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Abstract In this article, a fast context-sensitive threshold
selection technique is presented to solve the image segmen-
tation problems. In lieu of histogram, the proposed technique
employs recently defined energy curve of the image. First,
the initial thresholds are selected in the middle of two con-
secutive peaks on the energy curve. Then based on the cluster
validity measure, the optimal number of potential thresholds
and the bounds where the optimal value of each potential
threshold may exist are determined. Finally, genetic algo-
rithm (GA) is employed to detect the optimal value of each
potential threshold from their respective defined bounds. The
proposed technique incorporates spatial contextual informa-
tion of the image in threshold selection process without
loosing the benefits of histogram-based techniques. Compu-
tationally it is very efficient. Moreover, it is able to determine
the optimal number of segments in the input image. To
assess the effectiveness of the proposed technique, the results
obtained are compared with four state-of-the-art methods
cited in the literature. Experimental results on large num-
ber of images confirmed the effectiveness of the proposed
technique.
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1 Introduction

Image segmentation plays an important role in image analy-
sis and computer vision. It is a process of partitioning an
image into several non-overlapping, homogenous regions
containing similar objects. In the literature, there exist several
techniques to solve image segmentation problems, namely
histogram thresholding, edge detection, clustering and so
on [13]. If objects present in the image are distinguishable
by their gray values, then the histogram of the image may
have many peaks to represent different objects. The potential
thresholds can be found at the valley regions of the histogram
by applying thresholding technique. Automatic detection of
these thresholds is one of the major challenge in the thresh-
olding techniques. Due to the advantages of smaller storage
space, fast processing speed and ease in manipulation, his-
togram thresholding has drawn a lot of attention in many
applications [15,20]. A survey of various thresholding tech-
niques and their applications can be found in [17].

Histogram thresholding techniques can be divided into
bi-level [2,8–10,12,21] and multilevel [1,3,5,23], depend-
ing on the number of thresholds required to be detected.
Otsu’smethod [12] is one of the popular bi-level thresholding
technique that selects the optimal threshold by maximizing
the between class variance. The minimum error thresholding
presented in [10] selects the optimal threshold based on the
assumption that the object and background pixels are nor-
mally distributed. In [9], the optimal threshold is determined
bymaximizing the entropy of the object and background pix-
els. Bi-level histogram thresholding methods based on fuzzy
sets theory are presented in [2,8,21]. In [23], a multilevel
thresholding method for automatic image segmentation is
presented. A fast multilevel thresholding based on low-pass
and high-pass filter is proposed in [3]. Multilevel threshold-
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ing methods based on optimization techniques are found in
[1,5].

The aforementioned thresholding techniques are based on
one-dimensional (1D) histogram of the image. Histogram-
based thresholding techniques are easy to implement and
have low computational burden. However, they do not
take into account the spatial contextual information in
thresholds selection process. To mitigate this limitation,
two-dimensional histogram [16], two-dimensional direction
histogram [24], gray level spatial correlation histogram [18]
and gray level gradient magnitude histogram [22] have been
proposed. Although these techniques produced improved
results but lost the basic advantages of 1D histogram-based
thresholding techniques.

In this article, a fast context-sensitive multilevel thresh-
old selection technique is presented. To incorporate spatial
contextual information in threshold selection process, the
proposed technique employs recently defined 1D energy
curve [14] of the image. The energy curve has the similar
characteristics as 1D histogram of the image. The proposed
technique has several advantages: (i) it is context sensitive,
(ii) computationally less demanding, (iii) preserve the advan-
tages of 1D histogram-based thresholding techniques (such
as smaller storage space, fast processing speed and ease in
manipulation) and (iv) able to determine the optimal number
of segments in the image without expert knowledge.

The rest of this paper is organized as follows. The pro-
posed technique is presented in Sect. 2. Section 3 provides
the detailed description of the experimental settings and the
results obtained on the considered images. Finally, Sect. 4
draws the conclusion of this work.

2 Proposed technique

The framework of the proposed technique is presented in
Fig. 1. It consists of three steps: (1) initial thresholds selec-
tion, (2) detection of optimumnumber of potential thresholds
and (3) detection of optimal value of each potential threshold.
Each of these step is elucidated next.

2.1 Initial thresholds selection

Histogram does not take into account the spatial contextual
information of the image. To incorporate spatial contextual
information in threshold selection process, the energy curve
of the image defined in [14] is used here.

