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Abstract Multi-focus image fusion technique can solve the
problem that not all the targets in an image are clear in case of
imaging in the same scene. In this paper, a novel multi-focus
image fusion technique is presented, which is developed
by using the nonsubsampled contourlet transform (NSCT)
and a proposed fuzzy logic based adaptive pulse-coupled
neural network (PCNN)model. In ourmethod, sum-modified
Laplacian (SML) is calculated as the motivation for PCNN
neurons in NSCT domain. Since the linking strength plays
an important role in PCNN, we propose an adaptively fuzzy
way to determine it by computing each coefficient’s impor-
tance relative to the surrounding coefficients. Combinedwith
human visual perception characteristics, the fuzzy member-
ship value is employed to automatically achieve the degree
of importance of each coefficient, which is utilized as the
linking strength in PCNN model. Experimental results on
simulated and real multi-focus images show that the pro-
posed technique has a superior performance to series of exist
fusion methods.
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1 Introduction

Due to the limited depth of the field of optical lenses, the
sensors cannot generate images of all objects at various
distances with equal clarity, which means a scene can-
not simultaneously focus on all targets well, i.e., only the
objects at focus plane would appear sharp, while others
would appear blur [1]. An effective solution to this prob-
lem is through multi-focus image fusion technology, which
can create a single ‘all-in-focus’ image with all the objects
are in focus [2]. The fused image is more suitable for human
or machine perception as well as the computer processing
tasks such as segmentation, feature extraction, and target
recognition.

The multi-focus image fusion algorithm is divided into
two categories: spatial domain-based algorithm and trans-
form domain-based algorithm [3]. Currently, the transform
domain-basedmultiscale image fusion algorithmhas become
a mainstream class fusion method [4]. The traditional dis-
crete wavelet transform (DWT) has been successfully used in
image fusion [5]. However, DWT lacks shift-invariance due
to its underlying down-sampling process [6], which means
the fusion is sensitive to registration. Unser [7] proposed a
shift-invariantDWT (SIDWT) to overcome the shortcomings
of DWT. However, the two-dimensional wavelet is isotropic
and cannot effectively describe the abrupt transitions such
as line and curve singularities. In addition, the wavelet can
only be limited to capture three directions of the information
[8].
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To overcome the shortcomings of thewavelet, Do andVet-
terli developed a true two-dimensional image representation
method, namely the contourlet transform (CT) [9]. Com-
pared with DWT, the CT not only has multiscale parameters
and localization but also multi-direction and anisotropy.
As a result, the CT can represent edges and other singu-
larities along curves more efficiently [10]. However, the
up- and down-sampling process of CT results in lacking
shift-invariance and having pseudo-Gibbs phenomena in the
fusion. In 2006, Da Cunha et al. [11] proposed an over com-
plete transform, namely, the nonsubsampled CT (NSCT).
NSCT inherits the advantages of CT, while also possessing
shift-invariance and effectively suppressing Pseudo-Gibbs
phenomena [12]. Thus, the NSCT is more suitable for image
fusion.

Currently, artificial neural networks have been success-
fully used in image processing. The pulse-coupled neural
network (PCNN) was proposed in 1990 by Eckhorn to
simulate the processing mechanism of cat’s visual cor-
tex, which results in a new type of neural network model
[13]. Based on the PCNN bionic mechanism and pulse
synchronization of neurons characteristics, PCNN plays an
important role in image fusion [14]. However, the opti-
mal parameters that set PCNN for different images have
poor versatility when applied in image fusion. For most
image fusion methods based on PCNN, the parameters are
set to fixed values. However, visual processing for obvi-
ous characteristic areas should react more strongly than the
generic areas. Hence the parameters for the PCNN neurons
should reflect the importance of each pixel’s characteris-
tic of the image [15,16]. Therefore, we need a way to
adaptively set the parameters of the PCNN-based fusion
method.

