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Abstract Ahierarchical data-driven object detection frame-
work is addressed considering a deep feature hierarchy
of object appearances. The performance of many object
detectors is degraded due to ambiguities in inter-class appear-
ances and variations in intra-class appearances, but deep
features extracted from visual objects show a strong hier-
archical clustering property. Deep features were partitioned
into unsupervised super-categories at the inter-class level,
and augmented categories at the object level, to discover deep
feature-driven information. A hierarchical feature model is
built using a latent topic model algorithm, assembling a one-
versus-all support vectormachine at each node to constitute a
hierarchical classification ensemble. Extensive experiments
show that the proposed method is superior to state-of-the-art
techniques using the PASCAL VOC 2007 and VOC 2012
datasets.
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1 Introduction

Increasingly, object detection, which consists of object cate-
gorization and localization, is becoming a very challenging
problem in computer vision area [1–6]. Object detection is a
very complex process due to image ambiguities in inter-class
appearance and deformations due to large intra-category
variations. Much research has addressed improving the per-
formance degradation of object detection by dividing training
samples into multiple components and learning the compo-
nents independently [2]. The decomposition of a training
dataset can relieve local deformation and variations within
intra-classes. Some early pioneering research investigates
clustering approaches for training data in terms of object
scale, pose [7,8], aspect ratio [2], and component labels [9].
However, most of them only consider intra-class variations
[10,11] and do not investigate inter-class ambiguity, even
though performance can be improved further by considering
ambiguity between inter-classes. Some progress in detection
performance is based on more general sub-category models
within semantic object categories [12–14]. Gu et al. [11] par-
titioned the samples into components using the annotated key
point and masks, and Aghazadeh et al. [14] used a similarity
graph denoting intra-class information to split the data into
spectral clusters. Ruan et al. [15] investigated weakly super-
vised multicomponent model learning for sub-categories.

Even though much of the research takes advantage of
sub-category structures to improve the accuracy of object
detection [16,17],most sub-categories are built based on only
intra-class similarity information. However, there are many
confusing objects from inter-class ambiguities [18]. Valuable
inter-class information can be used to solve the confus-
ing sub-category problem of intra-class samples. Recently,
Dong et al. [1] proposed an sub-category mining approach to
explore intra-class diversities. However, the performance is
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much more inferior to recently proposed deep feature-based
object detection methods, such as the fast region-based con-
volutional network (fast R-CNN) and the spatial pyramid
pooling in convolutional network (SPP) [19,20].

This paper presents a hierarchical deep feature-driven
learning framework with a generalization ability instead of
traditional algorithm-centered detection algorithms. This is
motivated by the following observations: (1) The perfor-
mance of many object detectors is degraded, due not only
to large intra-class variations but also to ambiguity in inter-
class differences and (2) the deep features extracted from
visual objects show a strong hierarchical clustering property.
This paper presents a novel object detection method using
a hierarchical feature model (HFM) and a hierarchical clas-
sifier ensemble (HCE), which is characterized by a generic
and flexible feature structure in terms of super-, augmented,
and sub-categories. Here, the augmented category is a parti-
tion of a semantic object category considering the effect of
super-categories using latent topic model (LTM, Sect. 3.1).
Therefore, each augmented category corresponds to a single
semantic object category. Figure 1 shows the concept of an
augmented category of HFM. For example, the person cat-
egory can be divided into three augmented categories such
as a person who is sitting (augmented category 2), standing
(augmented category 3), and riding (augmented category 4).
In large-scale object detection, the classifier built using an
augmented class is expected to offer better performance than
one built using a semantic object category, since the category
similarity error is efficiently reduced.

The proposed method is the first complete end-to-end
approach, which interactively builds a hierarchical feature
structure and classifier ensemble to explore generalization
abilities in object categorization and localization. At each
node of a data hierarchy HFM, a multi-level classification
ensemble like that of Goh et al. [21] is employed, but adap-
tively. Instead of using a flat linear SVM for all object classes
[19,20], the hierarchical SVM ensemble, HCE, is used for
both inter-class and intra-class decisions. In the first step,
HCE employs one-against-all SVMs to calculate the confi-
dence factor for one class prediction made by a binary SVM
classifier for each augmented category label. In the second
step, multi-class confidence scores for object detection are
aggregated by combiningmultiple detectors. In the third step,
each HCE tree is trained on a different decision path of the
HFM and is used to calculate the overall confidence score
of a test image to minimize detection error. In the detection
phase, HCE-based object detection is performed by calculat-
ing the confidence score(s) of each region proposal driven by
HFM. The major contributions of this paper are summarized
as follows.