Let I = {li j , 1 ≤ i ≤ m, 1 ≤ j ≤ n} be an image of
size m × n where li j is the gray value of the image I at pixel
position (i, j). The energy value El of the image I at gray
value l is computed as:

Input the original image.

 Generate the energy curve of the image. 

      Obtain the mid-points of consecutive peaks 
of the energy curve as initial thresholds. 

Select optimum number of potential 
thresholds using cluster validity measure.

Determine the optimal value of each potential
     threshold within its defined bounds by using GA.

 Segment the input image with the optimal thresholds.

    Determine the bounds of each potential 
threshold using neighbouring peaks.

Fig. 1 Framework of the proposed technique

El = −
m∑

i=1

n∑

j=1

∑

pq∈N2
i j

bi j .bpq + C (1)

where Bl = {bi j , 1 ≤ i ≤ m, 1 ≤ j ≤ n} such that bi j = 1
if li j > l; else bi j = −1. N 2

i j represents the second-order
neighbor pixels of the pixel at spatial position (i, j) and C
is a constant that ensures the energy value El > 0. For more
details, the reader may refer [14].

Like histogram, the energy curve of the image also include
peaks, which can be separated into number of modes. Each
mode is expected to correspond to a region, and there exists
a valley between any two adjacent modes. Since the energy
curve is generated by taking into an account the spatial con-
textual information of the image, it is smoother and has better
discriminatory capability as compared to the histogram of
the image. Figure 2 shows the original House image, its his-
togram and energy curve. From these figures, one can see
that the energy curve of the image is smoother than the his-
togram of the image; hence, the number of peaks (as well as
valleys) that exist in the energy curve is lower than that in the
histogram of the image. Thus, energy curve may be a better
choice for suitable threshold selection than the histogram not
only because of the inclusion of spatial contextual informa-
tion but also for the quick selection of optimal number of
potential thresholds.

The energy curve-based segmentation technique pre-
sented in [14] is unable to detect optimal number of segments
of the input image. The technique presented in [19] solves
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Fig. 2 a Original House image, b histogram and c energy curve. The
circles represent the peaks (local maxima) of the curves

this problemby employing concavity analysis. Since concav-
ity analysis technique skip some valleys of the energy curve,
it may fail to detect the optimal number of potential thresh-
olds. To mitigate these limitations, a novel initial threshold
selection technique is proposed as follows:

Let E be the energy curve of an image defined over the
set of gray level [0, L]. Consider the subset of E say S
defined over [k1,k2] such that E(k1) and E(k2) are the first
and last nonzero values of the energy curve E , respectively.
Let P = {p0, p1, . . . , pn−1} be the set of n peaks exist in S.
Then the curve S can be partition into n + 1 regions, namely
{(k1, p0), (p0, p1), . . . , (pn−1, k2)}, where each region may
contain a threshold to distinguish different objects present in
the image. In the proposed technique, the possible n+1 initial
thresholds are defined by taking the midpoint gray value of
each partition. The number of initial thresholds obtained by
this method may be larger than the number of objects present
in the image. The method to select the optimum number of
potential thresholds and their respective bounds where the
optimal value of each potential threshold may exist is pre-
sented in the next subsection.

2.2 Detection of optimum number of potential
thresholds

In this subsection, a novel technique based on cluster validity
measure is proposed to detect the optimal number of potential
thresholds. The optimal number of potential thresholds are
selected from the list of initial thresholds obtained from the
energy curve. It is agglomerative in nature. The proposed
technique exhaustively merge two adjacent modes to select
optimal number of potential thresholds with the help of a
validity measure called Davies–Boulding (DB) index [4]. It
is a function of the ratio of the sum of within-object scatter
to between object separations. Let ω1, ω2, ω3, . . . , ωk be the
k objects of a segmented image separated from each other
by defining thresholds t1, t2, t3, . . . , tk−1, where t1 < t2 <

t3 < · · · < tk−1. Thus, the pixels of the image whose gray
values are in the range [ti−1ti ] construct the object ωi of the
segmented image. The DB index of the segmented image is
computed as:

DB = 1

k

k∑

i=1

Ri

Ri = max
j=1,...,k,i �= j

{Ri j }

Ri j = σ 2
i + σ 2

j

d2i j
. (2)

where σ 2
i and σ 2

j are the variances of object ωi and ω j ,

respectively, and d2i j is the distance between centers of object
ωi and ω j . The gray values of the pixels belong to an object
are used to compute variance and center of that object.
Smaller the DB value, better is the segmentation as a low
scatter and a high distance between object gives small values
of Ri j .

