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Abstract This paper proposes a computationally efficient
azimuth and elevation estimation and pairing method using
L-shaped uniform arrays. The azimuths and elevations of the
incident signals are estimated independently at first using the
outputs of the twoarray armsvia equation rooting,whichwell
avoids the computationally demanding spatial scanning pro-
cedure contained in most of the previous direction-of-arrival
estimation methods. The order of the equations equals the
number of the incident signals; thus, this procedure is compu-
tationally very cheap and can be implemented using various
numeric algorithms. Then two optional methods are pro-
posed for azimuth–elevation pairing. One method exploits
the cross-correlation of the two subarray outputs of the L-
shaped array, and the other method is realized by estimating
the signal powers based on the direction estimates. Both of
the two direction-pairing methods are implemented using
numerical computations; thus, this procedure is also com-
putationally very cheap. In-depth analyses are provided on
the selection of the two optional azimuth–elevation pairing
methods in different environments. Numerical examples are
carried out to demonstrate the performance of the proposed
method.
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1 Introduction

Most of the high-resolution direction-of-arrival (DOA) esti-
mation methods, e.g., MUSIC [1], ESPRIT [2] and the
recently interest-attracting sparsity-inducing ones [3–8], are
computationally very expensive, and much effort has been
devoted to reduce the computational complexity of them
[9,10]. But some of the computation demanding processes,
such as the spatial searching one for refined DOA estimation,
are seldom skipped over completely, and the computational
loads of the methods are still too heavy to meet practical
requirements.

As the number of unknown directions in the 2-D direction-
finding problem doubles that in the 1-D case, it is even
more difficult to reduce the computational load in the 2-
D direction-finding methods. Most of the existing 2-D
direction-finding methods contain a 2-D spatial searching
process [11–13], which sharply increases the computational
load. Thus the L-shaped arrays consisting of two orthogo-
nal uniform linear array (ULA) arms have been introduced
and are widely used for 2-D direction finding [14–16]. Esti-
mating the azimuths and elevations simultaneous with the
L-shapedULAmay still be computationally demanding [14];
thus, most of successive researches resort to two-step tech-
niques, i.e., obtaining some direction-related variables first
and then estimating the directions based on the variables
[15,16]. Among the latter methods, the numeric ones are
computationally cheaper [16], which is our major concern in
this paper, andwe concentrate mainly on further reducing the
computational load of these methods. Another problem that
should be highlighted in 2-D direction estimation is pair-
ing azimuth and elevation estimates correctly when more
than one signal impinges simultaneously [17,18]. In previ-
ous studies, the cross-correlation of the two subarray outputs
has been exploited to obtain new azimuth–elevation relat-
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ing variables and realize azimuth–elevation pairing [19–21],
with a reduced but still heavy computational load.

This paper proposes a computationally efficient 2-D
direction-finding method using an L-shaped array. This
method first estimates the azimuths and elevations of the
incident signals independently with the two array arms,
and then two optional methods are proposed for azimuth–
elevation pairing, with one exploiting the cross-correlation of
the two subarray outputs and the other using the signal power
estimates. Simulation results are finally carried out to demon-
strate the predominance of the proposedmethods in direction
estimation and azimuth–elevation pairing performance.

2 Problem formulation

Assume that K independent signals with powers σ 2
1 , . . . , σ 2

K
impinge onto the array fromazimuths Φ̄ = [

φ̄1, φ̄2, . . . , φ̄K
]

and elevations Θ = [θ1, θ2, . . . , θK ], and the incident direc-
tions depart from the X axis by Φ = [φ1, φ2, . . . , φK ], then
the following relationships hold between the three angle sets,

cosφk = sin θk cos φ̄k k = 1, 2, . . . , K . (1)

The sketch map of the L-shaped array for 2-D direction find-
ing is shown in Fig. 1, where the absence or presence of the
element 0 is determined according to practical requirements.

