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Abstract The binary descriptors are the representation of
choice for real-time keypoint matching. However, they suffer
from reduced matching rates due to their discrete nature. We
propose an approach that can augment their performance by
searching in the top K near neighbor matches instead of just
the single nearest neighbor one. To pick the correct match out
of the K near neighbors, we exploit statistics of descriptor
variations collected for each keypoint in an off-line training
phase. This is a similar approach to those that learn a patch
specific keypoint representation. Unlike these approaches,
we only use a keypoint specific score to rank the list of K
near neighbors. Since this list can be efficiently computed
with approximate nearest neighbor algorithms, our approach
scales well to large descriptor sets.

Keywords Computer vision - Keypoint matching - Object
detection
1 Introduction

The binary descriptors (such as [1,5,10,11,18,21,22]) are
extensively used in real-time applications for object detection
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and augmented reality. In particular, they are fast to compute,
and the distance between two descriptors can be calculated
in a few machine instructions. Given a query descriptor, the
latter property greatly speeds up the search for the nearest
neighbor within a set of reference descriptors.

Unfortunately, the binary descriptors are particularly sen-
sitive to larger changes in viewpoint and scale [20]. This is
mainly due to their discrete nature. For large binary descriptor
sets, the nearest neighbor may not even be unique. However,
it is relatively easy to find the closest K near neighbors by
ranking the matches according to their descriptor distances.
This list is more likely to contain the correct match compared
to the set that includes only the nearest neighbor. In practice,
this extra set of match hypotheses is rarely exploited.

In this paper, we propose a two-step approach to keypoint
matching with binary descriptors. In the first step, for each
query keypoint, we identify the list of the top K near neigh-
bors according to the Hamming distance. In the second step,
we rank these near neighbors according to a probabilistic and
keypoint specific match quality score. This score exploits
precomputed data extracted from the reference image during
an off-line training phase. We show that a keypoint specific
measure is more effective in ranking the match hypotheses
than the Hamming descriptor distance as illustrated in Fig. 2.

To motivate our approach, we illustrate the existence of
correct matches beyond the nearest neighbor. Figure 1 shows
the number of correct matches between BRIEF descriptors
that fall into the first ten near neighbors. Although most of the
BRIEF matches obtained by the nearest neighbor matching
are wrong, the correct ones are not very far away in the near
neighbor list. The matches beyond the nearest neighbor are
only reachable if we can supplement the Hamming distance
with a secondary and more distinctive match score.

In designing this secondary match score, we make the
following observations: Most binary descriptors, even the
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Fig. 1 Near neighbor rank distribution of the correct matches between
BRIEF descriptors of the first and the third images of the Graffiti data
set. The nearest neighbor obtained by ranking matches according to
Hamming distance captures only 159 of the 848 possible correspon-
dences. Meanwhile, the first ten near neighbors include 517 correct
matches, a potential improvement by a factor of more than three. In
practice, as demonstrated by the results of Fig. 4, 385 of these can be
recovered using the approach that we propose, which yields an actual
improvement by a factor of more than two

ones that optimize their representation, compute the same
features for every keypoint. As shown recently by [3], while
computationally appealing, globally optimizing the features
for all keypoints is not as effective as picking unique fea-
tures for each individual keypoint. There are a few existing
approaches that learn and use keypoint specific representa-
tions [3,8,9,19]. However, these require a separate distance
computation to each reference keypoint and can not be
directly used with approximate nearest neighbor (ANN)
algorithms (such as Locality Sensitive Hashing [2], LSH).
In contrast to these, at the second matching stage, we have
only K possible match hypotheses (corresponding to the K
near neighbors). We employ a keypoint specific representa-
tion to rank these and recover correct matches that did not
make it to the top initially. For each reference keypoint k; in
the K near neighbor list, our score computation relies on a

Fig. 2 Matches between the
first and the fourth images of the
Graffiti and Boat sequences. a
Considering only the nearest
neighbor with the Hamming
distance. b Searching within the
first ten near neighbors using the
approach presented in Sect. 3
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precomputed statistical model of the variations of the descrip-
tor bits for keypoint k;. Since the list of K near neighbors can
be computed efficiently with ANN methods, our approach
also scales well to larger descriptor sets.