Let Tk = {t1, t2, . . . , tk} be the set of k initial thresholds
obtained from the energy curve. To determine the optimal
number of objects present in the image following steps are
taken into an account: First, DB index is computed by taking
into account all the k thresholds. Then at a time by drop-
ping single threshold from Tk , k − 1 subsets each containing
k−1 thresholds are generated along with their respective DB
index values. From these k−1 subsets, the subset denoted as
Tk−1 that producedminimumDB index is selected for further
analysis. The same procedure is repeated to obtain another
subset of Tk−1 denoted as Tk−2 that contain k − 2 thresh-
olds with lowest DB index value. The process is repeated
until the subset T1 consisting of single initial threshold is
obtained. After the computation of Tk, Tk−1, Tk−2, . . . , T2,
and T1 along with their corresponding DB index values, the
subset Ti (i = 1, 2, . . . , k) associatedwith smallest DB index
is chosen to select the optimal number of potential thresholds.
For theHouse image, different subsets of potential thresholds
generated by the proposed technique are shown in Table 1.
Since the subset T4 correspond to the lowest DB index value,
the optimal number of potential thresholds is determined as

Table 1 Different subsets generated by the proposed technique for the
House image

Subsets Thresholds DB index

T9 20, 40, 66, 90, 114, 140, 172, 202, 227 0.1892

T8 20, 40, 66, 90, 114, 140, 172, 227 0.1391

T7 20, 40, 90, 114, 140, 172, 227 0.1245

T6 20, 40, 90, 140, 172, 227 0.1111

T5 20, 40, 90, 172, 227 0.0974

T4 20, 90, 172, 227 0.0928

T3 20, 172, 227 0.0961

T2 172, 227 0.0971

T1 172 0.1248

The optimal number of potential thresholds selected by the proposed
technique are represented in bold
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Fig. 3 Potential thresholds t1, t2, t3 and t4 of the House image. The
gray region associatedwith each potential threshold represents the range
in which the optimal value can be obtained

Fig. 4 Convergence graph of the House image

4 with the initial thresholds t1 = 20, t2 = 90, t3 = 172 and
t4 = 227.

Since the initial thresholds are assumed as the middle of
every two adjacent peaks of the energy curve, the value of
each potential threshold selected may not be optimal. The
optimal value of each potential threshold may lie any where
within the range of two adjacent peaks to which it belongs.
Thus, to define the bounds of each potential threshold where
its optimal value may exist, the nearest left and right peaks
associated with a threshold are considered as its lower and
upper bound, respectively. Figure 3 shows the f our potential
thresholds of the House image determined using the afore-
mentioned technique and their respective regions where the
optimal thresholds can be obtained.

2.3 Detection of optimal potential thresholds

To find the optimal (or near optimal) value of each potential
threshold within their defined range, GA [6] is employed.
Let k be the optimal number of potential thresholds obtained
from the energy curve of the image. The initial values of the
potential thresholds in a chromosome are taken randomly
within their defined ranges. To compute fitness value of each
chromosome in the population, DB index presented in Eq. (2)
is used. The fitness value computation, selection, crossover
and mutation are executed for a certain number of iterations

Fig. 5 Original image data set: a Man, b Cameraman, c Fingerprint,
d Two Swans, e Peppers, f Lena, g House and h Flinstones

Fig. 6 Histograms of the experimental image data set: aMan, b Cam-
eraman, c Fingerprint, d Two Swans, e Peppers, f Lena, g House and h
Flinstones

Fig. 7 Energy curves of the experimental image data set: a Man, b
Cameraman, c Fingerprint, d Two Swans, e Peppers, f Lena, g House
and h Flinstones

to find optimal value (or near optimal value) of each poten-
tial threshold within its defined range. The GA is terminated
when the average fitness value of the population becomes
stable. Finally, the chromosome in the population that has
maximum fitness value (minimum value of DB index) rep-
resents the optimal thresholds. These optimal thresholds
discriminate the different homogenous regions of the image.
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Table 2 Initial thresholds,
potential thresholds and optimal
thresholds detected by the
proposed technique for different
images