Assume that the wavelength of the incident signals is λ,
the two uniform array arms are both interspaced by d, then
the output of the Z subarray is

Z (t) = A (Θ) s (t) + nZ (t) (2)
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Fig. 1 Sketch map of the L-shaped array

where A (Θ) = [a (θ1) , a (θ2) , . . . , a (θK )], with a (θk) =[
1, e− j2πd cos θk/λ, . . . , e− j2πMd cos θk/λ

]T
being the array

responding vector according to the k th incident signal, [•]T
is the transpose operator and s (t) = [s1 (t) , s2 (t) , . . . ,

sK (t)]T is the waveform vector of the K signals at time
t , nZ (t) = [n0 (t) , n1 (t) , . . . , nM (t)]T is the additive
white Gaussian noise with power σ 2

0 . Various existing 1-D
direction-finding methods can be used to estimate the eleva-

tions, denoted by Θ̂ =
[
θ̂1, . . . , θ̂K

]
, of the incident signals

from Z (t).
The X subarray output is given by

X (t) = A
(
Θ, Φ̄

)
s (t) + nX (t) (3)

whereA
(
Θ, Φ̄

) = [
a
(
θ1, φ̄1

)
, a

(
θ2, φ̄2

)
, . . . , a

(
θK , φ̄K

)]
,

a
(
θk, φ̄k

) =
[
1, e− j2πd sin θ1 cos φ̄1/λ, . . . ,

e− j2πMd sin θK cos φ̄K /λ
]T

, and nX (t) = [
n′
0 (t) , n′

1 (t) , . . . ,

n′
M (t)

]T is the additive noise. Then the azimuth estimates,

denoted by ˆ̄φ1,
ˆ̄φ2, . . . ,

ˆ̄φK , can be obtained similarly as the
elevation ones.

Whenmore than one signal impinges onto the array simul-
taneously, the azimuth–elevation pairing problem arises.
Many methods have been developed to solve this problem,
and the one having the state-of-the-art performance exploits
the cross-correlation of the X and Z subarray outputs [19].

3 Azimuth/elevation estimation and pairing

In this section, the azimuths and elevations of the incident
signals are estimated with the two array arms independently
at first and then paired via two optional methods. Similar
to [19], we assume in this paper that there is no common
antenna between the two arms of the L-shaped array, i.e., the
antenna element indexed by 0 is absent in Fig. 1.

3.1 Azimuth and elevation estimation

The output of the X subarray can be rewritten in a different
form from (3) as

X (t) = A (Φ) s (t) + nX (t) (4)

where A (Φ) = [a (φ1) , a (φ2) , . . . , a (φK )] and a (φk) =[
1, e− j2πd cosφk/λ, . . . , e− j2π(M−1)d cosφk/λ

]T
. As the inci-

dent signals are independent to each other, the covariance
of X (t) is given by RX = A (Φ) ΛsAH (Φ) + σ 2

0 I,
where (•)H is the complex transpose operator and Λs is
a diagonal matrix made up by the signal powers, i.e.,
Λs = diag

{[
σ 2
1 , σ 2

2 , . . . , σ 2
K

]}
. The (p, q) th element of

the covariance matrix is
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RX (p, q) =
K∑

k=1

σ 2
k e

− j2π(p−1)d cosφk/λe j2π(q−1)d cosφk/λ

+ σ 2
0 δ (p − q)

=
K∑

k=1

σ 2
k e

− j2π(p−q)d cosφk/λ + σ 2
0 δ (p − q) .

(5)

The matrix elements along the (−m) th (m = 1, 2, . . . , M
−1) diagonal share the same form as RX (m + p, p) =∑K

k=1 σ 2
k e

− j2πmd cosφk/λ. Take the average of thematrix ele-
ments along the (−m) th diagonal and denote it by rm , then

rm
Δ= 1

M − m

M−m∑

p=1

RX(m + p, p)=
K∑

k=1

σ 2
k e

− j2πmd cosφk/λ.

(6)

In practical applications, the covariance matrix can only be
obtained from finite samplings (denoted their number by N ),
i.e., R̂X = 1

N

∑N
n=1 X (tn)XH (tn). Averaging thematrix ele-

ments along the -1 to − (M − 1) diagonals yields a group of
new measurements. Denote them by r̂1, r̂2, . . . , r̂M−1, i.e.,

r̂m
Δ= 1

M − m

M−p∑

p=1

R̂X (m + p, p). (7)

According to (6), a relationship between the measure-
ments r1, r2, . . . , rM−1 and the source directions can be
established via an equation f1 (α) whose roots are βk =
e− j2πd cosφk/λ (k = 1, 2, . . . , K ) [22], i.e.,

f1 (α) =
K∏

k=1

(α − βk)

= αK + hK−1α
K−1 + · · · + h1α + h0 = 0. (8)

