 dB, AR(1) input

ored input signal is either an first-order autoregression, i.e.,
AR(1), process with a pole at 0.95 or a speech signal. The
measurement noise η(n) is white Gaussian with a signal-to-
noise ratio (SNR) of either 30 dB or 20 dB. It is assumed
that the variance of the measurement noise, σ 2

η , is known,
because it can be easily estimated similar to [4,5,12]. A
cosine-modulated filter bank [3] is used for all the SAF algo-
rithms. As a measure of the algorithm’s performance, the
normalized MSD (NMSD), also called the misadjustment,
is defined as 10 × log10(‖wo − w(k)‖22 / ‖wo‖22) (dB). All
results were obtained by averaging over 30 independent runs,
except for speech input (single realization).

We first compare the performance of the JO-NLMS algo-
rithm [7] with proposed JOSR-NSAF (with N = 2 and 8
subbands) for an AR(1) input, as shown in Fig 2. From this
figure, it can be noted that the JOSR-NSAF algorithm has
faster convergence rate than the JO-NLMS (i.e., the JOSR-
NSAF with N = 1) algorithm for the colored input signal.
Moreover, with an increased number of subbands N , the
convergence rate is further improved. The reason behind
this phenomenon is that each decimated subband input sig-
nal approaches a white signal as the number of subbands
increases. In the following simulations, we set N = 8 for all
the NSAF-type algorithms.

Figure 3 shows the NMSD performances of the stan-
dard NSAF (with μ = 1 and 0.05), VSSM-NSAF [12],
NVSS-NSAF [16], VRM-NSAF [19], and the proposed
JOSR-NSAF algorithms using an AR(1) process as the input
signal. All these VSS and VR algorithms require a priori
knowledge of the measurement noise variance σ 2

η ; thus, we
assume that its value is available, for a fair comparison. Also,
we set the algorithms’ parameters according to the recom-
mendations in [12,16,19]. As can be seen, compared with
the NSAF, its VSS and VR versions improved the perfor-
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Fig. 3 NMSD curves of various NSAF-type algorithms for AR(1)
input signal. a SNR = 30 dB; b SNR = 20 dB. VSSM-NSAF: κ = 6;
NVSS-NSAF: κ = 3, λ = 4; VRM-NSAF: α = 0.995, Q = 1000.
The regularization parameter for the NSAF, VSSM-NSAF and NVSS-
NSAF algorithms is chosen as δ = 10σ 2

ui

mance in terms of the convergence rate and steady-state
misadjustment. Importantly, the improvement of the pro-
posed JOSR-NSAF in the steady-state performance is more
obvious than its counterparts. Also, it can be observed from
Fig. 3 that as the SNR decreases (or the measurement noise
variance σ 2

η increases), the steady-state misadjustment of
these NSAFs increases but the convergence rate of that does
not change, which is consistent with the previous analysis in
Remarks 1 and 2.

Finally, Fig. 4 compares the performance of the pro-
posed JOSR-NSAF with that of NSAF (with μ = 1),
VSSM-NSAF, NVSS-NSAF, and VRM-NSAF in speech
input scenario. These results are similar to those results with
AR(1) input in Fig. 3, which demonstrates that the proposed
algorithm also works better than the existing VSS and VR-
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Fig. 4 NMSD curves of various NSAF-type algorithms for speech
input signal. The choice of the algorithms’ parameters is the same as
Fig. 3. a SNR = 30 dB; b SNR = 20 dB

NSAF algorithms for speech input signal. In addition, the
proposed algorithm does not require any additional para-
meters to control its performance relative to many of its
counterparts.

5 Conclusions

We have analyzed the convergence performance of the stan-
dard NSAF using a first-order Markov model of the optimal
weight vector. Based on this model, we propose a joint-
optimizationNSAF algorithm byminimizing theMSDof the
NSAF over both the step size and the regularization parame-
ter, simultaneously achieving fast convergence rate and low
steady-state misadjustment. Simulation results in acoustic
echo cancelation application demonstrate that the proposed
algorithm outperforms many existing VSS and VR exten-
sions of the NSAF in performance.

123



516 SIViP (2017) 11:509–516

Acknowledgements The authors would like to thank Dr. Li Kan in
the Computational Neuro Engineering Laboratory at the University of
Florida, USA, for his help in improving the presentation of the paper.
This work was partially supported by National Science Foundation of
P.R. China (Grant: 61271340, 61571374 and 61433011).

References

1. Haykin, S.: Adaptive Filter Theory, 4th edn. Prentice-Hall, Upper
Saddle River (2002)

2. Benesty, J., Huang, Y.: Adaptive Signal Processing—Applications
to Real-World Problems. Springer, Berlin (2003)

3. Lee, K.A., Gan, W.S., Kuo, S.M.: Subband Adaptive Filtering:
Theory and Implementation. Wiley, Hoboken (2009)

4. Benesty, J., Rey, H., Vega, L.R., Tressens, S.: A nonparametric
VSS NLMS algorithm. IEEE Signal Process. Lett. 13(10), 581–
584 (2006)
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