Images Initial Potential Optimal
selected thresholds thresholds thresholds

Man 10, 22, 34, 45, 107, 206 107 81

Cameraman 8, 22, 31, 35, 47, 61 89 90

67, 71, 74, 82, 89, 92

97, 102, 104, 141, 178

180, 197, 234

Fingerprint 44, 67, 76, 79, 82, 85 139 120

90, 95, 97, 106, 117, 139

161, 165, 179, 208

Two Swans 22, 45, 53, 66, 82, 94 22,125 1, 127

99, 104, 108, 112, 116, 120

125, 133, 140, 142, 146, 149

153, 157, 160, 169, 186, 198

202, 206, 212, 217, 223, 237

Peppers 21, 56, 85, 101, 113, 126 56, 113 51,122

132, 140, 149, 154, 157, 162

172, 183, 189, 223

Lena 39, 66, 81, 92, 108, 122 81, 108, 182 80, 115, 179

136, 143, 150, 164, 182, 218

House 20, 40, 66, 90, 114, 140 20, 90, 172, 227 17, 88, 158,219

172, 202, 227

Flinstones 25, 51, 56, 66, 76, 82, 90 51, 148, 230, 239, 250 48, 147, 230, 241, 249

96, 103, 121, 137, 148, 159

164, 169, 176, 182, 188, 201

215, 220, 224, 230, 239, 250

The computational complexity of this step is significantly
reduced by shrinking the search space of GA. Since the lower
and upper boundof each potential threshold are given as input
to the GA, the search space becomes narrower. Thus, the
termination condition is satisfied in less number of iterations.
Figure 4 shows the convergence graph of the House image.

3 Experimental results

To evaluate the effectiveness of the proposed technique, eight
different images are considered for the experiments. Fig-
ures 5, 6 and 7 show the original images, their histograms
and energy curves, respectively. From these figures, one can
observe that the energy curve of an image has similar char-
acteristics as that of histogram of the image, i.e., it also has
peaks and valleys to discriminate different objects as that of
histogram. Since the energy curve is generated by taking into
an account the spatial contextual information of the image, it
is smoother and has better discriminatory capability as com-
pared to that of histogramof the image. Thus,without loosing
the benefits of the histogram for suitable threshold selection,
energy curve may be a better choice.

To assess the effectiveness of the proposed technique,
results are compared with four state-of-the-art techniques
exist in the literature. Since the technique is context sen-
sitive, it has been compared with two GA-based context-
sensitive techniques: an energy curve based (referred as
ECCS) [14] and a pattern based (referred as PCS) [11].
The proposed technique is also compared with two context-
insensitive techniques: a fractional-order Darwinian particle
swarm optimization-based (referred as FODPSO) [5] and
an entropy-based histogram thresholding (referred as Kapur
method) [9].

To assess the effectiveness of the proposed technique, a
cluster validity measure S_Dbw index which is not involved
in the implementation of the proposed and existing tech-
niques is taken into account [7]. It is based on the cluster
compactness in terms of intra-cluster variance and inter-
cluster density. The S_Dbw index with C number of clusters
denoted as S_Dbw(C) is defined as:

S_Dbw(C) = Scat(C) + Den(C) (3)

where Scat(C) and Den(C) represent the intra-cluster vari-
ance and the inter-cluster density, respectively. The number
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of clusters that minimizes the S_Dbw index can be consid-
ered as an optimal number of the objects present in the image.

The algorithms have been implemented in MATLAB
(R2012a). In order to fix different control parameters value
of GA, several experiments were performed by varying their
values within a wide range. From the experiments, it is found
that the proposed techniqueproduced similar resultswhen the
population size, crossover probability andmutation probabil-
ity of GA are varied in the range of [20 80], [0.5 0.9] and
[0.05 0.001], respectively. In the present experiments, for all
the considered images the population size, crossover prob-
ability and mutation probability are set as 20, 0.8 and 0.01,
respectively. Stochastic selection strategy is used to select
fittest chromosomes from the mating pool. For FODPSO-
based thresholding technique, both the individual and social
weight of the particles is set as 0.8. The fractional coefficient
is set as 0.6.