Our main contributions can be summarized as follows:

— We propose a method that is able to find keypoint matches
within the list of K near neighbors at negligible additional
computational cost at run-time.

— We demonstrate that, despite learning a separate repre-
sentation for each individual keypoint similar to [3,8,9,
19], our approach does not require a brute-force search
in a large descriptor set when coupled with the LSH [2]
approach to compute the list of K near neighbors.

— We show that our approach is relatively descriptor inde-
pendent and it extends the matching range of several
binary descriptors: BRIEF [5], ORB [21], BRISK [10],
FREAK [1], and LATCH [11], which has recently been
shown to outperform state-of-the-art binary descriptors.

2 Related work

As discussed in the introduction, a keypoint specific match-
ing approach is shown to perform better than matching with a
generic descriptor [3]. One way to achieve this is to compute a
descriptor specifically adapted to a given patch. [8] proposed
selecting a patch specific set of binary features that are robust
to changes in intensity levels as well as small translation and
rotations. More recently, [3] proposed to learn a combined set
of generic features and a locally optimized binary mask that
picks the best features depending on the image patch. While
both approaches greatly improve the matching performance,
they both require a brute-force search in the reference collec-
tion; therefore, they are not suitable for real-time operation
on large data sets.

Similarly, the keypoint classification approaches of [9, 19]
train keypoint specific classifiers and compute a probability
distribution over all reference keypoints at run-time. More-
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over, they require large amounts of memory per keypoint to
store the learned probabilities.

Despite using a probabilistic model similar to that of [9,
19], our approach only makes use of these probabilities for
the first ten match candidates. When matching a single key-
point against a database of a thousand reference keypoints,
the required number of probability calculations is two orders
of magnitude less than those required by Random Ferns.

The combination of a generic initial query followed by
candidate specific filtering is quite common in the image
retrieval literature [7,12]. For image retrieval, the filtering
in the second stage depends on the geometric consistency
between the query image and the candidate results. Our
approach has a very similar pipeline where the geometry
check is replaced by a probabilistic observation probability.

3 A two-step approach to match keypoints

The usual approach for matching keypoints involves locating
the nearest neighbor keypoint in descriptor space. Instead
of this one-shot approach, we first rank the list of possible
matches by their inverse descriptor distance and pick the first
few tens of near neighbors to the query in the descriptor
space as possible match candidates. We then evaluate each
candidate based on detailed statistics of the texture around
the specific candidate. Figure 3 gives an overview of the
proposed approach.

We learn the statistical model for each keypoint in an
off-line training stage by simulating affine deformations and
observing the change in the descriptor bits. In the following,
we describe the way the descriptor statistics are collected dur-

(¢) Proposed Approach

Fig. 3 a Given a query descriptor g, if the descriptor uses the same
features for each patch then it is possible to use an ANN approach to
limit distance computation only to a subset of the reference descriptors
(dashed circle). b Some approaches learn and employ a patch specific
representation that is more distinctive and robust. ¢ We propose a two-
step approach that combines the advantages of both by limiting the
patch specific scoring to the list of K near neighbors

ing training and how to score the multiple match hypotheses
based on this data.

3.1 Modeling descriptor variations

The binary descriptor bits are not fully invariant to changes
in perspective and lighting. Which bits are more prone to
variation depends on the texture around each keypoint. If
there is a strong gradient near one of the pixels that are part of
the computation of the bit’s value, then that bit is more likely
to flip. Due to the complex nature of these interactions, bit
variations are better captured by a probabilistic conditional
model such as

P(D|C=ki) =P, dy,...,ds | C=k), (1)
where D and C are two random variables corresponding to
the descriptor value and the keypoint identity. C = k; means
that the distribution is computed for keypoint i, d; is a binary
random variable representing the jth descriptor bit, and § is
the descriptor size in bits.

This representation requires 25 parameters per keypoint
and since S is usually larger than or equal to 64, directly
modeling the joint probability of the descriptor bits is not
feasible. Following the representation proposed by [19], we
split the descriptor into N groups of M bits such that § =
M x N and assume independence between these:

N
P(D|C:ki):HP(Dj | C =ki), (2)
j=1

where D; represents the values of the bits in group j.
This representation has N x 2™ parameters. We use sev-
eral settings with M = 4,6, and 8. For 256 dimensional
descriptors, these yield between N = 32 and 64. Larger M
values yield a very large number of parameters and around
M = 12, we experimentally found that the matching perfor-
mance degrades. Moreover, a large M means greater memory
consumption. In the next section, we provide experimental
results for M between 4 and 8. N is determined by fixing M
and taking N = w.