Settingα = βk in f1 (α), andmultiplying both sides byσ 2
k β J

k
for J = 1, 2, . . . , M − K − 1 yields K equalities,

σ 2
k βK+J

k + hK−1σ
2
k βK+J−1

k + · · · + h1σ
2
k β J+1

k

+ h0σ
2
k β J

k = 0 k = 1, 2, . . . , K . (9)

Adding up the K equalities in (9) yields

K∑

k=1

σ 2
k βK+J

k + hK−1

K∑

k=1

σ 2
k βK+J−1

k + · · ·

+ h1

K∑

k=1

σ 2
k β J+1

k + h0

K∑

k=1

σ 2
k β J

k = 0. (10)

Combining (6) and (10) obtains a series of equalities for
r1, r2, . . . , rM−1, i.e.,

rK+J + hK−1rK+J−1 + · · · + h1rJ+1 + h0rJ = 0

J = 1, 2, . . . , M − K − 1. (11)

whose matrix form is

⎡

⎢⎢⎢
⎣

r1 r2 · · · rK
r2 r3 · · · rK+1
...

...
. . .

...

rM−K−1 rM−K · · · rM−2

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

h0
h1
...

hK−1

⎤

⎥⎥⎥
⎦

= −

⎡

⎢⎢⎢
⎣

rK+1

rK+2
...

rM−1

⎤

⎥⎥⎥
⎦

.

(12)

In practice, the coefficients of equation f1 (α), i.e., h0, h1,
. . . , hK−1, can be estimated by solving the following least
squares problem, i.e.,

G1 (W1,h)

=

∥∥
∥
∥∥
∥∥
∥∥

W1

⎛

⎜⎜
⎜
⎝

⎡

⎢⎢
⎢
⎣

r̂1 r̂2 · · · r̂K
r̂2 r̂3 · · · r̂K+1
.
.
.

.

.

.
. . .

.

.

.

r̂M−K−1 r̂M−K · · · r̂M−2

⎤

⎥⎥
⎥
⎦

⎡

⎢⎢
⎢
⎣

h0
h1
.
.
.

hK−1

⎤

⎥⎥
⎥
⎦

+

⎡

⎢⎢
⎢
⎣

r̂K+1

r̂K+2
.
.
.

r̂M−1

⎤

⎥⎥
⎥
⎦

⎞

⎟⎟
⎟
⎠

∥∥
∥
∥∥
∥∥
∥∥

2

2
Δ=
∥
∥∥W1

(
Γ̂ 1h + b1

)∥∥∥
2

2
,

(13)

where Γ̂ 1 =

⎡

⎢⎢⎢
⎣

r̂1 r̂2 · · · r̂K
r̂2 r̂3 · · · r̂K+1
...

...
. . .

...

r̂M−K−1 r̂M−K · · · r̂M−2

⎤

⎥⎥⎥
⎦
, h =

[
h0, h1,. . . , hK−1

]T and b1 = [
r̂K+1, r̂K+2, . . . , r̂M−1

]T ,
and a diagonal weighting matrix W1 is introduced to make
up for the estimation precision difference of the measure-
ments.

Since each element in R̂X is estimated from the same num-
ber of measurements, and r̂1, r̂2, . . . , r̂M−1 are then obtained
by diagonally averaging M − 1, M − 2, . . . , 1 elements of
R̂X , the variances of r̂1, r̂2, . . . , r̂M−1 can be demonstrated
to satisfy a ratio of 1

/
(M − 1) : 1/(M − 2) : · · · : 1 statisti-

cally. Sowe set the diagonal weightingmatrix approximately
according to the first column of Γ̂ 1 as

W1 =
(

1
/ M−1∑

k=K+1

k

)

× diag {[M − 1, M − 2, . . . , K + 1]},

(14)

where diag {•} denotes a diagonal matrix with its diagonal
elements forming the given vector. Thus the least squares
solution to h = [

h0, h1, . . . , hK−1
]T is given accordingly as

ĥ = −
(
W1Γ̂ 1

)†
W1b1, (15)

where (•)† stands for pseudo-inverse.
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Substituting the equation coefficient estimates into (8)
obtains the DOA-dependent equation f̂1 (α),

f̂1 (α) = αK + ĥK−1α
K−1 + · · · + ĥ1α + ĥ0 = 0. (16)

Solving the equation anddenoting its K roots by β̂k (k = 1,
2, . . . , K ), then the angles of the incident signals from the
X axis are given by

φ̂k = cos−1
(
−λ × angle

(
β̂k

)
/2πd

)
k = 1, 2, . . . , K .