• The concept of augmented object categories can resolve
inter-class ambiguity and intra-class variation prob-
lems, especially in very-large-scale object detection. The
method reduces computation overhead, since regions of
interest (ROIs) are assigned restricted augmented cat-
egories instead of full assignment of entire semantic

Fig. 1 The concept of
augmented category compared
to the original semantic object
categories. For each semantic
object category, training
samples are partitioned into
unsupervised super-categories.
The augmented category is
determined by partitioning a
semantic object category based
on super-categories. Therefore,
each augmented category
corresponds to a single semantic
object category
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categories, as can be found in state-of-the-art technolo-
gies such as SPP [19], and fast R-CNN [20].

• HFM is shown to be more effective than the flat feature
model [19,20] and sub-category-based featuremodels [1,
16,17,22] by combining it with a hierarchical classifier
ensemble,which takes advantage of the clustering quality
of the deep-feature hierarchy.

• Many confusing data samples can be clustered prop-
erly into sub-categories by taking advantage of inter-
class information, and overall detection accuracy can be
improved by solving simplified sub-problems.

2 System overview

In general, classification performance degrades as the num-
ber of object classes increases [21]. While deployments of
the flat SVMand fully connected neural network are success-
ful for a small or moderate number of object classes [19,23],
detection performance degrades as the number of object cat-
egories increases. Data imbalance is a common phenomenon
due to the increment of noise and variations, contaminating
the image data in the real world. The proposed HFM-driven
detection method aims at providing robust object detection
with a generalization ability. The novelty is the accuracy
improvement based on HCE and HFM in a data-driven man-
ner. HFM, the core of the proposed detection method, is
constituted by a three-level cluster tree consisting of the
super-category, augmented object category, and sub-category
feature models. HFM takes advantage of feature information
of unsupervised super-categories and semantic sub-cate-
gories for semantic object category recognition [23]. The
region proposal algorithm EdgeBoxes is used [18] to extract
the region of interest (ROI). In the learning phase, category
hierarchy can be found by using LTM with extracted fea-
tures from pre-trained CNN. HFM is built for the inter-class
level and intra-class level by being fine-tuned on a hierar-
chical category. HCE is built by training a multi-classifier at
each node of HFM using an SVM ensemble algorithm. The
region compensation model is built using the hierarchical
ridge regression algorithm.

In the detection phase, the pool of augmented object cat-
egories is predicted in terms of HCE subtree hypotheses for
the ROIs generated by the region proposal algorithm. Object
detection is performed based on the hypothesis, followed by
ridge regression and non-maximum suppression similar to
that of Girshick [20]. The scores of an HCE subtree are com-
bined in terms of the super-category, augmented category,
and sub-categories for the hypothesis ROIs. Finally, the post-
processing of non-maximum suppression is executed using
the combined scores and position information, and object
category is determined.

3 Hierarchical feature modeling

The region proposal algorithm EdgeBoxes [18] is employed
to find ROIs from an image, and ROI features are gener-
ated using 16-layer CNN [19,20]. Using normalized ROI
features builds a deep-feature hierarchy HFM that consists
of three different levels: H-level (inter-class), M-level (aug-
mented class), and L-level (intra-class), as shown in Fig. 2.

The root node of HFM has the super-category nodes
as children in the H-level. Each super-category has one or
more augmented object categories as children in theM-level,
which are original or partitioned semantic object classes
according to the inter-class characteristics. Each augmented
object category node has sub-category leaves as children
in the L-level. HCE is built by training the multi-category
classifier at each node of HFM, which is an assembly of
one-versus-all SVMs [21]. One can notice that Girshicks flat-
feature structure [20] is a special case of HFM that only has
the root and entire semantic object categories in the M-level
without augmented categories. This flat HFM structure is
called the flat feature model (FFM). HFM is also thought
of as a generalization of the sub-category-based approaches
[1,16,17,22].

3.1 Latent topic model for category hierarchy

This section introduces an unsupervised approach to learn-
ing a data-driven hierarchical category. For the unsupervised
learning step, a super-category using a latent topic model
[24] is built. As a mixture model, LTM provides a novel way
to represent latent mixture components for grouping data,
which is advantageous for learning hierarchical structures.
In the LTM, the ROIs are represented by the combinations
of latent topics. These learned topics correspond to a super-
category to build a category hierarchy.