The descriptor bits can be assigned to groups in many
ways. The simplest possibility is to assign the consecutive
descriptor bits to the same group. For descriptors like BRIEF,
this is a natural choice as there is no reason to favor one
grouping scheme over another. For descriptors like BRISK
with more structure, an optimization over possible groupings
might be beneficial. In practice, we found that the consecutive
grouping works well for all descriptors and we use it in the
rest of the experiments.

For each keypoint, we generate training samples using the
affine deformation model proposed by [16]. This is not too
restrictive since most keypoint detectors assume a locally
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affine model. In all the experiments, we use the same set of
training parameters, scale changes between \/LE and v/2, in-
plane rotation varies between —30° and +-30°, tilt amount (@
in [16]) varies between 0° and 60°, and tilt angle (¢ in [16])
varies between 0° and 180°.

We generate roughly 200,000 images, yielding an equiva-
lent number of training descriptors for each keypoint. For
each bit group, the probabilities of Eq. 2 are inferred by
counting the number of times training descriptors assume
a particular value. For example, for bit groups of size 4, we
have 16 possible outcomes. We count the number of times
each outcome is observed within the training set and normal-
ize by the total number of training samples. To counter the
adverse effect of zeros in the estimated probabilities, we start
counting from one as suggested by [19], which is equivalent
to assuming 2¥ pseudo-samples for each keypoint taking on
every possible descriptor value within a bit group. This is usu-
ally referred to as Laplace smoothing [13] and corresponds
to assuming a Dirichlet prior when a Bayesian estimate is
made for the probabilities of Eq. 2 [4].

3.2 Keypoint specific scoring of match hypotheses

For each keypoint, we first obtain the list of K near neighbors
based on the Hamming distance between the descriptors. This
listis then sorted according to a score specific to the particular
candidate keypoint each near neighbor represents.

We have experimented with various functions to score
each hypothesis by combining the descriptor statistics and
the original Hamming distance in several different ways. The
best results have been obtained when the score is the negative
Hamming distance between the query and reference descrip-
tor plus the logarithm of the probability of observing the
query descriptor according to Eq. 2:

N
H+10g1_[1P(Q,/|C:ki),
/:

score(Q, k;j) = — ‘Q — D!

3)

where Q is the query descriptor, D' is the reference descriptor
i,and | X — Y|p is the Hamming distance between X and Y.
Since the second term involves k;, its direct evaluation
would require a number of operations linear in the reference
data set size. Our main insight is that computing these for the
first K near neighbors is sufficiently effective in recovering
many more matches than using only the nearest neighbor.
To demonstrate this and the effect of K on the recogni-
tion performance, we perform a preliminary experiment on
the Graffiti and Wall sequences [14,15]. We detect approxi-
mately 1000 keypoints on the reference image and transform
their coordinates to the rest of the images using the ground
truth homography. We compute BRIEF descriptors around
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Effect of the Near Neighbor List Length (K)
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Fig. 4 Recognition rates for BRIEF increase as we consider more near
neighbors (NN). This is especially true for Graffiti, where the baseline
performance (K = 1) is low and the test images exhibit both scale and
rotation changes. The difference between considering the first ten NN or
all NN is relatively low. At K = 10, the number of correct matches for
Graffiti-3 increases to 385. This is still less than the maximum potential
number 517 (See Fig. 1), but substantially better than 159, the nearest
neighbor baseline

Recognition Rate
jeln

e

the reference and the test keypoints. For each test descriptor,
we compute the K near neighbors using Hamming distance
and then pick the best match according to Eq. 3. We measure
and report the recognition rate as the percentage of test key-
points that are matched to the correct reference keypoints for
various K values with bit group size M set to 8. The results
are given in Fig. 4. Regardless of descriptor type, enlarging
the near neighbor list yields improved recognition rates. The
improvement is less pronounced after K = 10.