(17)

Similarly, the elevations of the sources can also be esti-
mated based on the output of the Z subarray. Detailed deriva-
tions of the estimation process are omitted here for brevity,
and the estimates are denoted by θ̂k (k = 1, 2, . . . , K ).

3.2 Cross-correlation-based azimuth–elevation pairing

The signal directions from the X and Z axis, which are
estimated independently, should be paired when more than
one signal impinges simultaneously. In this part, the idea
of equation establishing and rooting used for 1-D direction
estimation in this paper is extended for azimuth–elevation
pairing by exploiting the cross-correlation of the two subar-
ray outputs.

The cross-correlation of the Z and X subarray outputs is
given by

RZX = E
{
Z (t)XH (t)

}
= A (Θ)ΛsAH (Φ) (18)

where A (Θ), Λs and A (Φ) are defined identically as are
stated above. As the X and Z subarrays do not share any
antenna, the perturbations of any two elements of RZX are
independent of each other, and theM main diagonal elements
of RZX form an azimuth–elevation relating vector rZX as
follows:

rZX = [RZX (1, 1) ,RZX (2, 2) , . . . ,RZX (M, M)]T

=
[

K∑

k=1

σ 2
k ,

K∑

k=1

σ 2
k e

− j2πd(cos θk−cosφk )/λ, . . . ,

K∑

k=1

σ 2
k e

− j2π(M−1)d(cos θk−cosφk )/λ

]T

. (19)

Denote ξk = e− j2πd(cos θk−cosφk )/λ, and establish an equa-
tion f2 (α) with roots ξk (k = 1, 2, . . . , K ), i.e.,

f2 (α) =
K∏

k=1

(α − ξk) = αK+ρK−1α
K−1+· · ·+ρ1α+ρ0 = 0.

(20)

Then ρ = [
ρ0, ρ1, . . . , ρK−1

]T can be estimated by mini-
mizing G2 (W2, ρ),

G2 (W2, ρ)

=

∥
∥
∥∥
∥
∥
∥
∥
∥

W2

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

r̂ZX (1) r̂ZX (2) · · · r̂ZX (K )

r̂ZX (2) r̂ZX (3) · · · r̂ZX (K + 1)
.
.
.

.

.

.
. . .

.

.

.

r̂ZX (M − K ) r̂ZX (M − K + 1) · · · r̂ZX (M − 1)

⎤

⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎣

ρ0
ρ1
.
.
.

ρK−1

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

r̂ZX (K + 1)
r̂ZX (K + 2)

.

.

.

r̂ZX (M)

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥∥
∥
∥

2

2

. (21)

The elements of r̂ZX are obtained in the sameway and should
have the same variance; the rows in the bracket in (21) should
be weighted equally, i.e.,W2 = IM−K . The equation coeffi-
cients ρ = [

ρ0, ρ1, . . . , ρK−1
]T can be estimated similarly

as that in (15) by substitutingW1 = IM−K , and

ρ̂ = −Γ̂
†
2b2, (22)

where Γ̂ 2 =⎡

⎢⎢⎢
⎣

r̂ZX (1) r̂ZX (2) · · · r̂ZX (K )

r̂ZX (2) r̂ZX (3) · · · r̂ZX (K + 1)
...

...
. . .

...

r̂ZX (M − K ) r̂ZX (M − K + 1) · · · r̂ZX (M − 1)

⎤

⎥⎥⎥
⎦
,

b2 = [
r̂ZX (K + 1) , r̂ZX (K + 2) , . . . , r̂ZX (M)

]T . Substi-
tuting ρ̂ into (20) yields f̂2 (α) = αK + ρ̂K−1α

K−1 +
· · · + ρ̂1α + ρ̂0 = 0. Solving this equation obtains the
estimates of the azimuth–elevation relating variables ξk for
k = 1, 2, . . . , K , which are denoted by ξ̂k .

