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Abstract Biomedical signals enfold much crucial clinical
information. Cardiac imperfection includes information on
the morphology of its electrical signals. These signals are
classically recorded over a considerable period, so the size of
data file becomes bulky and hence compression is essential.
This paper focuses on the implementation of electrocardio-
gram signal compression using wavelet-based progressive
coding such as set partitioning in hierarchical tree and its
modified version to achieve improvement in the speed at low
bit rate. We obtained compression ratio up to 22:1 for MIT-
BIH arrhythmia database record number 117 with a percent
mean square difference of 0.9 and 0.73% using orthog-
onal and biorthogonal wavelets, respectively. The coders
accomplish bit rate control and produce a bit stream that
is progressive in quality. It facilitates the user to trim the bit
stream at desired point and make required quality restoration
for the reduced file size with user-defined compression ratio
or bit rate.

Keywords Bit rate · Compression ratio · ECG · mSPIHT ·
Percentage root mean difference · SPIHT

1 Introduction

An electrocardiogram is the main physiological signal that
shows graphically the cardiovascular activity of the heart.
ECG acts as a tool to diagnose cardiac arrhythmias or dis-
orders of the heart. Cardiac arrhythmia is the disorders or
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changes in morphological features of an ECG. Through pat-
tern recognition, cardiologists extract information from the
ECG and make the diagnosis. For investigation of patients’
heart condition, ECG needs to record over an extended
period. This procedure gathers enough information that
increases the volume of ECG data [1]. The size of ECG data
grows with the increase in channels, sampling frequency,
recording time and sample resolution. For example, 24-h
recording of ECG signal with 360-Hz sampling frequency,
and 11-bits sample resolution produce a data of nearly
40.8Mbytes per channel. Thus, it requires large storage
capacity and transmission bandwidth. For many applications
such as ambulatory recording systems and telemedicine, an
efficient signal compression technique is required.

Lossless and lossy are the two types of data compres-
sion methods. It is possible to achieve perfect reconstruction
of the signal with lossless methods, but the compression
ratio achieved is low, so it is not suitable for the increas-
ing task of compression and transmission of the signals.
Frequently lossy compression techniques are in use with
non-noticeable degradation in the signal quality to avoid
false diagnosis. Thus, the primary goal of ECG compres-
sion is to remove redundancy in the signal while preserving
the features required for diagnosis. The broad categories
of ECG signal compression methods are direct data com-
pression (DDC) and transform domain techniques. DDC
methods utilize inter-sample correlation to eliminate signal
redundancy. It is achieved using prediction or interpola-
tion or variable length coders. Some of the techniques
presented in [2] are Amplitude Zone Time Epoch Coding
(AZTEC), Co-ordinate Reduction Time Encoding System
(CORTES), Turning Point (TP) and Scan along Polynomial
Approximation SAPA/FAN [3]. The transformdomainmeth-
ods use different orthogonal transforms and provide lossy
ECG compression [4,5]. The energy compaction and de-
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correlation are the main properties of any transform. The
design of a transform for compression should reduce the
redundancy between the samples or pixels. Discrete Fourier
transform (DFT) [7], Karhunen Loeve transform (KLT) [8],
discrete cosine transform (DCT) [9,10], the subband coding
(SBC) [12], discrete wavelet transform (DWT) [11] and dis-
crete wavelet packet transform (DPWT) [6,13] are some of
the transforms used for the data compression. Due to energy
compaction and good localization in the time-frequency
domain, wavelet received considerable attention as an effi-
cient transform [4,15]. Wavelet transform shows excellent
compaction of the signal energy in the low-frequency sub-
band that helps in the encoding of the wavelet coefficients
with the progressive (embedded) coding method. Embedded
coding methods encode the wavelet transform coefficients
for progressive transmission [16]. The primary goal of such
transmission is to send the most vital information contained
in the signal first. Embedded zero-tree wavelet (EZW) [17]
and set partitioning in hierarchical trees (SPIHT) [18,19] are
the most popular progressive coding algorithms.