In addition, the selection of the fusion rules is also the
key problem in the transform domain-based fusion algo-
rithm. The conventional fusion rule that used Max-Average
technique for selecting high–low subbands has some dis-
advantages such as reduce the contrast of the fused image
[4]. In this paper, an adaptive PCNN is proposed to act as
the fusion rule after the source images are decomposed by
NSCT. In order to better measure the pixel importance of the
source images to the fused image, we employ fuzzy logic
combined with the human visual perception characteristics
to build an adaptive PCNNmodel and propose sum-modified
Laplacian (SML) to motivate the PCNN neurons. The exper-
imental results indicate that the proposed method can obtain
better subjective and objective results than series of existing
fusion methods.

The rest of this paper is organized as follows. The related
theories are briefly introduced inSect. 2. The proposed image
fusion method is described in Sect. 3. The experimental
results and analysis are depicted in Sect. 4, and the final
conclusions are given in Sect. 5.
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Fig. 1 Contourlet decomposed schematic diagram

2 Preliminaries

2.1 Nonsubsampled contourlet transform

The CT process is divided into two stages. First, the Lapla-
cian Pyramid (LP) is utilized to capture the point singularities
and to decompose the original images into low-frequency
and high-frequency sub-images. Then, the Directional Filter
Bank (DFB) offers an efficient directional multiresolu-
tion image representation and divides the high-frequency
subbands into directional subbands [9]. A contourlet decom-
posed schematic diagram is shown in Fig. 1. According to
the sampling theorem, the pseudo-Gibbs phenomena would
appear in low- and high-frequency sub-images in LP domain.
Directional subbands which come from the high-frequency
sub-images by DFB filtering would also appear the pseudo-
Gibbs phenomena. These phenomena would weaken the
directional selectivity of the CT-based method.

The NSCT is proposed based on the CTwhich inherits the
advantages of the CT. The whole implementation of NSCT
process consists of two phases, the multiscale decomposition
and the directional decomposition [11]. The most difference
from CT is that NSCT is composed of two shift invariant
parts, i.e., nonsubsampled Pyramid filter banks (NSPFB) and
nonsubsampled directional filter banks (NSDFB). An NSCT
decomposed schematic diagram is shown in Fig. 2. The size
of different sub-images decomposed by NSCT is identical,
so it is easy to find the connection among sub-images of

Image
NSPFB

Low 
Frequency

High
Frequency

High
Frequency

NSDFB

NSDFB

Fig. 2 Nonsubsampled contourlet decomposed schematic diagram
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different images, which is beneficial to design fusion rules.
Additionally, NSCT-based fusion can effectively reduce the
impacts of misregistration on the results.

2.2 Pulse-coupled neural network

PCNN was proposed in the 1990s and was gradually replac-
ing the traditional neural networks. PCNN does not need to
learn or train and can extract the useful information from the
complex background. It has become the most widely stud-
ied neural network model, but the theory should be further
improved. In practical applications, a number of parame-
ters in PCNN need to be set, which increase the difficulty
and complexity of its usage. Consequently, the simplified
model of PCNN has often been used. In this paper, we use an
improved PCNN [17], with neurons after q iterations, whose
mathematical formula is shown below.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fi j (q) = Ii j
Li j (q) = e−αL Li j (q − 1) + ∑

m,n Wi j,mnYmn(q − 1)

Uk
i j (q) = Fk

i j (q)(1 + βLk
i j (q))

θki j (q) = e−αθ θki j (q − 1) + VθY k
i j (q − 1)

Y k
i j (q) =

{
1, Uk

i j (q) > θki j (q)

0, otherwise

(1)

where q denotes the iteration times, i j represents a pixel in
the image matrix position, Ii j is an external input stimulus
signal, Yi jand Ui j are the output neurons of the external and
internal state information, Fi jand Li j are the feed input and
the input connectors,Wi j,mn is the synaptic gain strength and
subscriptsm and n are the size of the linking range in PCNN.
β is the linking strength. θi j is the threshold. αi j is the decay
constants. VL and Vθ are the amplitude gain.

3 Proposed method

In this section, we will provide a more detailed descrip-
tion of the proposed fusion method based on NSCT and
fuzzy-adaptive PCNN. Suppose A and B are two registered
source images. After k-level NSCT decomposition, the cor-
responding subbands of different scales and directions can
be obtained, i.e., A:{L A, H A

k,l} and B:{LB, HB
k,l}, where L A,

LB are the low-frequency sub-images and H A
k,l , H

B
k,l repre-

sent the high-frequency sub-images at level k and direction l.