4 Experiments

To test the ability of our approach in recovering the correct
matches from the near neighbor list, we have performed three
sets of experiments. The first one follows the experimental
setup of Fig. 4, and we report the recognition rate over ground
truth correspondences. The second one measures the inlier
ratio as a function of the number of keypoints matched in
the test images. The final experiment measures the recogni-
tion rate when there are a larger number of reference images
and an approximate nearest neighbor algorithm is used to
compute the near neighbor list.

4.1 Recognition rate over ground truth correspondences

We repeat the experiments of Fig. 4 for four data sets and
five descriptor types using K = 10 and three values for the
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Fig. 5 Recognition rate

Recognition Rate for Various Descriptors and Datasets
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bit group size (M € {4, 6, 8}). The results! are shown in
Fig. 5. Our approach increases the recognition rate particu-
larly when the data set includes larger changes in perspective.
For the Bikes sequence with only changes in blur level, the
improvement is less pronounced. This is expected since the
observation probabilities represent behavior under perspec-
tive changes. We have tried including blur in the training
data, but this did not yield noticeable improvement, possibly
because blur causes loss of discriminative power.

BRIEF lacks orientation estimation, as a result after the
test image 2 of the Boat sequence even the top ten near
neighbor list does not include enough correct matches and
our approach does not improve recognition rate. For descrip-
tors with orientation estimation such as ORB, the results are

! Note that for each descriptor type, we use different keypoint detector
and descriptor settings (either the OpenCV defaults or the setup used
by the authors). So, the figures in this paper should not be used for
performance comparison between different descriptors.

2 3 4 5 6
Test Image Number

—T —T
5 6 2 3

hbor (NN) . Ten NNs (4 bit groups) Ten NNs (6 bit groups) Ten NNs (8 bit groups)

improved by a large amount for the test image 3. The most
significant improvement is achieved for the Graffiti data set
which contains scale and perspective changes.

4.2 Improving the inlier ratio characteristics

The previous experiments measure the classification perfor-
mance of the keypoint matching over ground truth corre-
spondences. As a more realistic test, we detect keypoints in
the test images and we match each one to the reference key-
points to yield a list of potential correspondences. We rank
these by their negative descriptor distance and measure the
ratio of the correct matches to the total number of matches.
This ratio is equal to the inlier ratio during the iterations of a
robust estimator such as PROSAC [6], and it is a measure of
the precision of the keypoint matching approach. The inlier
ratio values obtained as such directly influences the required

@ Springer
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Table 1 Inlier ratio values when matching the third test image to the reference image in each image

Descriptor BRIEF BRISK FREAK LATCH ORB

# of matches 100 250 500 100 250 500 100 250 500 100 250 500 100 250 500
Bikes

NN 0.97 0.97 0.88 0.78 0.61 0.46 0.86 0.72 0.53 0.99 0.95 0.70 0.99 0.97 -
RNN-4 bits 0.93 0.90 0.85 0.84 0.73 0.51 0.85 0.79 0.58 0.96 0.95 0.70 0.98 0.97 -
RNN-8 bits 0.94 0.91 0.87 0.81 0.70 0.51 0.86 0.79 0.59 0.98 0.96 0.70 0.98 0.97 -
5NN-4 bits 0.94 0.91 0.86 0.84 0.74 0.59 0.84 0.80 0.62 0.96 0.96 0.72 0.99 0.97 -
5SNN-8 bits 0.95 0.92 0.88 0.80 0.76 0.60 0.85 0.81 0.63 0.98 0.96 0.72 0.99 0.98 -
10NN-4 bits 0.94 0.91 0.86 0.84 0.74 0.60 0.84 0.80 0.62 0.96 0.96 0.72 0.99 0.97 -
10NN-8 bits 0.95 0.92 0.88 0.80 0.77 0.60 0.85 0.81 0.63 0.98 0.96 0.72 0.99 0.98 -
20NN-4 bits 0.94 0.91 0.86 0.84 0.74 0.60 0.84 0.80 0.63 0.96 0.96 0.72 0.99 0.97 -
20NN-8 bits 0.95 0.92 0.88 0.80 0.77 0.60 0.85 0.81 0.63 0.98 0.96 0.72 0.99 0.98 -
Boat