In the case of still image compression, SPIHT has shown
significant achievement. It exploits inter-bit correlation and
correlation amongwavelet coefficients in different subbands.
SPIHT algorithm proposed by Said and Pearlman shows a
very efficient method for lossy to lossless image coding.
The wavelet transformed coefficients show an arrangement
in a hierarchical manner providing parent–child relationship
through subbands [18].

The 2-D SPIHT techniques enlightened in [16,20–22]
compress the ECG signal by converting it into the 2-D data
array. 2-D conversion requires preprocessing steps such as
mean removal, period and, amplitude normalization, period
sorting. Also, it requires accurate QRS detection for cutting,
aligning of ECG signal. The compression ratio (CR) and
corresponding quality achieved are better with 2-D SPIHT,
but, at the same time, it introduces computational overheads.
Hence, to avoid this Lu et al. [23] suggested the modification
of 2-D to 1-D SPIHT algorithm.

This paper presents themodified version of the 1-DSPIHT
algorithm (mSPIHT). During SPIHT coding, only the most
significant bits in transform coefficients are outputted for
later decoding. It helps to decide bit rate or compression
with required quality. The mSPIHT algorithm uses the con-
cept of a number of error bits [(truncating error( µe)] and
absolute zero tree. Hence, at low bit rate to increase speed
lower bit planes can be truncated by forming zero trees. It is
not required to store the coordinates of these coefficients in
the list of insignificant sets (LISs). Also, the decoder is made
faster by reducing the multiplication operations in sorting
and refinement pass.

The sections in the paper are planned as Sect. 2 talks about
1-D SPIHT algorithm followed by the modified version of
SPIHT in Sect. 3. Section 4 describes coding algorithm of

Fig. 1 1-D temporal
orientation tree
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mSPIHT. Section 5 explains the mSPIHT bitstream genera-
tion with an illustrative example. The experimentation and
results of the designed algorithm on MIT-BIH arrhythmia
database are discussed in Sect. 6. Finally, Sect. 7 concludes
the paper.

2 1-D SPIHT algorithm

SPIHT is the technique originally designed to encode the
images using wavelet transform [18]. 1-D SPIHT proposed
by Lu.et al. [23] avoids computational overheads of convert-
ing the signal to 2-D. It makes use of spatial similarities
between the subbands. In wavelet decomposition, each coef-
ficient in j th level corresponds to two coefficients in the
( j−1)th level. It reveals a parent–child relationship between
the subbands. The temporal orientation tree structure in Fig. 1
shows this for different subbandswith nodes having two chil-
dren or no children. The maximum energy of the signal is
concentrated at low-frequency subband. So, maximum coef-
ficients with higher magnitudes attain the position at roots of
the tree. The encoding process of SPIHT algorithm enlight-
ens as follows.

In SPIHT encoding process employs three lists and sets
to keep the track of significant coefficients [23].

1. List of insignificant points (LIPs): This is the list of
insignificant coefficients.

2. List of the insignificant set (LIS): This list contains a set of
coefficients with insignificant tree structures. These coef-
ficients are havingmagnitudes smaller than the threshold.

3. List of significant points (LSPs): This list contains signif-
icant coefficients at the particular threshold in the sorting
process.

Following is the tree representations for the sets:
O(Ci ): A set of indices of all offspring (children) of the node
(i).
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D(Ci ): A set of indices of all descendants (all nodes that are
below) of the node (i). It represents a Type-A entry in LIS.
L(Ci ): A set indices of grandchildren. This set contains the
tree except children. It is simply L(Ci ) = D(Ci ) − O(Ci ).
It represents a Type-B entry in LIS.

The SPIHT algorithm uses a recursive sequence of thresh-
olds. The initial threshold is computed by Eq. (1)

Tmax = 2�log2(|Cmax|)� (1)

where Cmax represents the maximum value of wavelet coef-
ficient from the set of Ci . The significance of the particular
coefficient depends on the threshold T as given by equation
(2)

si =
{
1, if maxi∈N |Ci | ≥ T
0, otherwise

(2)

The major steps in SPIHT algorithm are

– sorting pass in LIP,
– sorting pass in LIS,
– refinement pass.

