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Abstract This paper considers the complex mixing matrix
estimation in under-determined blind source separation prob-
lems. The proposed estimation algorithm is based on single
source points contributed by only one source. First, the prob-
lem of complex matrix estimation is transformed to that of
real matrix estimation to lay the foundation for detecting sin-
gle source points. Secondly, a detection algorithm is adopted
to detect single source points. Then, a potential function clus-
tering method is proposed to process single source points
in order to get better performance. Finally, we can get the
complex mixing matrix after derivation and calculation. The
algorithm can estimate the complex mixing matrix when the
number of sources is more than that of sensors, which proves
it can solve the problem of under-determined blind source
separation. The experimental results validate the efficiency
of the proposed algorithm.
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1 Introduction

In recent years, as a hot issue of many fields, blind source
separation (BSS) techniques have been applied to speech
signal processing [1], biomedical engineering [2], array sig-
nal processing [3], mechanical fault diagnosis [4], image
processing [5], and so on. BSS can be classified into nor-
mal blind source separation (NBSS), overdetermined blind
source separation (OBSS) and under-determined blind
source separation (UBSS) based on the number of sources
and sensors. In NBSS, the number of sources is equal to that
of sensors. In OBSS, there are more sensors than sources. In
UBSS, there are less sensors than sources. Independent com-
ponent analysis (ICA) [6,7] is a main method to handle BSS
problems. The ICA algorithms solving the OBSS problems
and those solving the UBSS problems are called overdeter-
mined ICA and under-determined ICA, respectively. ICA is
always applied to solve OBSS problems andNBSS problems
[8–13] that include image processing, biomedical application
and speech recognition. ICA is also applied to UBSS prob-
lems [14–16]. However, ICA is usually unsatisfactory for
solving UBSS problems, so the research on UBSS receives
more attention. As the most representative method of UBSS,
sparse component analysis (SCA) [17,18] can yield better
separation results than traditional ICA. The SCA method
includes two steps: mixing matrix estimation and sources
recovery. Themixingmatrix estimation is the basis of sources
recovery. In other words, the estimation precision of the
mixing matrix has an important effect on sources recovery.
Therefore, the mixing matrix estimation gets particularly
important. In SCA methods, the performance is up to the
sparsity of signals. A signal is sparse if only a small number
of samples have valid values and other samples are nearly
zero. However, many signals are not sparse in real life. We
must make transformations such as short-time Fourier trans-
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form (STFT) [19,20] and wavelet transform (WT) [21] to
make signals sparser. This paper focuses on complex mix-
ing matrix estimation of UBSS problems by utilizing the
sparse time-frequency (TF) representations that are obtained
by STFT.

Manymethods have been proposed to estimate the mixing
matrix. In these algorithms, the algorithms based on single
source points where only one source occurs can improve the
accuracy of estimating the mixing matrix and then receive
more attention. Some scholars [22–26] detected single
source points with various methods and then estimated the
mixing matrix by utilizing single source points. Xu [27]
extended the algorithm of single source points to images
and estimated the mixing matrix faster and more accurately.
The above methods based on single source points can obtain
good performance for estimating themixingmatrix, and they
are all applicable to UBSS. However, these methods aim
at real mixing matrix estimation. In other words, they are
invalid for estimating the complex mixing matrix. If the mix-
ing model of BSS is the instantaneous mixing model, the
mixing matrix is real. However, if the mixing model is the
anechoic mixing model, the mixing matrix is complex. The
instantaneous mixingmodel is sometimes restrictive, and the
anechoic mixing model is closer to the actual application.
Some algorithms consider the complex mixing matrix esti-
mation. The algorithm in Li et al. [28] estimated the complex
mixing matrix with more sources than sensors. It utilized the
probability density distribution of single source points and
the K -means clustering algorithm. In [29], themixingmatrix
was estimated based on single source points and agglomera-
tive hierarchical clustering. These two algorithms proposed
the similar and specific model about single source points.
In this paper, we propose a more general model to transform
complexmixingmatrix estimation to real mixingmatrix esti-
mation. As a result, all detection algorithms of single source
points for real matrix estimation can be applied. What is
more, we combine the single source points detection with
the potential function clustering algorithm to improve the
algorithm performance.