NN 0.00 0.00 0.00 0.65 0.44 0.29 0.60 0.45 0.37 0.40 0.22 0.13 0.13 0.14 0.11
RNN-4 bits 0.00 0.00 0.00 0.94 0.63 0.35 0.87 0.75 0.48 0.54 0.27 0.14 0.51 0.28 0.15
RNN-8 bits 0.00 0.00 0.00 0.96 0.65 0.35 0.90 0.77 0.49 0.61 0.27 0.14 0.55 0.28 0.15
5NN-4 bits 0.00 0.00 0.01 0.96 0.78 0.52 0.85 0.80 0.65 0.66 0.44 0.23 0.64 0.46 0.29
5NN-8 bits 0.00 0.00 0.01 0.98 0.82 0.53 0.89 0.83 0.67 0.71 0.44 0.24 0.72 0.50 0.29
10NN-4 bits 0.00 0.00 0.02 0.96 0.80 0.56 0.85 0.81 0.67 0.68 0.50 0.27 0.67 0.50 0.34
10NN-8 bits 0.01 0.01 0.03 0.98 0.86 0.59 0.89 0.83 0.70 0.74 0.52 0.29 0.76 0.54 0.36
20NN-4 bits 0.00 0.00 0.01 0.96 0.80 0.59 0.85 0.81 0.67 0.69 0.51 0.29 0.67 0.50 0.37
20NN-8 bits 0.01 0.02 0.03 0.98 0.86 0.63 0.89 0.83 0.71 0.76 0.56 0.32 0.75 0.55 0.39
Graffiti

NN 0.28 0.21 0.16 0.61 0.36 0.23 0.53 0.40 0.30 0.43 0.27 0.17 0.37 0.26 0.18
RNN-4 bits 0.49 0.32 0.20 0.70 0.44 0.26 0.70 0.54 0.34 0.54 0.36 0.19 0.55 0.38 0.22
RNN-8 bits 0.54 0.34 0.20 0.72 0.44 0.26 0.72 0.54 0.35 0.53 0.37 0.19 0.59 0.39 0.22
5SNN-4 bits 0.54 0.44 0.34 0.70 0.50 0.33 0.72 0.57 0.43 0.51 0.37 0.22 0.52 0.40 0.27
SNN-8 bits 0.67 0.52 0.37 0.72 0.53 0.35 0.73 0.61 0.43 0.54 0.39 0.24 0.54 0.42 0.29
10NN-4 bits 0.54 0.44 0.35 0.70 0.50 0.34 0.73 0.58 0.44 0.51 0.40 0.23 0.52 0.40 0.27
10NN-8 bits 0.68 0.54 0.41 0.72 0.53 0.36 0.74 0.62 0.46 0.55 0.41 0.26 0.53 0.42 0.30
20NN-4 bits 0.54 0.46 0.38 0.70 0.50 0.35 0.73 0.59 0.45 0.51 0.39 0.24 0.52 0.40 0.28
20NN-8 bits 0.69 0.56 0.45 0.72 0.54 0.38 0.74 0.62 0.47 0.55 041 0.27 0.53 043 0.31
Wall

NN 0.99 0.99 0.88 1.00 0.96 0.67 0.97 0.86 0.56 0.90 0.78 0.47 1.00 0.95 0.62
RNN-4 bits 0.99 0.99 0.90 1.00 0.97 0.73 0.98 0.91 0.61 0.89 0.84 0.52 1.00 0.96 0.64
RNN-8 bits 0.99 0.99 0.92 1.00 0.98 0.74 0.97 0.91 0.61 0.91 0.85 0.52 1.00 0.96 0.64
5SNN-4 bits 1.00 0.99 0.89 1.00 0.97 0.75 0.98 0.90 0.64 0.90 0.84 0.56 1.00 0.96 0.65
5SNN-8 bits 1.00 0.99 0.92 1.00 0.98 0.78 0.97 0.92 0.66 0.92 0.87 0.56 1.00 0.96 0.67
10NN-4 bits 1.00 0.99 0.89 1.00 0.97 0.75 0.98 0.90 0.65 0.90 0.84 0.55 1.00 0.96 0.65
10NN-8 bits 1.00 0.99 0.92 1.00 0.98 0.79 0.97 0.92 0.67 0.92 0.87 0.57 1.00 0.96 0.67
20NN-4 bits 1.00 0.99 0.89 1.00 0.97 0.76 0.98 0.90 0.65 0.90 0.84 0.55 1.00 0.96 0.65
20NN-8 bits 1.00 0.99 0.92 1.00 0.98 0.79 0.97 0.92 0.67 0.92 0.87 0.56 1.00 0.96 0.67