3 Modified SPIHT (mSPIHT)

SPIHT for 2-D and modified SPIHT for 1-D are capable of
offering bitstream that provides high CR along with required
reconstruction quality of the signal. However, theoretical
study and experimental results show that there is still scope
for enhancement of it. Considering the morphology of ECG
signal sampled at 360-Hz frequency, we can observe P and
T waves in A5 subband and QRS complex in D5 subband.
D1 and D2 subbands contain most of the noise. Taking the
advantage of this fact when the bit budget is low SPIHT
algorithm can be modified to achieve high speed. For this the
modifications suggested are:

1. Truncating error bits (µe ): Modified SPIHT coding out-
puts only the most significant bits (MSB) of the DWT
coefficients. Hence, the least significant bits (LSB) to be
truncated are defined before encoding.

2. Absolute zero tree: The low-frequency subband of DWT
contains most of the significant coefficients. The magni-
tudes of these coefficients decrease rapidly toward the
lower levels of decomposition. Practically many trees
become zero trees before the expected compression ratio.
These zero trees occupy space in the LIS of SPIHT and
unnecessarily increase the encoding time. A concept of
absolute zero trees introduced to solve this issue. If the
magnitudes of all descendants of a zero tree are smaller
than 2µe , it turns into an absolute zero tree and remains
insignificant forever. So no need to store them in the LIS.
Shorter LIS speed up the encoding process.

CR
Computation

Discrete
Wavelet
Transfom

mSPIHT
Encoder

Input
ECG

Signal

Output
Bit-

stream

Input
CR

Truncating
 Error Bits

Fig. 2 Block diagram of mSPIHT encoder

3. For the decompression of signal, the original SPIHT
decoder uses 3/2 times the threshold in sorting pass and
adds or subtracts 1/2 times the threshold depending on
the refinement bit in refinement pass. The proposed algo-
rithm uses threshold value in the respective passes and
achieves a reduction in computations.

The main feature of the proposed algorithm is the user can
decide the required quality or CR of the reconstructed signal
and also achieve high speed at low bit rate. During SPIHT
coding, only themost significant bits in transformcoefficients
are outputted for later decoding. Hence, at low bit rate to
increase speed lower bit planes can be truncated by forming
zero trees. Figure 2 shows a block schematic of the proposed
algorithm. With wavelet transform signal is decomposed up
to five levels. The input CR and numbers of error bits to
be truncated are two user-defined inputs. The inputs to the
mSPIHT block are wavelet coefficients and computed CR
from the CR computation block. The truncated error bits
are given to mSPIHT encoder. The CR computation block
compares the size of the encoded bitstream with the original
signal and computes the CR. Depending on the comparison
between computed and input CR, the algorithm terminates
to give the exact bitstream required.

4 Coding algorithm

TheMIT-BIHarrhythmiadatabase is having the baseline drift
of 1024, so the value 1024 is subtracted from every sample.
Using orthogonal db4 and biorthogonal bior4.4 wavelets,
signals are decomposed up to the fifth level. The mSPIHT
algorithm steps are:
Step1: Initialization: Choose initial threshold by using
Eq. (1). Define a number of truncating error bits. Find the
absolute zero tree of the coefficients having a value less than
2µe . Set LIP equal to the roots of the tree, i.e., highest detail
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coefficient. LIS contains all the nodes, i.e., same nodes as
LIP; the only condition is the node must have descendants.
Step 2: Sorting in LIP:For each entry in LIP, if it is significant
output one followed by its sign bit and move the entry from
LIP to LSP. In case the entry is insignificant, output 0.
Step 3: Sorting in LIS: In the case of Type-A entry, if any
entry in LIS is significant output 1. Then check its offspring
as a LIP coefficient. If L(Ci ) is not empty, the entry made
is as Type-B else removes it from LIS. If any entry in LIS is
insignificant, output 0. For Type-B entries, if it is significant
output 1 and its offspring becomes a Type-A entry. If the
entry is insignificant, output 0.
Step 4: Refinement pass: Using the concept of bit plane cod-
ing, SPIHT encodes MSB plane first and progresses toward
LSB plane as per the defined bit rate. The refinement pass,
output the refinement bits of the significant coefficients from
the previous entries in LSP by bitwise ANDing with the cur-
rent threshold.
Step 5: Update and threshold: Threshold is updated using
Eq. (3).