Finally, the pairing of the azimuths and elevations can be
realized by minimizing the distance between the azimuth–
elevation relating variables and the azimuth–elevation pair
candidates, i.e.,

{(
θ̂pk , φ̂qk

)}K

k=1
= arg min

pk ,qk

{
K∑

k=1

∣∣∣ξ̂k

−
(
e
− j2πd

(
cos θ̂pk−cos φ̂qk

)/
λ
)∣∣∣∣

}
(23)

where (pk)Kk=1 , (qk)Kk=1 are two permutations of the num-
ber set 1, 2, . . . , K and are paired without repetition. Denote

the paired estimates by
(
θ̂pk , φ̂qk

)
(k = 1, 2, . . . , K ), then

the azimuths and elevations of the K incident signals can
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be calculated according to
(
θ̂pk , cos

−1
(
cos φ̂qk

/
sin θ̂pk

))

(k = 1, 2, . . . , K ) [18].

3.3 Signal power-based azimuth–elevation pairing

In this part, we extend our direction-finding method stated
above to estimate the signal powers jointly and then use the
power estimates to pair the azimuth and elevation estimates.

Equation (6) implies that the following equation holds for
the signal powers σ 2

1 , σ 2
2 , . . . , σ 2

K ,
⎡

⎢⎢
⎢
⎢
⎣

e− j2πd cosφ1/λ e− j2πd cosφ2/λ · · · e− j2πd cosφK /λ

e− j2π2d cosφ1/λ e− j2π2d cosφ2/λ · · · e− j2π2d cosφK /λ

.

.

.
.
.
.

. . .
.
.
.

e− j2π(M−1)d cosφ1/λ e− j2π(M−1)d cosφ2/λ · · · e− j2π(M−1)d cosφK /λ

⎤

⎥⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎣

σ 2
1

σ 2
2

.

.

.

σ 2
K

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

r1
r2
.
.
.

rM−1

⎤

⎥
⎥
⎥
⎥
⎦

. (24)

Therefore, after estimating the angles Φ̂, the signal powers
can be estimated from the X subarray output by minimizing
the following function,

H1

(
W ′

1, σ 2
k

∣∣
∣
K

k=1

)
=

∥
∥∥
∥
∥∥
∥∥
∥
∥

W ′
1

⎛

⎜
⎜⎜
⎜
⎝

⎡

⎢
⎢⎢
⎢
⎣

e− j2πd cos φ̂1/λ e− j2πd cos φ̂2/λ · · · e− j2πd cos φ̂K /λ

e− j2π2d cos φ̂1/λ e− j2π2d cos φ̂2/λ · · · e− j2π2d cos φ̂K /λ

...
...

. . .
...

e− j2π(M−1)d cos φ̂1/λ e− j2π(M−1)d cos φ̂2/λ · · · e− j2π(M−1)d cos φ̂K /λ

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢⎢
⎢
⎣

σ 2
1

σ 2
2
...

σ 2
K

⎤

⎥⎥
⎥
⎦

−

⎡

⎢⎢
⎢
⎣

r̂1
r̂2
...

r̂M−1

⎤

⎥⎥
⎥
⎦

⎞

⎟
⎟⎟
⎟
⎠

∥
∥∥
∥
∥∥
∥∥
∥
∥

2

2

(25)

where the diagonal weighting matrix W ′
1 is set to be

W ′
1 =

(
1
/M−1∑

k=1
k

)
× diag {[M − 1, M − 2, . . . , 1]} fol-

lowing similar considerations as W1 and W2.
Then the least squares estimates of the signal powers are

given by

[
σ̂ 2
1 , σ̂ 2

2 , . . . , σ̂ 2
K

]T =
(
W ′

1Â
′
1

)†
W ′

1r̂ (26)

where Â
′
1 =⎡

⎢⎢⎢
⎣

e− j2πd cos φ̂1/λ e− j2πd cos φ̂2/λ · · · e− j2πd cos φ̂K /λ

e− j2π2d cos φ̂1/λ e− j2π2d cos φ̂2/λ · · · e− j2π2d cos φ̂K /λ

.

.

.
.
.
.

. . .
.
.
.

e− j2π(M−1)d cos φ̂1/λ e− j2π(M−1)d cos φ̂2/λ · · · e− j2π(M−1)d cos φ̂K /λ

⎤

⎥⎥⎥
⎦

and r̂ = [
r̂1, r̂2, . . . , r̂M−1

]T . In addition, the function in
(25) pairs the source power estimates and the azimuth esti-
mates automatically. Denote the azimuth-power pairs by{(

φ̂p1 , σ̂
2
p1

)
, . . . ,

(
φ̂pK , σ̂ 2

pK

)}
, in which σ̂ 2

p1 ≤ · · · ≤ σ̂ 2
pK

and pk (k = 1, 2, . . . , K ) is a permutation of the number
set {1, 2, . . . , K }.