For ROI representation, a feature extracted from a deep
convolutional neural network is used. More specifically, the
CNN model is fine-tuned on the training set using a pre-
trained CNN model. Then, fixed-length feature vectors are
extracted from the last fully-connected layer for each ROI.
Extracted features are encoded, quantized, and scaled.

Considering that each ROI is represented by a vector, the
goal is to learn a super-category by fitting a mixture model
on the represented ROIs. In detail, the LTM presents each
ROI in combinations of K topics. Each topic corresponds
to one super-category or a few super-categories. A similar
generative process to that of the original LTM [24] is used.

3.2 Hierarchical feature model

HFM is built using ROI features of the training dataset D
associated with semantic object spaceΩ . HFM is constituted
by the root nodes, super-category nodes, augmented category
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Fig. 2 The proposed object
detection framework based on
the hierarchical deep feature
model (HFM), and hierarchical
classifier ensemble (HCE)

nodes, and sub-leaves. The root of HFM is associated with
the entire feature set D with category space Ω and is con-
nected to the super-category nodes as children. Note that a
semantic object with multiple super-categories is partitioned
into several augmented categories according to the inter-class
characteristics. The concept of an augmented category is
introduced to reduce the effect of ambiguity at the inter-class
level as well as variation at the intra-class level of the orig-
inal semantic object class and can be extended to represent
a multi-label category and occluded semantic object cate-
gories. A super-category node h is associated with training
datasetDh ,which is a subset ofDandhasmultiple augmented
object nodes as children. LTM analysis allows one semantic
object category to belong to several super-categories, since
different objects can share parts with similar appearance or
characteristics. At the M-level, a semantic object category
that belongs to multiple super-categories is divided into mul-
tiple augmented categories. The augmented category m has
a training dataset, denoted by Dm , which is partitioned from
the training dataset Dh . The training set of each augmented
object category is further partitioned into sub-categories at
the low level using the LTM algorithm to minimize the effect
of intra-class variations. The training dataset of sub-category
l is denoted as Dl , which is partitioned from the augmented
training dataset Dm .

3.3 Hierarchical classifier ensemble

The node confidence functions are constituted by multi-
class classifiers, which are built by the assembly of binary
classifiers of the individual child nodes. Confidence scores
are required to keep linear relationships with the expected
prediction accuracies and to increase prediction reliability
with multiple considerations. Let ΩH ,ΩM , and ΩL denote
the spaces of the super-, augmented, and sub-categories,
respectively (Fig. 2). The root has |ΩH | super-categories
as children, super-category h has |ΩM | augmented object
categories, and augmented category m has |ΩL | sub-cate-

gories. At the root is constructing an SVM ensemble that
calculates the confidence score of an ROI used when travers-
ing to a super-category node. |ΩH | binary SVM classifiers
φ1,φ2 , . . . , φ|ΩH | are trained using D at the root node, which
is used by an ROI in deciding super-category nodes. It is not
possible to trust the predictions estimated by binary SVMs
as being used directly for multi-class classification [21,25],
so the confidence functions discussed below are introduced.

Given an ROI r, linear SVM φh for super-category h is
projected to pseudo-probability P(y = h|r) as follows [26]:

P(y = h|r) = 1

1 + exp(α × φh(r) + β)
(1)

where parameters α and β are determined by logistic regres-
sion, as follows [25]:

(α∗β∗) = argmin
α,β

∑
r∈Dh

wy(αTφh(r) + β)

− log(1 + eαT φh(r)+β)

where wi is the weight for the ROI sample, and y is the
corresponding label. Given ROI r, the multi-class prediction
at the root node is begun by deciding the top-scored super-
category node for ROI r in terms of the pseudo-probability,
as follows:

h(1)(r) = arg max
h∈ΩH

P(h|r) (2a)

Let the multi-class margin be defined as follows:

ξ
(1)
h (r) = P(h(1)|r) − max

1≤h≤|ΩH |,h �=h(1)
P(h|r). (2b)

Normalized multi-class margin ϕh is calculated based on the
relationship between the pseudo-prediction P(h(1)|r) and
multi-class margin ξh with the sigmoid function
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ϕ
(1)
h (r) = A + B

1 + exp(−C × ξ
(1)
h (r))

(2c)

where parameters A, B, andC are determined through empir-
ical fitting [21].
The confidence function CSh(r) for the first super-category
prediction h(1) at the root is defined as follows:

CS(1)
h (r) =

√
P(h(1)|r) × ϕ

(1)
h (r) (2d)

The kth confidence function is denoted by

CS(k)
h (r) =

√
P(h(k)|r) × ϕ

(k)
h (r) (2e)

where

h(k) = arg max
h∈{ΩH−h(1)−h(2)...,h(k−1)}

P(h|r)

ξ
(k)
h (r) = P(h(k)|r) − max

1≤h≤|ΩH |,h �=h(1),...,h(k−1)
P(h|r)

and

ϕ
(k)
h (r) = A + B

1 + exp(−C × ξ
(k)
h (r))

.