Tnew = Told
2

(3)

Repeat steps 2–5 until the achievement of desired compres-
sion ratio or bit rate.

5 Example for mSPHIT bitstream generation
process

The concept of output bitstream generation in mSPIHT cod-
ing is explained with a simple example in Fig. 3. Here,
the wavelet coefficients with three-level decomposition are
shown with the parent–child relationship. The number in
top left corner of each cell represents the index of wavelet
coefficient. The truncating error bits considered are two.
Accordingly, coefficients with values less than four are
becoming zero and form the absolute zero tree. Table 1
explains the coding process for mSPIHT output bitstream
generation.

6 Experimentation and results

The proposed progressive coder 1-D mSPIHT is imple-
mented on a personal computer with the hardware configura-
tion: Intel i3@ 2.1GHz, 4GB RAM having operating system
Windows 7 and software MATLAB R2013. For experimen-
tation, the standard MIT-BIH arrhythmia database [24] is
used which contains 48 records with a variety of rhythms and
30-min recording. The sampling frequency of these records
is 360Hz and 11-bit resolution. The signals are decomposed

Fig. 3 Illustrative example
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with orthogonal db4 and biorthogonal bior4.4wavelet filters
up to 5 levelswith signal block size 2048. The performance of
the proposed algorithms is compared with the state of art 1-D
SPIHT algorithm. The studies of progressive coders involve
rate-distortion evaluation, and complexity analysis based on
encoding and decoding time.
To verify the rate-distortion performance parameters used are
bits per samples or compression ratio(CR) and percentage
root mean difference (PRD) and they are defined as,

CR = actual size of original signal

size of compressed signal
(4)

PRD =
√√√√∑N−1

n=0

(
x(n) − x̂(n)

)2
∑N−1

n=0 x2(n)
× 100 (5)

where x(n) and x̂(n) are original and reconstructed signals,
respectively. N represents the number of samples. The PRD
is the popular parameter used as quality measures in the lit-
erature ECG compression. Compression ratio provides the
ability of the algorithm to achieve a reduction in the file
size, while reconstruction ability signifies faithfulness of the
reconstructed ECG to that of the original.

6.1 The rate-distortion performance

The rate-distortion results with db4 and bior4.4 wavelets for
record 100, 117, 210 and average of 48 records of MIT-BIH
database are presented in Table 2. The proposed meth-
ods show almost same rate-distortion performance. Table 2
reveals that performance of mSPIHT is same as SPIHT at
lower bit rates, but degrades as bit rate increases. The effect
of truncating error bits for different bit rates in mSPIHT
is presented in Fig. 4. At 0.5bps the PRD remains con-
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Table 1 mSPIHT coding process