Similarly, another group of estimates of the signal pow-
ers can also be obtained based on the elevation esti-
mates Θ̂ =

[
θ̂1, θ̂2, . . . , θ̂K

]
. The power estimates and

the elevation estimates are also paired automatically as{(
θ̂q1 , σ̂

2
q1

)
, . . . ,

(
θ̂qK , σ̂ 2

qK

)}
, in which qk (k = 1, 2, . . . ,

K ) is a permutation of the number set {1, 2, . . . , K }
and σ̂ 2

q1 ≤ · · · ≤ σ̂ 2
qK . The angle estimates of Φ̂ =[

φ̂1, φ̂2, . . . , φ̂K

]
and Θ̂ =

[
θ̂1, θ̂2, . . . , θ̂K

]
can then be

paired according to the signal powers straightforwardly.

Denoting the paired angles by
{(

φ̂p1 , θ̂q1

)
, . . . ,

(
φ̂pK ,

θ̂qK

)}
, the 2-D directions of the incident signals are given by

{(
cos−1

(
cos φ̂q1

/
sin θ̂p1

)
, θ̂p1

)
, . . . ,

(
cos−1

(
cos φ̂qK

/

sin θ̂pK

)
, θ̂pK

)}
.

4 Method selection for azimuth–elevation pairing

Two optional azimuth–elevation pairing methods have been
proposed in this paper. The first one is based on a group of

azimuth–elevation relating variables, but if the variables for
different signals are much close to each other, i.e.,

∣∣ξk1 − ξk2

∣∣

=
∣∣∣e− j2πd

(
cos θk1−cosφk1

)
/λ − e− j2πd

(
cos θk2−cosφk2

)
/λ
∣∣∣

� 1, (27)

where 1 ≤ k1 < k2 ≤ K . The estimates of ξk1 and ξk2 may
mix up, and the azimuth–elevation pairing becomes very dif-
ficult. The second method uses the signal power estimates to
bridge the azimuth and elevation estimates, its performance
depends heavily on the power diversity of the incident sig-
nals, and it is believed to behave poorly when the signals are

close to each other in power, i.e.,
∣∣∣σ 2

k1
− σ 2

k2

∣∣∣
/
σ 2
k1

� 1.

That is to say, the two proposed azimuth–elevation pairing
methods have different adaptability to special signal envi-
ronments. If the azimuth–elevation relating variables ξk of
different signals are close to each other, the first method
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may fail, and the signal powers should be exploited for
azimuth–elevation pairing. But if the powers of the incident
signals cannot bedistinguished easily, the signal power-based
method becomes ineffective, and one should resort to the
cross-correlation-based pairing method.

5 Numerical examples

Simulations are carried out in this section to demonstrate
the predominance of the proposed method in direction esti-
mation and azimuth–elevation pairing. In the simulations,
an L-shaped array consisting of two independent ULA arms
along the X and Z axis is used, and each of the arms contains
10 omnidirectional antennas interspaced by half wavelength.
Five hundred samples are collected in each simulation, and
1000 independent trials are carried out to obtain the statistical
performance in each signal environment.

The azimuth and elevation estimating method in [16] and
the pairing method in [19] are chosen for performance com-
parison. As the propagator method (PM) and the ESPRIT
method are used in [16] and [19], respectively, we name this
combined method PM+ESPRIT. In the one-source simula-
tions, we compare the direction estimation performance of
the proposedmethodwith that of themethod in [16], while in
the multi-source cases, we focus on the probability of correct
azimuth–elevation pairing of the proposed methods in com-
parison with PM+ESPRIT. For convenience, we denote the
proposed method that uses the method of equation establish-
ing and rooting all along by equation rooting and the method
that estimates the directions using equations and pairs the
azimuths and elevations via power bridging by power pair-
ing. In addition, the angle pair (φ, θ), instead of

(
φ̄, θ

)
,

is used to describe the 2-D direction of the incident sig-
nals and evaluate the simulation results without causing any
confusion.

5.1 One-source case

Assume that the signal impinges from the direction of
(60◦, 70◦), and the signal-to-noise ratio (SNR) varies from 0
to 20dB. Figure 2 shows the root-mean-square error (RMSE)
of the azimuth estimates and the relative error of the power
estimates derived from the X subarray outputs.