3.1 SML motivated PCNN neurons

In most multiscale fusion algorithms based on PCNN, a
single pixel is often directly used tomotivate a neuron inmul-
tiscale decomposition domain. Actually, the human visual

nervous system is often highly sensitive to the edge infor-
mation and the directional features [17]. Thus, pure single
pixel motivation for PCNN is not sufficient. The SML can
reflect the marginalized mutation and clarity information of
an image [18]. Therefore, compared to spatial frequency
(SF), variance, gradient energy and Laplace energy, SML
is more suitable to motivate PCNN neurons. The definition
of SML is defined as follows:

SML(i, j) =
M1∑

m=−M1

N1∑

n=−N1

[ML(i + m, j + m)] (2)

for a windowwith size (2M1+1)(2N1+1), where ML(i, j)
is the Modified Laplacian (ML), which is defined as:

ML(i, j) = |2C(i, j) − C(i − step, j) − C(i + step, j)|+
|2C(i, j) − C(i, j − step) − C(i, j + step)|

(3)

where step is a variable spacing between coefficients. In this
paper, step always equals 1. C(i, j) denotes the pixel value
of one coefficient located at (i, j).

Hence, in the proposed fusion method, the SML is used
to motivate the PCNN neurons, while human visual percep-
tion characteristics are used to determine the fuzzy-adaptive
linking strength.

3.2 Fuzzy-adaptive linking strength determination

As can be seen from references [19,20], the linking strength
β of PCNN has a certain relationship with the pixel char-
acteristic of an image, and β should reflect the importance
of a pixel relative to its surrounding pixels. The larger of β

means the PCNN neuron is captured and fired more easily
and quickly. Meanwhile, the human visual nonlinearity char-
acteristics can determine the pixel relative to its surrounding
pixels whether they are visually important or not. However,
the uncertainty and subjectivity exists in the process of visual
respondence.

Fuzzy logic can effectively address this problem and the
uncertainty contribution of each source image pixel. By fuzzy
if–then rules andmembership functions applied for the image
date set, the fuzzy logic approach can model and combine
the images to enhance the contrast of the fused image [21].
Hence,we propose a novel fuzzy logic basedmethod to deter-
mine the linking strength of PCNN, which can be adaptively
determined bymeasuring each coefficient’s importance to its
surrounding coefficients.

For the low-frequency subbands, there is a nonlinear rela-
tionship between the contrast sensitivity threshold and the
brightness of the background by considering human visual
perception characteristics. A concept of visibility that can
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effectively measure the image uniformity is introduced in
[22]. Based on the visibility concept, a local visibility is
defined, which is used to measure the clarity of the low-
frequency subbands. The local visibility is defined as:

Lx
VI(i, j)

=
{

1
M×N

∑M
i=1

∑N
j=1

|Lx (i, j)−τ x (i, j)|
τ x (i, j)1+α τ x (i, j) �= 0

Lx (i, j) otherwise

(4)

where (M × N ) is the window size, τ x (i, j) denotes the
mean low coefficient located at (i, j) of the image x , and α

is a visual constant ranging from 0.6 to 0.7. If the local vis-
ibility of a coefficient is larger, then the coefficient is more
important in the image.The fuzzymembershipvaluesμL cor-
responding to the low-frequency subband coefficient’s local
visibility is thus can be calculated as follows:

μL
(
Lx
VI(i, j)

) = 1

1 + e−(Lx
VI(i, j)−a1)

(5)

where a1 = average
(
Lx
VI(i, j)

)
.