Step Coefficient/set Output bitstream

T =32

LIP C1 11

C2 10

C3 0

C4 0

LIS (Type-A) D(C3) 1

C5 0

C6 0

D(C4) 0

LIS (Type-B) L(C3) 1

LIS (Type-A) D(C5) 1

C9 10

C10 0

D(C6) 0

LIS (Type-B) L(C5) 0

T =16

LIP C3 0

C4 0

LIS (Type-A) D(C3) 0

D(C4) 0

Refinement 1

0

T =8

LIP C3 11

C4 10

LIS (Type-A) D(C3) 1

C5 1

C6 1

D(C4) 1

C7 1

C8 1

LIS (Type-B) L(C3) 0

L(C4) 0

Refinement 0

1

stant for truncating error bits in the range of 0–4. At the
bit rate, 2bps PRD is constant up to two truncating error
bits and increases after that. For higher bit rate 4bps the
effect of truncating error bits is prominent. It shows almost
linear increment in the PRD values. The rate-distortion per-
formance with bits per samples and PRD in Fig. 5 explains
the usefulness for selecting desired quality, and correspond-
ing bit rate. It also compares the performance of db4 and
bior4.4 wavelets. It shows that up to 2 bps (lower bit rate),
the performance of SPIHT and mSPIHT is same. The qual-
ity of reconstructed signal degrades for higher bit rate with

Table 2 Rate-distortion performance for SPIHT and mSPIHT with
orthogonal and biorthogonal wavelets at various bit rates

bps (CR) Record number PRD (%)

SPIHT mSPIHT

bior4.4 db4 bior4.4 db4

0.5 100 0.74 0.74 0.73 0.74

(22:1) 117 0.74 0.90 0.74 0.90

210 0.83 0.65 0.83 0.65

Average 1.34 1.53 1.34 1.53

1 100 0.23 0.26 0.23 0.26

(11:1) 117 0.33 0.34 0.33 0.34

210 0.62 0.64 0.62 0.64

Average 0.56 0.60 0.56 0.60

1.5 100 0.30 0.18 0.30 0.18

(7.33:1) 117 0.20 0.21 0.20 0.21

210 0.59 0.62 0.59 0.62

Average 0.49 0.51 0.49 0.51

2 100 0.20 0.13 0.30 0.16

(5.5:1) 117 0.15 0.15 0.20 0.18

210 0.59 0.60 0.60 0.64

Average 0.42 0.43 0.44 0.44

2.5 100 0.10 0.11 0.17 0.18

(4.4:1) 117 0.13 0.13 0.19 0.20

210 0.58 0.60 0.60 0.66

Average 0.41 0.42 0.44 0.46
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Fig. 4 Effect of truncating error bits in mSPIHT algorithm

mSPIHT. FromTable 2 and Fig. 4, it is clear that the biorthog-
onal wavelet performance is superior to orthogonal wavelet.
It may be due to linear phase filter used in biorthogonal
wavelets. As per application, the optimum length can be
decided from the graph in Fig. 5. For achieving improved
quality signal, the bit rate should be more or vice versa.

As biorthogonal wavelets are linear phase filters, the per-
formance of bior4.4 is superior to db4. The quality of normal
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and abnormal reconstructed signals is expressed in terms of
PRD as in Table 1. Also, from the reconstructed signal, it is
possible to depict the visual quality of the signals. The origi-
nal and reconstructed signals of normal sinus rhythm record
117 formSPIHTwith bior4.4wavelet are presented in Fig. 6.
The visual effect of all the reconstructed signals using this
algorithm is quite comparable. At bit rate 0.5 bps the sig-
nal is reconstructed with PRD of 0.73% for the compression
ratio of 22:1, while for 2.5 bps PRD is 0.193% with bior4.4
wavelet.

The suitability of the algorithm is tested for abnormalECG
signals also. The record 210 is an abnormal signal having
ventricular ectopy. Figure 7 presents promising results for
the abnormal signals too. At bit rate 0.5bps the signal is
reconstructed with PRD of 0.833% for the compression ratio
of 22:1, while for 2.5bps PRD is 0.6%with bior4.4 wavelet.

FromFig. 5, it is clear that one can achieve required quality
reconstruction as per channel availability or application. It
is the beauty of progressive coding method; the user can
decide the desired CR-PRD pair. By providing desired CR,
the bit stream length suitable for the application can be easily
obtained.