Bold values indicate the maximum values obtained for each test image (Bikes, Boat, Graffiti, or Wall) within the corresponding column
Results are obtained by ranking the nearest neighbor matches only by the descriptor distance (NN), by the keypoint specific score of Eq. 3
(Reweighted NN — RNN), or ranking the K near neighbor list matches by Eq. 3 (KNN, with K € {5, 10, 20}). For each dataset and descriptor
combination, inlier ratios at 100, 250, and 500 keypoint matches are listed. In general, keypoint specific ranking improves the inlier ratio for the

best few hundred correspondences and looking inside the ten near neighbor list yields improved inlier ratio at 500 keypoint matches
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Table 2 With eight reference images, we measure the inlier ratio values when matching the third test image of each image sequence and LSH is

used to compute the near neighbor list

Descriptor BRIEF BRISK FREAK LATCH ORB

# of matches 100 250 500 100 250 500 100 250 500 100 250 500 100 250 500
Bikes

NN 0.97 0.96 0.87 0.53 0.37 0.27 0.81 0.59 0.40 0.99 0.95 0.69 0.99 0.94 -
RNN-4 bits 0.93 0.90 0.84 0.66 0.49 0.33 0.84 0.68 0.46 0.96 0.95 0.69 0.98 0.96 -
RNN-8 bits 0.94 0.91 0.86 0.64 0.47 0.33 0.86 0.70 0.47 0.98 0.96 0.69 0.98 0.96 -
10NN-4 bits 0.94 0.91 0.83 0.70 0.52 0.40 0.83 0.71 0.51 0.96 0.96 0.71 0.99 0.97 -
10NN-8 bits 0.95 0.92 0.86 0.70 0.56 0.41 0.84 0.72 0.53 0.98 0.96 0.71 0.99 0.97 -
Boat

NN 0.01 0.01 0.00 0.40 0.25 0.15 0.35 0.28 0.20 0.21 0.13 0.08 0.04 0.04 0.04
RNN-4 bits 0.00 0.01 0.00 0.72 0.34 0.17 0.74 0.48 0.27 0.41 0.18 0.09 0.25 0.12 0.06
RNN-8 bits 0.01 0.00 0.00 0.71 0.34 0.17 0.76 0.49 0.27 0.45 0.18 0.09 0.26 0.12 0.06
10NN-4 bits 0.00 0.00 0.00 0.88 0.59 0.35 0.76 0.68 0.50 0.59 0.31 0.17 0.46 0.28 0.17
10NN-8 bits 0.00 0.00 0.00 0.91 0.64 0.36 0.82 0.74 0.51 0.64 0.32 0.17 0.49 0.30 0.17
Graffiti

NN 0.14 0.10 0.07 0.59 0.34 0.21 0.47 0.31 0.22 0.39 0.21 0.13 0.32 0.20 0.15
RNN-4 bits 0.27 0.16 0.10 0.65 0.39 0.23 0.64 0.42 0.27 0.46 0.26 0.14 0.46 0.31 0.17
RNN-8 bits 0.29 0.18 0.10 0.69 0.41 0.23 0.66 0.43 0.27 0.47 0.26 0.14 0.48 0.31 0.17
10NN-4 bits 0.35 0.24 0.19 0.66 0.47 0.31 0.67 0.49 0.34 0.42 0.26 0.17 0.42 0.30 0.20
10NN-8 bits 0.46 0.33 0.23 0.70 0.48 0.32 0.68 0.52 0.37 0.49 0.29 0.17 0.46 0.33 0.21
Wall

NN 0.99 0.98 0.80 1.00 0.88 0.56 0.92 0.68 0.45 0.90 0.69 0.41 0.98 0.82 0.52
RNN-4 bits 0.99 0.96 0.86 1.00 0.97 0.60 0.96 0.80 0.52 0.89 0.81 0.45 0.98 0.94 0.56
RNN-8 bits 0.99 0.98 0.88 1.00 0.98 0.61 0.95 0.83 0.52 0.91 0.82 0.45 0.99 0.94 0.56
10NN-4 bits 0.99 0.96 0.86 1.00 0.95 0.66 0.96 0.81 0.59 0.90 0.83 0.50 0.98 0.92 0.59
10NN-8 bits 1.00 0.98 0.88 1.00 0.97 0.68 0.95 0.84 0.60 0.92 0.85 0.52 0.99 0.94 0.59