For the high-frequency subbands, because human visu-
alization is sensitive to the changes in local contrast of the
image. Meanwhile, considering the advantages of SML in
distinguishing clearness and blurriness of the image block
and the human visual perception characteristics, the local
visual features contrast is defined as:

Lx,k,l
VC (i, j) =

⎧
⎨

⎩

(
1

ϑ x
k (i, j)

)α SMLx
k,l (i, j)

ϑ x
k (i, j) ϑ x

k (i, j) �= 0

SMLx
k,l(i, j) otherwise

(6)

where, ϑ x
k (i, j) is the average low coefficient located at (i, j)

of the image x at the scale k, and SMLx
k,l(i, j) denotes the

SML located at (i, j) of the image x at the scale k and direc-
tion l, x ∈ {A, B}. If the local visual feature contrast of a
coefficient is large, then the coefficient has more importance
in the image. Hence, the fuzzy membership values μH cor-
responding to the high-frequency subband coefficient’s local
visual features contrast can be defined as:

μH

(
Lx,k,l
VC (i, j)

)
= 1

1 + e
−

(
Lx,k,l
VC (i, j)−a2

) (7)

where a2 = average
(
Lx,k,l
VC (i, j)

)
.

Therefore, the linking strength β of low-frequency sub-
bands and high-frequency subbands are presented as βx

L(i, j)

= μL
(
Lx
VI(i, j)

)
and β

x,k,l
H (i, j) = μH(Lx,k,l

VC (i, j)),
respectively, representing their importance in the correspond-
ing source image.

3.3 Algorithm

The block diagramof the proposed fusion scheme is shown in
Fig. 3. This method can be easily extended to more than two
images. The fusion process consists of the following steps:

Step 1 Decompose the nth source images In by using
NSCT to obtain one low-frequency subband and a series of
high-frequency subbands at each level k and direction l.

Step 2 Compute the SML of the subbands as the input of
PCNN using (2).

Step 3 Compute the linking strengthβn
Land β

n,k,l
H of the

low-frequency subbands and the high-frequency subbands
respectively, as described in Sect. 3.2.

Step 4 Input the SML to motivate the PCNN with the
linking strength of step 3 to generate pulses of neurons using
(1), and compute the firing times as follows:

T n,k,l
i, j = T n,k,l

i, j (q − 1) + Yn,k,l
i, j (q) (8)

Fig. 3 The framework of the
proposed fusion algorithm
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Step 5 When the number of iterations reaches q, the max-
imum firing time rules for fusion subband coefficients is
defined as follows:

Dk,l
n (i, j)

=
{
1, if T n,k,l

i, j = max
(
T 1,k,l
i, j , T 2,k,l

i, j , ..., T n,k,l
i, j

)

0, otherwise

(9)

Pk,l
F (i, j) =

{
Pk,l
n (i, j), if Dk,l

n (i, j) = 1
0, otherwise

(10)

where, Pk,l
F and Pk,l

n denote the coefficients of the fused
image and nth source image, respectively.

Step 6 Use the inverse NSCT on the fused coefficients to
obtain the final fused image.

4 The experimental results and analysis

In this section, we compare the performance of our tech-
nique with the existing image fusion methods based on
Gradient Pyramid (GP), DWT, SIDWT, CT, NSCT and
NSCT-PCNN. In addition, this method was also compared
with the method of literature [17], which uses SF to moti-
vate the PCNN neurons (SF_PCNN). All the methods are
the three layers decomposition. All the NSCT-based meth-
ods have the same multi-direction decomposition levels are
1, 2 and 8. The parameters of PCNN are set as W =
[0.707 1 0.707; 1 0 1; 0.707 1 0.707],αL = 0.01,
αθ = 20, m × n = 3 × 3, and q=200. The size of the
window for computing SML, LVI and LVC was set as 3× 3.

4.1 Experiments on simulated multi-focus image fusion

The first experiment is conducted using an extensive set of
artificially generated multi-focus images. Figure 4a shows
the referenced Lena image and two blurred artificial images
obtained by Gaussian filtering as can be seen from Fig. 4b, c,
respectively. The fusion experiments are then carried out by
using the eight fusion methods mentioned above. The fusion

Fig. 4 Referenced and blurred Lena images. a Referenced image; b
Blurred on right; c Blurred on left