6.2 Computational complexity analysis

Usually, computational complexity is described in terms of
the encoding and decoding time requirement for the proces-
sor. These timings for the SPIHT and mSPIHT at various bit
rates (0.5–2.5bps) are as in Table 3. These timings are shown
for sample records 100, 117 and210with sample block length
2048, as a representative of the normal and abnormal cate-
gory. Also, readings in Table 3 show average encoding and
decoding time values for 48 records from MIT-BIH arrhyth-
mia database. The average readings show that encoding of
mSPIHT is 5–15% faster than SPIHT as bit rate changes
from 2.5 to 0.5bps. At lower bit rate this improvement is
more as the number of comparisons is less. So this method
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Fig. 6 Original and reconstructed signals at bit rate 0.5bps and 2.5
bps for record 117 with bior4.4 wavelet, a original signal 117, b recon-
structed signal with 0.5bps, CR=22:1 and PRD=0.73, c reconstructed
signal with 2.5bps, CR=4.4:1 and PRD=0.13

is a solution for high speed at lower bit rate. Due to modi-
fication suggested in Sect. 3, the decoding time required is
also less in the mSPIHT method. Almost for all bit rates, the
total time required is less compared to SPIHT. Furthermore,
the visual effect of all the reconstructed signals using these
algorithms is quite comparable. The encoding, decoding time
required for SPIHT and mSPIHT algorithms with db4 and
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Fig. 7 Original and reconstructed signals at bit rate 0.5 and 2.5bps for
record 210 with bior4.4 wavelet, a original signal 210, b reconstructed
signal with 0.5bps, CR=22:1 and PRD=0.83, c reconstructed signal
with 2.5bps, CR=22:1 and PRD=0.58

bior4.4 wavelets is almost same. Hence, these timings for
only bior4.4 wavelet are mentioned in Table 3.

6.3 Comparison of proposed algorithm with standard
codecs

The comparison of proposedmSPIHT algorithmwith related
coders in the literature based on CR and PRD for record 117

Table 3 Computational complexity analysis for SPIHT and mSPIHT
at various bit rates

bps (CR) Record
number

SPIHT mSPIHT

Encode
time(s)

Decode
time(s)

Encode
time(s)

Decode
time(s)

0.5 100 0.06 0.04 0.06 0.03

(22:1) 117 0.06 0.03 0.05 0.02

210 0.07 0.03 0.06 0.03

Average 0.06 0.03 0.05 0.02

1 100 0.10 0.03 0.10 0.03

(11:1) 117 0.10 0.03 0.10 0.03

210 0.10 0.03 0.09 0.03

Average 0.10 0.04 0.09 0.03

1.5 100 0.14 0.10 0.14 0.04

(7.33:1) 117 0.14 0.05 0.13 0.04

210 0.14 0.05 0.13 0.04

Average 0.14 0.07 0.13 0.05

2 100 0.16 0.05 0.14 0.07

(5.5:1) 117 0.19 0.07 0.15 0.08

210 0.16 0.05 0.15 0.09

Average 0.17 0.16 0.16 0.05

2.5 100 0.20 0.06 0.14 0.70

(4.4:1) 117 0.20 0.09 0.15 0.07

210 0.20 0.06 0.15 0.06

Average 0.20 0.09 0.16 0.05

Table 4 Comparison of CR and PRD for record 117

Methods CR PRD (%)

EZW [25] 16 1.1

SPIHT [23] 8 2.5

Hilton [14] 8 2.6

2D-SPIHT [21] 8 1.45

Proposed mSPIHT 8 0.23

Proposed mSPIHT 22 0.738

is presented in Table 4. It shows that the proposed algorithm
provides superior reconstruction signal quality for desired
compression ratio.

7 Conclusion

This paper proposed 1-D SPIHT and its modified version
mSPIHT for ECG signal compression. mSPIHT has revealed
the best combination of compression ratio and signal quality
at the time of reconstruction. Considering the morphology of
ECG signal and available bit budget, it is possible to achieve
low bandwidth and low bit rate signal transmission with
improvement in speedwith the proposedmSPIHT algorithm.
Also, the decoder is made faster by reducing the multiplica-
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tion operations in sorting and refinement pass. High speed,
high efficiency and straightforwardness in implementation
can make the algorithm better contender for applications like
telemedicine, wearable devices and ECG storage.
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