The rest of this paper is organized as follows. In Sect. 2,
we introduce the basicmodel of ourmethod. Our algorithm is
derived in Sect. 3. Section 4 describes the simulation results
and analysis, and conclusions are drawn in Sect. 5.

2 The basic model

In the algorithms described in Li et al. [28] and Zhang et al.
[29], the mixing matrix is estimated when the antenna array
is the uniform linear array. In order to present our algorithm
better and compare with other algorithms more intuitively,
we take the uniform linear array as the research priority.

Fig. 1 Schematic of the uniform linear array

This paper assumes that sources come from the far-
field of the array. Assume there are M sources s(t) =
[s1(t), s2(t), . . . , sM (t)]T and N mixed signals x(t) =
[x1(t), x2(t), . . . , xN (t)]T. si (t)(i = 1, . . . , M) denotes the
i th source signal at the time instant t . xi (t)(i = 1, . . . , N )

denotes the i th mixed signal at the time instant t . M is larger
than N . The linear mixing model of UBSS can be described
as

x(t) = Hs(t) (1)

where the mixing matrix H can also be written as

H =

⎡
⎢⎢⎢⎣

h11 h12 · · · h1M
h21 h22 · · · h2M
...

... · · · ...

hN1 hN2 · · · hNM

⎤
⎥⎥⎥⎦ (2)

The distance between two sensors is d, and the angle between
the mth source and the normal is θm(−π/2 < θm < π/2).
The schematic of the uniform linear array is shown in Fig. 1.

If the first sensor is chosen as the reference, the delay from
the nth sensor to the first sensor for the mth source can be
denoted as

Δτm = 2π(n − 1)d sin θm

λw
(3)

where λ is the signal wavelength and w is the signal fre-
quency. If the complex expression of the mth source is
denoted as sm(t) = am(t)e j[wt+ϕ(t)], themth source received
by the nth sensor can be written as

xnm(t) = Hnmsm(t + Δτm)

= Hnmam(t + Δτm)e j[wt+wΔτm+ϕ(t+Δτm )] (4)

where Hnm is called amplitude dis-accommodation factor. If
we assume that the modulation components am(t) and ϕ(t)
are narrow-band signals and take no account of the effect of
the amplitude fading, the above formula can be simplified as

xnm(t) ≈ am(t)e j[wt+wΔτm+ϕ(t)]

= am(t)e j[wt+ϕ(t)] · e jwΔτm

= sm(t) · e jwΔτm

= sm(t) · e j 2πdλ
(n−1) sin θm

= hnmsm(t) (5)
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Based on the above formula, the mixed signal that includes
M sources in the nth sensor can be denoted as

xn(t) =
M∑

m=1

xnm(t) =
M∑

m=1

hnmsm(t) (6)

It can also be written with the matrix form

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...

xN (t)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 · · · 1

e j
2πd
λ

sin θ1 · · · e j
2πd
λ

sin θM

... · · · ...

e j
2πd
λ

(N−1) sin θ1 · · · e j
2πd
λ

(N−1) sin θM

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

s1(t)
s2(t)

...

sM (t)

⎤
⎥⎥⎥⎦

(7)

For the uniform linear array, the correspondingmixingmatrix
is

H =

⎡
⎢⎢⎢⎢⎣

1 · · · 1

e j
2πd
λ

sin θ1 · · · e j
2πd
λ

sin θM

... · · · ...

e j
2πd
λ

(N−1) sin θ1 · · · e j
2πd
λ

(N−1) sin θM

⎤
⎥⎥⎥⎥⎦

(8)

In order to guarantee that there is no ambiguity in DOA
estimation, the assumption d ≤ λ/2 is usually satisfied.
Meanwhile, the angle measurement error gets lower when
d gets larger. Therefore, d is usually equal to λ/2. Besides,
the articles [28,29] assume d as λ/2. In order to compare our
algorithm with other algorithms, d is set to λ/2 in this paper.
Equation (8) can be simplified as