A super-category node has the set of augmented object
categories, ΩM , which is much smaller than total semantic
object categories N. An SVM ensemble for each super-cat-
egory node is built and calculates the confidence scores for
each augmented object category. At each augmented object
category, an SVM ensemble is built.

|ΩM | binary SVMclassifiersφ′
1,φ

′
2
, . . . , φ′|ΩM | are trained

at a super-category node to decide the best node(s) in the aug-
mented category space,ΩM . Linear SVM φ′

m for augmented
category m is projected to pseudo-probability P(y = m|r),
defined in the following:

P(y = m|r) = 1

1 + exp(α × φ′
m(r) + β)

(3a)

Define the k′th confidence score for each augmented cate-
gory calculated at a super-category node:

CSm(r) =
√
P(m(k′)|r) × ϕ

(k′)
m (r) (3b)

where

ϕ(k′)
m (r) = A′ + B ′

1 + exp(−C ′ × ξ
′(k′)
m (r))

and

ξ ′(k′)
m (r) = P(m(k′)|r) − max

1≤m≤|ΩM |,m �=m(1),...,m(k′−1)
P(m|r).

Train |ΩL | binary SVM classifiers φ′′
1,φ

′′
2
, . . . , φ′′|ΩL | at an

augmented category node to decide the best leaves in sub-
category space ΩL . Similarly, the k′′th confidence score is
defined for each sub-category at an augmented-category node
as follows:

CS(k′′)
l (r) =

√
P(l(k′′)|r) × ϕ

(k′′)
l (r) (4)

where

P(y = l(k
′′)|r) = 1

1 + exp(α′′ × φ′′(r) + β ′′)

ϕ
(k′′)
l (r) = A′′ + B ′′

1 + exp(−C ′′ × ξ
′′(k′′)
l (r))

and

ξ
′′(k′′)
l (r) = P(l(k

′′)|r) − max
1≤l≤|ΩL |,l �=l(1),...,l(k′′−1)

P(l|r).

4 Experiments

The object detector based on HFM with HCE was evaluated
on the PASCAL VOC 2007 and PASCAL VOC 2012 [27]
detection tasks. Each dataset contains thousands of images
of real-world scenes, and the goal is to predict the bounding
boxes of all objects in an image. If a predicted bounding box
overlaps by more than 50% with ground truth, it is consid-
ered a true positive. Sixteen-layer VGG-Net [28] was used as
the system’s baseline. Among the state-of-the-art region pro-
posal algorithms, EdgeBoxes [18]was employed because it is
fast and provides more accurate region proposals. In the first
experiment on PASCAL VOC 2007, we trained the detector
on the trainval set. The second experiment is evaluated PAS-
CAL VOC 2007 with knowledge transfer learning on HFM.
Finally, we compare our method with state-of-art methods
on PASCAL VOC 2012 public leaderboard.

4.1 VOC 2007 results

The experimental results on the PASCAL VOC 2007 dataset
are shown in Table 1. Each method is distinguished in
terms of FFM,HFMwith augmented-category level (M-level
HFM), and HFMwith sub-category level (L-level HFM). All
experiments in Table 1were trained on theVOC2007 trainval
set and were evaluated with mean average precision (mAP)
on a test set using the standard PASCAL evaluation tool [27].
Detection performance compared to a state-of-the-art detec-
tor’s results is shown in Table 1.
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Table 1 Detection results on the PASCAL VOC 2007 test set

Approach Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person mAP (%)

SPPnet VGG16 [19] 73.9 72.3 62.5 51.5 44.4 74.4 73.0 74.4 42.3 73.6 57.7 70.3 74.6 74.3 54.2 63.1

R-CNN VGG16 [23] 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 66.0

Fast R-CNN VGG16 [20] 74.5 78.3 69.2 53.2 36.6 77.3 78.2 62.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 66.9

FFM 74.8 76.5 65.5 54.1 40.0 78.0 78.5 81.7 44.9 74.5 66.8 79.4 81.9 74.6 66.3 67.9

M-level HFM 75.3 83.6 70.6 59.3 42.5 81.3 81.6 84.7 45.1 80.7 69.2 83.2 83.3 76.2 72.0 70.8