It can be concluded from the results in Fig. 2 that the pro-
posed method obtains more precise azimuth estimates than
the method in [16] and is also able to obtain satisfying power
estimates with a relative error<2.5%when the SNR is above
0dB. The elevation estimation process has also been carried
out to obtain similar performance, and the results are omitted
here for brevity.
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Fig. 2 Parameter estimation precision according to the X subarray for
varying SNRs: a RMSE of the azimuth estimates; b relative error of the
power estimates

5.2 Multi-source case

Assume that two independent signals impinge from direc-
tions (60◦, 70◦) and (80◦, 85◦), the amplitude of the second
source is 0.8 times that of the first one, and the SNR of the
first source varies from −10 to 20dB. Figure 3 shows the
correct pairing probability of the two proposed methods and
the method PM+ESPRIT.

The simulation results shown in Fig. 3 imply that the
method of power pairing has the highest correct pairing prob-
ability, while themethods of PM+ESPRIT and equation root-
ing predominate alternately in different signal environments,
so we focus on the method of power pairing hereinafter
and demonstrate its predominance over PM+ESPRIT. Extra
experiments have also been carried out to demonstrate the
satisfying performance of the proposed method in the envi-
ronments of spatially adjacent signals.
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Fig. 3 Correct pairing probability of the two proposed methods and
PM+ESPRIT for varying SNRs

The predominance of the proposed methods in computa-
tional efficiency over the existing PM+ESPRIT method has
also been demonstrated in the simulations, which is indicated
by the implementation time of them. The implementation
speed of these methods is seldom affected by the factors such
as signal SNR and angle separation, and in all of the environ-
ments considered in this subsection, PM+ESPRIT requires
about 52.6 s to complete 1000 simulations, the proposed
equation rooting method requires about 15.9 s, and power
pairing requires about 13.2 s. That is to say, the proposed
methods save approximately 70–75% of the implementation
time when compared with the existing method.

5.3 Failure of the azimuth–elevation pairing methods

The analysis in Sect. 4 indicates that the performance of the
proposed pairing methods will greatly deteriorate in differ-
ent environments. We carry out numerical examples here to
demonstrate this conclusion.

Assume that two independent signals impinge onto the
array instantaneously, the direction of the first signal is fixed
at (60◦, 70◦) and its SNR at 5dB; the amplitude of the sec-
ond source is 0.8 multiples of the first one and its azimuth
is 80◦. Then it can be computed according to (27) that the
equality |ξ1 − ξ2| = 0 holds when the elevation of the sec-
ond source is 89.1◦, and the correct pairing probability may
decrease significantly. By varying the elevation of the second
source from 85◦ to 95◦, the correct pairing probabilities of
PM+ESPRIT and power pairing are obtained and shown in
Fig. 4.

Then assume that two independent signals impinge from
the directions of (60◦, 70◦) and (80◦, 95◦), respectively, and
the SNR of the first source is 5dB, the SNR deviation of
the two sources varies from −1dB to 1dB. Figure 5 shows
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Fig. 4 Correct pairing probabilities of PM+ESPRIT and power pairing
for varying elevation of the second source
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Fig. 5 Correct pairing probabilities of PM+ESPRIT and power pairing
for varying SNR deviations

the correct pairing probabilities of PM+ESPRIT and power
pairing for varying SNR deviations.

The simulation results in Fig. 4 show that the performance
of the cross-correlation-based azimuth–elevation pairing
method deteriorates most significantly when the elevation of
the second source approaches 89.1◦. This phenomenon sup-
ports the foregoing analysis in Sect. 4 on the performance
constraint of the cross-correlation-based azimuth–elevation
pairing method. Figure 5 indicates that when the powers of
the two signals are equal, the correct pairing probability of
the power pairing method falls by nearly 50%, which means
power diversity is no longer usable for signal distinguishing.
But fortunately, the detection performance of power pairing
recovers rapidly when the SNR difference of the two sig-
nals is slightly deviated from 0dB (by about 0.2dB in the
considered environment).
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6 Conclusions

A new 2-D direction-finding method using L-shaped arrays
is proposed in this paper, together with two azimuth–
elevation pairing methods, with one based on the subarray
cross-correlation and the other on the signal power esti-
mates. Simulation results show that the proposed method
obtains direction and power estimates of satisfying precision,
and the power-bridging azimuth–elevation pairing method
demonstrates predominance over its cross-correlation-based
counterparts, while the exception happens only when the
power diversity between different signals is negligible.
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