H =

⎡
⎢⎢⎢⎣

1 · · · 1
e jπ sin θ1 · · · e jπ sin θM

... · · · ...

e jπ(N−1) sin θ1 · · · e jπ(N−1) sin θM

⎤
⎥⎥⎥⎦ (9)

3 The proposed algorithm

In order to make signals sparser, STFT is adopted. The STFT
of the nth mixed signal is as follows

X ′
n(t, f ) =

∫ ∞

−∞
xn(τ )h(t − τ)e− j2π f τdτ (10)

where h( ) denotes thewindow function. Similarly, the STFT
of the mth source signal is denoted as

Sm(t, f ) =
∫ ∞

−∞
sm(τ )h(t − τ)e− j2π f τdτ (11)

Applying STFT on Eq. (1), we can obtain the following for-
mula

X′(t, f ) = HS(t, f ) (12)

where X′(t, f ) = [X ′
1(t, f ), X ′

2(t, f ), . . . , X ′
N (t, f )]T and

S(t, f ) = [S1(t, f ), S2(t, f ), . . . , SM (t, f )]T refer to the
STFT coefficients of mixtures and sources, respectively.

Two assumptions need to be satisfied like other UBSS
algorithms.Onone hand, any N×N sub-matrix of themixing
matrix should be of full rank. Even if we only estimate the
mixing matrix, the condition that any two columns of the
mixing matrix are uncorrelated is also needed. On the other
hand, some TF points where only one source occurs must
exist.

We consider two mixed signals that include the mixed
signal x1(t) received by the first sensor and the mixed signal
xn(t) received by the nth sensor. Combining Eq. (7), we can
obtain

[
X ′
1(t, f )

X ′
n(t, f )

]

=
[

1 · · · 1
e jπ(n−1) sin θ1 · · · e jπ(n−1) sin θM

]
⎡
⎢⎢⎢⎣

S1(t, f )
S2(t, f )

...

SM (t, f )

⎤
⎥⎥⎥⎦

(13)

If ψm = π(n − 1) sin θm(m = 1, 2, . . . , M) is assumed, Eq.
(13) can be simplified as

[
X ′
1(t, f )

X ′
n(t, f )

]
=

[
1 · · · 1

e jψ1 · · · e jψM

]
⎡
⎢⎢⎢⎣

S1(t, f )
S2(t, f )

...

SM (t, f )

⎤
⎥⎥⎥⎦ (14)

Because the above mixing matrix is complex, most algo-
rithms based on single source points are not applicable. In
other words, the algorithms cannot present the linear clus-
tering feature. Therefore, the goal of this paper is getting
the linear clustering feature through transformation and then
estimating the mixing matrix.

A matrix T is denoted as

T =
[
e jb 1
1 e jb

]
(15)
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where b is an angle. Utilizing Eqs. (14) and (15), we obtain
the following formula

[
X1(t, f )
Xn(t, f )

]
= T

[
X ′
1(t, f )

X ′
n(t, f )

]
=

[
e jb + e jψ1 · · · e jb + e jψM

1 + e j (b+ψ1) · · · 1 + e j (b+ψM )

]

×[
S1(t, f ) · · · SM (t, f )

]T
(16)

After this procedure, the new STFT coefficients of mixtures
X(t, f ) = [X1(t, f ), X2(t, f ), . . . , XN (t, f )] are obtained.
When only one source s1 occurs at some TF point

(
tp, f p

)
,

Eq. (16) can be denoted as

[
X1(tp, f p)
Xn(tp, f p)

]
=

[
e jb + e jψ1

1 + e j (b+ψ1)

]
S1(tp, f p) (17)

From the above formula, we can get

Xn(tp, f p)

X1(tp, f p)
= [1 + e j (b+ψ1)]S1(tp, f p)

(e jb + e jψ1)S1(tp, f p)
= [1 + e j (b+ψ1)]

(e jb + e jψ1)