L-level HFM 76.6 82.4 74.1 61.4 46.9 83.7 84.4 87.5 48.1 80.6 68.5 84.1 84.4 78.5 73.6 72.3

4.1.1 FFM

FFM is a special type ofHFM that only has the root and entire
semantic object categories without augmented categories.
FFM is used for the feature extractor in the experiment. A
public VGG16 [28] CNN structure was chosen as the base-
line, following the training protocols [20]. To build the FFM,
an ImageNet pre-trainedCNNwas fine-tuned on data (D,Ω)

with 50K iterations at a learning rate of 0.001. After 50K
iterations, the learning rate was decreased by a factor of 10
for fine-tuning with 20K iterations. During FFM fine-tun-
ing, only the weights from conv4_1 to fc7 were fine-tuned,
whereas the ones from conv1_1 to conv3_3 were fixed.

4.1.2 M-level HFM

M-level HFM was built without sub-category level on the
VOC 2007 trainval set. To build a category hierarchy, K top-
ics were set on LTM, finding K-dimensional super-category
distribution θK for each ROI. In this experiment, K was set
as 5, which was selected by a grid search over {1,2,…,9}.
A disjoint HFM H-level can be easily overfitted because of
data sparsity, and the HFM hierarchical structure misleads
some candidates. To overcome the overfitting andmisleading
problems, multiple super-categories were allowed for each

ROI r by determining super-categories iwhere
{
θ ir

}K
i=1 > Tθ

instead of argmaxi θ
i
r . Tθ was empirically determined as 0.3.

To build the HFM, post hoc SVM training was implemented
with hard negative mining [23] for training with a very large
dataset. The HFM was constructed by following Sect. 3.2.
After learning HCE (see Sect. 3.3), feasible HCE subtrees
compete against each other in post-processing to localize
the final object position. In post-processing, hierarchical
ridge regression was adapted, as well as the weighted non-
maximum suppression described in supplementary material.
Table 1 shows significant improvement can be achieved by
adapting HFM with 2.9% from FFM and reached 70.8%.

4.1.3 L-level HFM

L-level HFM was built by considering sub-category level.
After M-level HFM is constructed, sub-categories were dis-

covered by LTM. Therefore, each augmented object category
node at M-level had sub-category leaves as children in the
L-level. Learning process was same as M-level HFM. The
improvement in L-level HFM is 4.4% from FFM. An overall
72.3% mAP was achieved on the VOC 2007 dataset, which
is higher than state-of-the-art methods such as Fast R-CNN
[20], at 66.9%, as shown in Table 1.

4.2 VOC 2007 results with domain adaptation

The potential of themodel for cross-domain transfer learning
was evaluated usingMicrosoft’s CommonObjects inContext
(COCO) 2014 [33] and PASCAL VOC 2007 + VOC 2012
(VOC+) as two domains. First, the following two baselines
were considered without transfer learning.

4.2.1 VOC+

In order to build FFMV OC+, an ImageNet pre-trained CNN
was fine-tuned on data (DV OC+,ΩV OC+) with 50K itera-
tions and a learning rate of 0.001, and then the learning rate
was decreased by a factor of 10 for 20K iterations. After
FFMV OC+ was fine-tuned, HFM was built on VOC+ using
category hierarchy, which was obtained by LTM. All para-
meters were fixed as described in Sect. 4.1. Performance on
the VOC 2007 test of the VOC+ baseline was 75.6%, as
described in Table 2. Performance improvement compared
to fast R-CNN was more dramatically achieved by training
with additional data (from 3.1 to 4.8%). This result is mainly
due to theHFMapproach of constructing a hierarchical struc-
ture, and its ability, which is boosted on a larger dataset.

4.2.2 COCO

Even though the COCO dataset has a different number
of classes compared to VOC, all 80 classes were used to
train the COCO baseline, since VOC can be considered a
subset of COCO. First, FFMCOCOwas constructed, which
was fine-tuned from ImageNet pre-trained CNN on data
(DCOCO ,ΩCOCO ) with 200K iterations and a learning rate
of 0.001. Then, the learning rate was decreased by a factor
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Table 2 Detection results on the PASCAL VOC 2007 test set with an additional training dataset

Approach Training data Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person mAP (%)

Fast R-CNN VOC+ 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 70.0

M-level HFM VOC+ 77.5 79.1 74.5 65.7 61.6 83.0 87.5 87.5 57.4 82.8 71.3 85.7 84.5 78.0 78.8 75.6