Fig. 5 The experimental results of fusing simulatedmulti-focus image:
a–h the fusion results of GP, DWT, SIDWT, CT, NSCT, NSCT+PCNN,
NSCT+SF_PCNN and the proposed method, respectively); i–p the
residual images between the eight fusion results and the source image
Fig. 4b

results and their corresponding residual images of different
methods are depicted in Fig. 5. In residual images, the lower
residue of the features means the more detail information in
the focus region has been transferred to the fused image, i.e.,
the corresponding fusion method is better. As seen from Fig.
5, we can observe that the residual image between the result
of the proposed method and Fig. 4b is almost zero on the left
region. In other words, the proposed method has extracted
the most information from the clear/focus region (the left
side of the image) of Fig. 4b. From the fusion and residual
results, we can also easily find that the GP method has the
worst performance in the eight methods.

In order to objectively evaluate the performance of those
algorithms, two evaluation criteria including the root mean
square error (RMSE) [4] and the structural similarity mea-
sure (SSIM) [23] are introduced and employed in the paper.
RMSE and SSIM are the metrics that measure the error and
similarity between a referenced image and a fused image,
respectively. The smaller the RMSE, the better the perfor-
mance of the fusion algorithm.However, the larger the SSIM,
the better the performance of the fusion algorithm. Figure
6 shows the values of RMSE and SSIM obtained from the
fusion results of Fig. 5a–h and the referenced image Fig. 4a.
As seen fromFig. 6, the RMSE value of the proposedmethod
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Fig. 6 Comparison onRMSEandSSIMof different fusionmethods on
simulated multi-focus images (methods 1–8 are GP, DWT, SIDWT, CT,
NSCT, NSCT+PCNN, NSCT+SF_PCNN and the proposed method,
respectively)

Fig. 7 Standard test images

Table 1 Comparison on objective criteria of different methods in sim-
ulated multi-focus images

Method MI QAB/F

GP 5.5978 0.6990

DWT 6.6028 0.7126

SIDWT 7.0733 0.7397

CT 6.6583 0.7041

NSCT 6.7839 0.7302

NSCT-PCNN 7.4501 0.7412

NSCT-SF_PCNN 8.0737 0.7422

Proposed 8.6791 0.7531

is the minimum, and the SSIM value of the proposed method
is the maximum, which means our method can obtain the
fused result that it is closer to the standard image compared
to other seven fusion methods, i.e., the proposed method can
achieve the best fusion result.

In addition to above evaluation, Table 1 gives two other
frequently used metrics, mutual information (MI) [24] and
edge-based similarity measure (QAB/F ) [25] to assess the
results obtained by those fusion methods. MI indicates how
much of the information the fused image conveys about the
source images. The greater the value of MI, the better the
fusion effect. QAB/F shows the similarity between the edges
that are transferred from the input images to the fused image.
The value of QAB/F is more close to one, which indicates
a better fused image. From Table 1, we can observe that the
values of MI and QAB/F of the proposed method are larger
than other seven fusion methods.

Fig. 8 Comparison on RMSE and SSIM of different fusion methods
on standard test images (methods 1–8 areGP,DWT, SIDWT,CT,NSCT,
NSCT+PCNN, NSCT+SF_PCNN and the proposed method)

Table 2 Comparison on objective criteria of different methods in stan-
dard test images

Method MI QAB/F

GP 4.6321 0.6970

DWT 5.3482 0.7191

SIDWT 5.7913 0.7322

CT 5.3665 0.7049

NSCT 5.4124 0.7216

NSCT-PCNN 6.0773 0.7399

NSCT-SF_PCNN 6.4303 0.7403

Proposed 7.0787 0.7486

To further verify the effectiveness of the proposedmethod,
testswere then realizedon tengroups of syntheticmulti-focus
images, which are created by convolving Gaussian blurring
on ten standard images as shown in Fig. 7. Then, the ten
groups of simulated images are fused by the previously listed
eight methods. Figure 8 shows the average values of RMSE
and SSIM of the different fusion methods on standard test
images. It is easy to find that in ten sets of fusion results, the
SSIM and RMSE values of the proposed method results out-
perform other seven methods. In addition, Table 2 shows the
average values of MI and QAB/F of different fusion meth-
ods. Similarly, we can also observe that the values of MI
and QAB/F of the proposed method are all the largest and
optimal in the eight fusion methods. Therefore, the four opti-
mal criteria values presented here can indicate that the fused
image obtained by the proposed method can retain much
more focused information and achieve higher similarity and
correlation to the source images.