= [1 + e j (b+ψ1)]e− j (b+ψ1)/2

(e jb + e jψ1)e− j (b+ψ1)/2

= e j (b+ψ1)/2 + e− j (b+ψ1)/2

e j (b−ψ1)/2 + e− j (b−ψ1)/2

= [e j (b+ψ1)/2 + e− j (b+ψ1)/2]/2
[e j (b−ψ1)/2 + e− j (b−ψ1)/2]/2 = cos b+ψ1

2

cos b−ψ1
2

(18)

Because the above ratio is real, two equations can be obtained
based on Eq. (18)

Re[X(tp, f p)] =
{
Re[X1(tp, f p)]
Re[Xn(tp, f p)]

}

=
[

Re[X1(tp, f p)](
cos b+ψ1

2 / cos b−ψ1
2

)
Re[X1(tp, f p)]

] (19)

Im[X(tp, f p)] =
{
Im[X1(tp, f p)]
Im[Xn(tp, f p)]

}

=
[

Im[X1(tp, f p)](
cos b+ψ1

2 / cos b−ψ1
2

)
Im[X1(tp, f p)]

] (20)

Utilizing the above two equations and forcing the sign of the
first element of the two vectors to be positive, we can get

Re[X(tp, f p)]∥∥Re[X(tp, f p)]
∥∥ = Im[X(tp, f p)]∥∥Im[X(tp, f p)]

∥∥ (21)

Consider some TF point (tq , fq) where two sources s1 and
s2 occur. If we want to realize

Re[X(tq , fq)]∥∥Re[X(tq , fq)]
∥∥ = Im[X(tq , fq)]∥∥Im[X(tq , fq)]

∥∥ (22)

the following conditions must be satisfied

Re[S1(tq , fq)]
Im[S1(tq , fq)] = Re[S2(tq , fq)]

Im[S2(tq , fq)] (23)

sgn{Re[S1(tq , fq)]} = sgn{Im[S1(tq , fq)]} (24)

sgn{Re[S2(tq , fq)]} = sgn{Im[S2(tq , fq)]} (25)

These conditions are so strict that the probability of Eq. (22)
is very low. Meanwhile, when three or more sources occur
at some TF point, the probability of similar equations will
get lower. For identifying single source points, the authors in
[26] develop a rule as

∣∣∣∣∣
Re[X(tq , fq)]∥∥Re[X(tq , fq)]

∥∥ − Im[X(tq , fq)]∥∥Im[X(tq , fq)]
∥∥
∣∣∣∣∣ < ε1 (26)

where ε1 is a threshold value that is close to 0. After single
source points detection, the points that are close to the origin
still have bad effect on estimation. In order to improve per-
formance, these points should be removed if they satisfy the
following formula

‖Re[X(t, f )]‖ < ε2 (27)

where ε2 is a threshold value. After above procedures, we
use the residual points to estimate the mixing matrix. In this
paper,we adapt a potential function clustering algorithm.The
number and the set of the residual single source points are
set to T and B, respectively. We first normalize the data in
the set B and then define the potential function as

J (bk) =
T∑
j=1

[
exp

(
βcos2(̂bk,b j )

)]γ

(28)

where bk and b j are the elements of the set B, ̂bk,b j denotes
the included angle of bk and b j , β and γ are the parameters
that adjust the attenuation of the objective function at the
non-maximum points. bk can be denoted as (bk1, bk2), so we
can calculate the potential function values of different bk and
get the three-dimensional scatter plot of J (bk). In the figure,
there are some peaks occurring and the number of the peaks
is equal to that of sources. The amplitude of each point is
P(k)(k = 1, . . . , T ). Because of the effect of noises, there
will be some false peaks. In order to remove these false peaks,
the normalization is first adopted as follows

P̂(k) = P(k)/max[P(k)] (29)

where max[ ] denotes the maximum and P̂(k) is the normal-
ization amplitude. Then, the smooth function is utilized and
defined as
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pk = [P̂(k − 2) + 2 ∗ P̂(k − 1)