Bold values indicate the maximum values obtained for each test image (Bikes, Boat, Graffiti, or Wall) within the corresponding column
Similar to the results of Table 1, ranking the correspondences by Eq. 3 improves the overall values. Searching in the first ten near neighbors further

increases the number of inliers that can be obtained

minimum number of PROSAC iterations to correctly calcu-
late the pose of an object by keypoint matching.

To show the benefits of keypoint specific scoring, we per-
form three sets of measurements. First, as a baseline, we
rank the nearest neighbor matches using the Hamming dis-
tance. Second, we rank only the nearest neighbor matches
according to the scores of Eq. 3. Finally, we both pick the
best match in the K near neighbor (K NN) list and rank these
correspondences according to Eq. 3.

Table 1 lists the results obtained. The re-weighted nearest
neighbor (RNN) values shows the improvement brought only
by using the scores of Eq. 3. This leads to higher initial inlier
ratios even though the final ratio at 500 matches stays nearly
the same. The K NN curves show the additional improvement
brought by searching beyond the nearest neighbor. In almost
all cases, considering the K NNs leads to a higher inlier ratio
over the best 500 keypoint matches.

For Graffiti, the weaker BRIEF performance compared to
BRISK and FREAK is more than offset by exploiting the K
near neighbors. For the other data sets, the BRIEF perfor-
mance is either too low (Boat) or too high (Bikes and Wall)
to lead to a real difference in performance.

For Boat, the baseline inlier ratios among the best 250
BRISK and FREAK correspondences are 44 and 45 %,
respectively. The ten near neighbor inlier rates increase to
86 and 83 %, nearly doubling in each case. Such rates mean
almost immediate convergence for PROSAC, requiring only
5 iterations to guarantee sampling of four inliers with 95 %
probability, more than 20 times faster than the baseline.

4.3 Keypoint matching with locality sensitive hashing

For some vision tasks, the reference image collection is larger
than a single image. In this case, the number of reference
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descriptors also increases, and therefore, it is impractical to
match keypoints with brute-force descriptor search. To eval-
uate the performance of our approach in such a case, we
concatenate the descriptors from all reference images from
Graffiti, Boat, Bikes, Wall, plus the four other images. The
total number of reference descriptors is around 8000. As in
Sect. 4.2, we compute the inlier ratio curves, but this time we
compute the list of ten near neighbors with LSH. We use the
FLANN [17] implementation of LSH available in OpenCV
with 12 tables, a key length of 20, and a multi-probe level of
2. This yields an LSH precision of 90 % (The nearest neigh-
bor found by LSH is the same as found by the brute-force
search nine out of ten times).

As Table 2 shows, the resulting inlier ratios are lower than
those in Table 1 since the number of reference descriptors is
eight times greater. However, our approach recovers matches
that would have been lost if only the nearest neighbor had
been used. The improvement (usually a factor of two) is more
dramatic for Boat and Graffiti.

4.4 Computation time

For 1000 reference and 928 query keypoints, using a brute-
force approach—that is when the descriptor distance to each
reference keypoint is calculated—the total time for keypoint
matching using only the nearest neighbor and Hamming dis-
tance is 4.0 milliseconds (using the POPCNT instruction on
a 64-bit laptop CPU). At K = 10, our approach takes 4.2
milliseconds irrespective of the value of M. This means that
the overhead to compute the scores of Eq. 3 for the top ten
near neighbors is around 5 % for 1000 reference keypoints.
The absolute overhead is negligible even for real-time appli-
cations, and at the worst case, it scales linearly with K ; thus,
it will be halved at K = 5 and doubled at K = 20.

5 Conclusion

We propose an approach that can be used in conjunction
with the binary descriptors to search for keypoint matches
beyond the nearest neighbor. Our approach strikes a bal-
ance between the keypoint specific representations and the
generic descriptors. By using a two-step approach, we com-
bine the advantages of both and improve the robustness of
binary descriptors for real-time object detection applications.
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