M-level HFM COCO 78.2 78.1 73.4 58.6 65.6 84.0 76.9 83.4 57.8 81.8 61.9 76.3 84.5 81.8 82.9 73.9

M-level HFM COCO→ VOC+ 85.5 85.4 76.7 71.8 68.6 87.9 88.7 88.3 66.4 84.1 74.2 85.1 86.7 83.8 85.8 79.7

L-level HFM COCO→ VOC+ 85.9 84.6 78.2 74.7 70.1 88.4 89.0 88.6 66.7 84.4 76.4 86.1 86.5 84.2 86.0 80.4

All methods use VGG16

Table 3 The object detection leaderboard of the PASCAL VOC 2012 test set with additional training data

Approach Training data Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person mAP (%)

M-level HFM COCO 85.3 82.0 71.2 56.6 48.4 82.1 79.5 89.2 46.6 78.2 52.5 87.1 83.5 84.4 80.6 71.0

M-level HFM COCO→VOC+ 87.8 85.0 76.2 62.4 60.7 84.0 83.4 89.9 58.1 79.6 60.9 87.3 83.3 85.0 84.6 76.2

L-level HFM COCO→VOC+ 88.8 85.1 76.8 64.8 61.4 85.0 84.1 90.0 59.9 82.6 61.9 88.5 85.2 85.6 86.9 77.5

LocNet [29] 86.3 83.0 76.1 60.8 54.6 79.9 79.0 90.6 54.3 81.6 62.0 89.0 85.7 85.5 82.8 74.8

HRCNN 85.9 83.9 75.5 60.9 54.5 81.4 79.1 90.6 53.3 79.7 61.6 89.9 86.2 85.8 78.2 74.6

MR-CNN [30] 85.5 82.9 76.6 57.8 62.7 79.4 77.2 86.6 55.0 79.1 62.2 87.0 83.4 84.7 78.9 73.9

HyperNet_VGG [31] 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.9 52.1 86.0 81.7 83.3 81.8 71.4

Fast R-CNN & YOLO [20] 83.4 78.5 73.5 55.8 43.4 79.1 73.1 89.4 49.4 75.5 57.0 87.5 80.9 81.0 74.7 70.7

of 10 for 80K iterations. The same procedure described for
VOC+ was followed. The COCO baseline achieved mAP of
73.9% in Table 2, which is lower than the VOC+ baseline
because of the domain difference.

4.2.3 COCO→VOC+

The effectiveness of knowledge transfer learning on HFM
was verified. Instead of using the same domain to build
a category hierarchy, an outside domain was used for
prior knowledge. First, FFMCOCO was used for the COCO
baseline. Second, a category hierarchy was constructed
using LTM with FFMCOCO . Then VOC hierarchical cat-
egory was obtained by transferring appearance from the
COCO dataset. Finally, FFMCOCO was fine-tuned with data
(DV OC+,ΩV OC+) to build the HFM. Fine-tuning options
were set at 50K iterations at a learning rate of 0.001, and
then, learning rate was decreased by a factor of 10 for 20K
iterations. Experiment parameters were the same as those
in Sect. 4.1. Table 2 shows that knowledge-transfer learning
based on HFM performed better than the baselines for both
COCO and VOC+ by 80.4%.

4.3 VOC 2012 results

In this experiment, detection performance on the VOC 2012
test set is evaluated. For final results on theVOC2012dataset,
CNN was fine-tuned on the COCO trainval set and a domain
adaptation method was conducted on the VOC 2012 trainval
set, which adapts the same procedure described in Sect. 4.2.

Table 3 comparesHFM to the entries in theVOC2012 leader-
boards, usingVGG16as their baseline and additional training
data. Even without using domain data, HFM is one of the
high-performing detection methods, at 71.0%. After fine-
tuning via the domain adaptation approach and constructing
L-level HFM, HFM achieved a 77.5% mAP, which is the
state-of-the-art in the VOC 2012 test results.

5 Conclusion

This paper presented a novel data-driven hierarchical object-
detection framework. The framework surpasses the perfor-
mance of state-of-the-art results on PASCAL VOC 2007
and VOC 2012 datasets. Deep features were partitioned by
building a hierarchical deep-feature model HFM via an LTM
algorithm. A classifier was assembled at each node of the
HFM and constituted HCE. A future research direction is to
let go of the optimization problem about HFM structure to
determine the optimal hierarchical structure via latent SVM.
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