+ 4 ∗ P̂(k) + 2 ∗ P̂(k + 1) + P̂(k + 2)]/10 (30)

where pk is the new amplitude. In order to get the locations
of the peaks accurately, the following rules are set

{
pk−1 < pk and pk+1 < pk
pk−2 < pk and pk+2 < pk

(31)

Based on the above rules, corresponding peak locations
help us find the corresponding bk that are considered to be
clustering centers. After these procedures, we get M cluster-
ing centers (Ym, Zm) (1 ≤ m ≤ M). Combining with Eq.
(18), we obtain the following formula

Ym
Zm

= cos b+ψm
2

cos b−ψm
2

(32)

According to the above equation, we need to exchange posi-
tions of the numerator and the denominator if cos[(b −
ψm)/2] is equal to 0. In order to calculate simply, we set
b as π/2. Then, Eq. (32) can be simplified as

Ym
Zm

= tan

(
π

4
− ψm

2

)
(33)

Based on the above description, ψm = π(n − 1) sin θm(1 <

n ≤ N ) and −π/2 < θm < π/2 are known. For a uniform
linear array, the least number of sensors is 2. Meanwhile,
only utilizing two sensors can help us estimate the mixing
matrix. Therefore , we can only set n as 2 and obtain

ψm = π sin θm (34)

According to Eqs. (32) and (33), we can know

−π

4
<

π

4
− ψm

2
<

3π

4
(35)

Through the calculation, ψm is denoted as

ψm =
⎧⎨
⎩

π
2 − 2 arctan

(
Ym
Zm

)
if Ym

Zm
> −1

− 3π
2 − 2 arctan

(
Ym
Zm

)
if Ym

Zm
< −1

(36)

Based on Eq. (34) and the range of θm , θm is calculated as

θm = arcsin(ψm/π) (37)

After getting all θm , we can get the final mixing matrix.
In this paper and some other papers, there is permutation

ambiguity in the algorithms of estimating the mixing matrix.
However, sources recovery is not affected by this permutation
ambiguity.

The steps of our algorithm are as follows:

Step 1 Transform the problem of complex mixing matrix
estimation to the problem of real mixing matrix estima-
tion.
Step 2 Detect single source points and remove the points
that are close to the origin.
Step 3 Get the clustering centers through the potential
function clustering algorithm.
Step 4 Calculate the corresponding angles and then get
the mixing matrix.

4 Simulation results and analysis

In the simulation, four females speech sources are chosen
from the Web page of SiSEC2011. The angles of sources
and the normal are −π/12, −π/36, 5π/36 and π/18. The
number of sampling points is 80,000. The STFT size is 1024.
The overlapping is 256. The Hanning window is chosen as
theweighting function. The signals are received by a uniform
linear array whose sensors interval is the half of the wave-
length. The number of the sensors is 2, so the mixing matrix
H can be written as

H =

⎡
⎢⎢⎣

1 e jπ sin(−π/12)

1 e jπ sin(−π/36)

1 e jπ sin(5π/36)

1 e jπ sin(π/18)

⎤
⎥⎥⎦

T

Innoiseless case, the scatter plot basedon the above equations
is shown in Fig. 2.

It is shown that the points present obvious clustering prop-
erty, but some multiple source points affect this property.
Direct clustering will lead to bad performance because of the
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Fig. 2 Scatter plot before detecting single source points
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Fig. 3 Scatter plot after detecting single source points and eliminating
the points that are close to the origin
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Fig. 4 Scatter plot through the normalizing procedure and the sign
procedure before detecting single source points

influence ofmultiple source points. Themeasure of detecting
single source points aims at eliminating the multiple source
points and getting better performance. Meanwhile, eliminat-
ing the points that are close to the origin has good effect on
improving the performance. Figure 3 is the scatter plot after
detecting single source points and eliminating the points that
are close to the origin.