4.2 Experiments on real multi-focus image fusion

The second part of the experiment is conducted on three sets
of generally used real multi-focus images, including pepsi,
lab, and disk, which are used to further verify the validity of
the proposed method. Every set includes two source images
that focus on the right and focus on the left, respectively.
An example of experimental data, fusion results and their
corresponding residual images between the fused result and
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Fig. 9 Source images “disk” and the fusion results. a The first source
image with focus on the right. b The second source image with focus
on the left. c GP result. d DWT result. e SIDWT result. f CT result. g
NSCT result. hNSCT-PCNN result. iNSCT-SF_PCNN result. j Result

of the proposed algorithm.k–rZoom in regions of the eight fused results
marked by red rectangles. s–z The residual images between the eight
fusion results and source image b

Table 3 Comparison on objective criteria of different methods in real multi-focus images

Images Evaluation GP DWT SIDWT CT NSCT NSCT-PCNN NSCT-SF_PCNN Proposed method

pepsi MI 6.5207 6.6335 7.0450 6.5573 7.1904 7.2165 7.8127 8.2353

QAB/F 0.6896 0.6829 0.7166 0.6681 0.7082 0.7153 0.7330 0.7371

lab MI 6.3615 6.7254 7.1326 6.4033 7.0403 7.1793 7.7654 7.8414

QAB/F 0.7144 0.6972 0.7276 0.6816 0.7103 0.7241 0.7302 0.7458

disk MI 5.579 5.7166 6.0652 5.4463 6.0822 5.9719 6.3985 7.0477

QAB/F 0.6562 0.6464 0.6879 0.6257 0.6717 0.6743 0.6784 0.6972

the source image focused on left (foreground) are show in
Fig. 9, respectively. From the residual images, it is easy to
find that the proposedmethod has extractedmuchmore infor-
mation than other seven methods in the focused left areas,
and almost all of the useful information in the focus area of
the source images has been transferred to the fused image.
Considering the example of the set of ‘disk’ images in Fig.

9, we can see that GP-based fusion result has lower con-
trast, DWT- and CT-based fusion results have a significant
Pseudo-Gibbs phenomenon as marked in the red rectangle.
However, it is difficult to visually discriminate the differ-
ence among the proposed method and the SIDWT and other
NSCT-based fusion results because all these methods have
shift-invariance. But from the residual images in Fig. 9, we
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can easily see that residue between the result of the proposed
method and the source image is smallest as can be seen from
the foreground of Fig. 9z.

In order to better evaluate these fusion methods on three
groups of real multi-focus images, quantitative assessments
of the performance of the eight methods are needed. How-
ever, since in real applications no reference images can be
provided, only MI and QAB/F are then used to evaluate the
performance. The quantitative results of the fusion results are
given in Table 3. FromTable 3, it is easy to see, just as Table 1
and Table 2, that the performance of the proposed method is
the best in the eight methods because it has the biggest values
of both MI and QAB/F , which means the fused image gen-
erated by proposed method contains more information from
the source image, and the details of the two source images
are reflected more accurately.

5 Conclusions

In this paper, we propose a novel multi-focus image fusion
technique based on the NSCT and a fuzzy-adaptive PCNN.
After the sources images to be fused are decomposed by
NSCT, SML is utilized as the motivation for PCNN neu-
rons, and the linking strength of PCNN is automatically
determined by calculating the fuzzy membership value of
each pixel. The fuzzy logic is developed by considering
the human visual perception characteristics to different
frequency subbands; the proposed fuzzy-adaptive PCNN
model is thus formed. Experimental results indicate that
the proposed method outperforms several popular widely
used fusion methods, which means our method is effective
and promising. Although the NSCT and PCNN algorithms
are time-consuming, we believe that with a more efficient
implementation approach such as C++, the running time
of the method can be significantly reduced in the future
work.
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