3.1 Results analysis

The first experiment is devoted to analyze the validity of
the thresholds obtained by the proposed technique. Table 2
shows the initial thresholds, optimal number of thresholds
and their optimal values obtained by the proposed technique
for different images. By analyzing the histograms, energy
curves shown in Figs. 6 and 7 and the results reported in
Table 2, one can visualize that for all the considered images
the optimal thresholds obtained by the proposed technique
always pass through the valley region of the energy curves
as well as histograms of the images. As an example, for the
Peppers image the optimal thresholds 51 and 122 obtained
by the proposed technique passes through the valley region
of Figs. 6e and 7e. This confirms the validity of the proposed
technique.

The second experiment compares the performance of
the proposed technique with the ECCS, the FODPSO, the
PCS and Kapur methods by using different images. Table 3
reports the optimal threshold and corresponding DB index
and S_Dbw index obtained by the proposed, the ECCS,
the FODPSO and the Kapur methods considering different
images. It also reports the cluster representatives, associated
DB index and S_Dbw index obtained by the PCS techniques.
From this table, one can observe that the proposed technique
always produced better DB index as compared to the ECCS,
the FODPSO, the PCS and the Kapur methods. These results
are expected as proposed technique minimizes the DB index
to obtain optimal thresholds. For fair comparisons, another
cluster validity measure called S_Dbw index that has no
involvement for the implementation of these techniques is
computed. From Table 3, one can observe for the images
Cameraman, Fingerprint and Flinstones the proposed tech-
nique produced similar S_Dbw index as obtained by themost
effective technique. For the other images the proposed tech-

Fig. 8 Segmented images of the experimental image data set using
proposed technique: aMan, bCameraman, c Fingerprint, dTwo Swans,
e Peppers, f Lena, g House and h Flinstones

Fig. 9 Box plot of 20 runs for all the input images

nique produced much better S_Dbw index. Figure 8 shows
the segmented results of the proposed technique.

The third experiment validates the consistency of the pro-
posed technique. Figure 9 shows box plot of all the images for
20 runs. Form this figure, one can see that the widths of the
boxes are thin. This indicate the standard deviation obtained
for each considered image is very small which ensures the
consistency of the proposed technique.

The fourth experiment deals with the computational time
required by the different techniques for the experimen-
tal images. All the experiments were carried out on a PC
[INTEL(R) Core(TM)2 Duo 2.0 GHz with 2.0 GB of RAM].
As explained earlier, the proposed technique narrows down
(shrinks) the search space of GA by defining lower and upper
bound of each detected potential threshold. Thus, the ter-
mination criteria are satisfied in less number of iterations.
This resulted faster convergence of GA as compared to the
conventional optimization techniques. Table 4 shows the
computational time taken by the different techniques for all
eight images. From this table, it can be observed that the
computational time required by the proposed technique is
significantly lower than the ECCS, the FODPSO and the PCS
techniques. The Kapur method is computationally efficient
for detecting small number of thresholds. When the number
of thresholds increases, its computational complexity also
increases exponentially.
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Table 4 Computational time (in
seconds) taken by the different
techniques for all the input
images

Images Segments Proposed ECCS FODPSO PCS Kapur

Man 2 3.59 5.33 4.36 20.14 0.6250

Cameraman 2 1.87 4.25 5.02 9.66 0.4375

Fingerprint 2 5.88 7.42 6.48 24.15 0.3750

Two Swans 3 2.36 4.19 7.27 13.78 1.1250

Peppers 3 1.78 4.07 5.33 22.05 0.9844

Lena 4 8.02 10.12 9.92 50.81 45.5938

House 5 1.81 4.01 12.39 16.86 2.2652e+03

Flinstones 6 8.55 10.75 12.61 64.02 11.4534e+05

4 Conclusion

In this article, a context-sensitive fast threshold selection
technique is proposed for solving image segmentation prob-
lems. To incorporate spatial contextual information in thresh-
old selection process, the technique analyzed energy curve
of the image recently proposed in the literature [14]. The
proposed technique has several advantages: (i) it is context
sensitive, (ii) it is computationally less demanding, (iii) it
preserves the advantages of 1D histogram-based threshold-
ing techniques and (iv) it is able to determine optimal number
of segments present in the image.

To assess the effectiveness of proposed technique, the
results obtained by it are comparedwith the four state-of-the-
art methods. Experimental results on large number of images
confirmed the effectiveness of the proposed technique.

As future developments of this work, we plan to explore
different cluster validity criteria to improve the results. Vari-
ants of evolutionary approaches can also be explored to
achieve the improved results.
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