It is shown from Fig. 3 that the points that affect the per-
formance have been removed. In order to lay the foundation
for the clustering process, we make the normalizing proce-
dure and force the sign of the first element of the normalized
point to be positive for the points in Figs. 2 and 3. After these
procedures, the scatter plot comparison before detecting sin-
gle source points and after detecting single source points is
shown in Figs. 4 and 5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
1

X
2

Fig. 5 Scatter plot through the normalizing procedure and the sign
procedure after detecting single source points
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Fig. 6 Three-dimensional plot of J (bk)

From Figs. 4 and 5, It is easy to find the superior-
ity of detecting single source points and eliminating the
points that are close to the origin. After above proce-
dures, necessary clustering is needed. A potential function
clustering algorithm is utilized to process these points
in this paper. Figure 6 is the three-dimensional plot of
J (bk).

As shown in Fig. 6, several peaks occur and the number
of the peaks is equal to that of sources. The locations of the
peaks correspond to the clustering centers. Finally, through
this clustering algorithm, the final complex mixing matrix
can be estimated as

H̃ =

⎡
⎢⎢⎣
1 0.6946 − 0.7194i
1 0.9637 − 0.2671i
1 0.2431 + 0.9700i
1 0.8542 + 0.5200i

⎤
⎥⎥⎦

T
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The original mixing matrix is as follows

H =

⎡
⎢⎢⎣
1 0.6872 − 0.7264i
1 0.9627 − 0.2704i
1 0.2407 + 0.9706i
1 0.8549 + 0.5189i

⎤
⎥⎥⎦

T

Comparing H̃ with H, we can know that the proposed
algorithm is effective and accurate in the noiseless situation.

To demonstrate that this algorithm is also suitable for other
sources and other mixing matrix, three speech utterances are
selected referring to Reju et al. [24]. The angles of sources
and the normal are −π/18,π/9 and π/36. The other condi-
tions remain unchanged. The original mixing matrix and the
estimated mixing matrix are as follows.

H =
⎡
⎣
1 0.8549 − 0.5189i
1 0.4762 − 0.8793i
1 0.9627 + 0.2704i

⎤
⎦
T

H̃ =
⎡
⎣
1 0.8570 − 0.5154i
1 0.4732 − 0.8809i
1 0.9625 + 0.2714i

⎤
⎦
T

According to H and H̃, we can know that the algorithm is
also effective for other sources.

In the noisy situation, an index must be chosen in order
to measure the performance of the proposed algorithm and
other algorithms. Mean square error (MSE) is suitable for
these purposes. It is described as

MSE = 1

M

M∑
m=1

(
θm − θ̃m

)2
(38)

where θ̃m is the estimated value of θm .
Gaussianwhite noise is used to demonstrate the robustness

of the proposed algorithmand the comparison algorithms that
include Li’s algorithm in [28] and Zhang’s algorithm in [29].
In this paper, ε1 is 0.02 and ε2 is 0.1. All parameters of the
comparison algorithms are selected based on the references.
The average results of 100 Monte Carlo trials about three
algorithms are shown in Fig. 7.

From Fig. 7, we can know that our algorithm has better
performance than the comparison algorithms.

5 Conclusions

In this paper, a new algorithm is proposed to estimate
the complex mixing matrix in the UBSS problem. The
algorithms based on single source points can get good perfor-
mance in the estimation of the real mixing matrix. However,
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Fig. 7 Performance comparison of the proposed algorithm with other
algorithms

the detection method of single source points cannot be
directly applied to the estimation of the complex mixing
matrix. In this paper, we first transform complex mixing
matrix estimation to real mixing matrix estimation through
modeling and calculating. Following that, a detection algo-
rithm of single source points is adopted to get the single
source points and remove the points that are close to the ori-
gin. Then, we propose a potential function clustering process
in order to get better clustering results. Finally, the complex
mixingmatrix is obtained through derivation and calculation.
The simulation experiments show efficiency and practicabil-
ity of the proposed algorithm.Meanwhile, they show that our
algorithm owns higher accuracy than other algorithms. The
paper is about the estimation problem of the complex mixing
matrix. The problem belongs to the anechoic mixing model
of BSS. The research of this mixing model is meaningful and
promising.
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