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Abstract In this paper, we propose a novel framework for
the detection and classification of centroblasts (CB) in follic-
ular lymphoma (FL) tissue samples stained with PAX5 and
H&E stains and sliced at 1µm thickness level. By employing
PAX5 immunohistochemistry, we facilitate the segmenta-
tion of nuclei, while the use of H&E stain enables us to
extract textural information related to histological charac-
teristics used by pathologists in the diagnosis of FL grading.
For the segmentation of nuclei in PAX5-stained images, we
initially apply an energy minimization technique based on
graph cuts and then we propose a novel algorithm for the
separation of overlapped nuclei inspired by the clustering of
large-scale visual vocabularies. The morphological charac-
teristics of nuclei extracted from PAX5-stained images are
combined with a number of textural characteristics identified
in H&E images through a Bayesian network classifier, which
aims to model pathologists’ knowledge used in FL grading.
Experimental results have already shown the great potential
of the proposed methodology providing an average F-score
of 94.56%.
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1 Introduction

Computer-aided image analysis has become one of the major
research subjects in medical imaging. Numerous approaches
for detection or diagnosis of various diseases have been
proposed recently to assist in the interpretation of medical
images [1] and complement the opinion of pathologists. This
is mainly motivated by the fact that visual qualitative assess-
ment of medical images is time-consuming and subject to
inter- and intra-pathologist variability in diagnosis [2], i.e.,
different pathologists may come up with diverse interpreta-
tions, leading to different diagnosis, or the same pathologist
may make different diagnosis at different time for the same
set of medical images.

In the case of follicular lymphoma (FL), which is the sec-
ondmost common lymphomadiagnosed inUSAandWestern
Europe, a pathologist categorizes FL cases into histological
grades based on the number of centroblasts (CBs) counted
per high power field (HPF), i.e.,microscopic images acquired
at a magnification level of ×400 [3]. Tissue biopsies of FL
are stained with hematoxilin and eosin (H&E), and they are
visually inspected by pathologists. In order to account for
tissue heterogeneity, the average CB number in ten different
HPF images, derived from the same tissue section, is being
estimated [4]. Since this manual procedure is highly subjec-
tive and requires extensive training, various methods [1,5–7]
for automatic FL grading have been proposed to increase the
accuracy and reproducibility of diagnosis.

The main challenge of these methodologies is the accu-
rate segmentation of nuclei and the extraction of a suitable
set of features for their classification into CBs or non-CBs.
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Particularly, the latter requires the modeling of pathologists’
knowledge used in clinical practice, that is, the identification
of a number ofmorphological and textural features.However,
the extraction of this information from H&E-stained images
using computer-aided image analysis is not an easy task.
Therefore, either morphological characteristics of nuclei are
used for their classification or their morphology is consid-
ered along with the textural variation of nuclei [4–6] or even
with graph-based features [8]. In most of these cases, the
classification of nuclei considers low-level texture features,
which are usually extracted after a statistical analysis based
on PCA to quantify the textural variation. The classification
accuracies using such an approach range from 75 to 85%
[6–8] and therefore may not be sufficient enough for certain
clinical applications [9].

A different approach was proposed in [9] aiming to iden-
tify several features related to pathologists’ knowledge used
in clinical practice of FL. The method was applied only
on manually cropped images of CB and non-CB cells and
attempted to implicitly extract such information by consider-
ing the whole image of a cell with its surroundings as a single
feature vector. The redundant features were removed using
linear and nonlinear dimensionality reduction approaches.
More recently, a different method for the explicit identifica-
tion of features defined by pathologists was presented in our
previous work [10,11] in which 1-µm sliced tissues of FL
were used for the classification of CBs. Although the use of
tissue sections sliced at a lower thickness level of 1–1.5µm
revealed more information about the interior of nuclei, both
segmentation and classification of cells were challenging,
since their boundaries were not always well shaped and the
discrimination of CB from non-CB nuclei with similar char-
acteristics, i.e., dendritic or endothelial cells, was extremely
difficult as shown in Fig. 1.

Taking advantage of the fact that different stains can
provide valuable information to aid understanding of the
physical or functional properties of tissue [12], in this paper
we introduce a novel complete framework for the segmen-
tation, separation and classification of FL nuclei in tissue

Fig. 1 Characteristic case of aCB(bluedashed circle) andFLdendritic
cell (red solid circle) in a a H&E image and b the corresponding PAX5
image. In PAX5 image, the dendritic cell is blue colored and it can be
easily removed through the segmentation (color figure online)
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Fig. 2 Proposed framework for the segmentation, separation and clas-
sification of nuclei in PAX5- and H&E-stained FL tissue sections

sections stained with PAX5 and H&E stains and sliced at
1µm thickness level (see Fig. 2). The proposed methodol-
ogy, as shown in the experimental results, not only improves
segmentation and separation of nuclei, but also contributes
significantly to the discrimination of CBs from other non-CB
cells with similar characteristics. In addition, we introduce
a novel approach for overlapped nuclei separation inspired
by the clustering of large-scale visual vocabularies and we
propose a new classifier, based on probabilistic graphical
models, for the combination of morphological characteris-
tics of nuclei extracted from PAX5 images with their textural
features in H&E images.

2 Nuclei segmentation

For the segmentation of nuclei in PAX5-stained images, we
apply an energyminimization technique based on graph cuts,
which is an unsupervised approach that can be employed
efficiently to various image segmentation problems and
particularly to FL PAX5 images, where the number of fore-
ground and background pixels is balanced, as shown in Fig. 1.
Specifically, the segmentation procedure is considered as a
labeling problem, where the labels represent different cyto-
logical components, i.e., nuclei and cytoplasm. In practice,
apart from the cytoplasm the second class contains also the
blue-colored nuclei including follicular dendritic cells. In
this labeling problem, the image is represented as a graph
G = 〈V, E〉, where V is the set of all nodes and E is the
set of all edges connecting adjacent nodes. Nodes and edges
correspond to pixels and their adjacency relationship, respec-
tively. The graph also contains two terminal nodes, which are
referred to as the source and the sink. The labeling problem is
to assign a unique label xp for each node V , so as tominimize
the following energy:

E =
∑

p∈V
Cp

(
xp

) +
∑

(p,q)∈E
Sp,q

(
xp,xq

)
(1)

where Cp is the color consistency cost, i.e., the negative
log likelihood of the pixel p to belong to the cluster cor-
responding to xp according to its RGB value and Sp,q is the
smoothing cost between two neighboring pixels (p, q). The
smoothing cost depends on the labels (xp, xq), i.e., nuclei
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or cytoplasm, of the neighboring pixels and the existence of
an edge at this location of the image (pairs of pixels with
different labels are penalized if no edge exists). The cost of
the cut (a cut partitions the graph into two disjoined subsets)
is defined to be the sum of weights of the edges crossing
the cut, whereas the minimum cut problem is to find the
cut with the minimum cost. The basic idea is that the min-
imum cut minimizes the energy either globally or locally.
In our experiments, the expansion algorithm [13] was used,
which is one of the most efficient algorithms for minimiz-
ing discontinuity-preserving energy functions. The algorithm
results in the labeling that minimizes the energy of Eq. (1)
leading to the segmentation of nuclei from cytoplasm. For
the initialization of the algorithm, a k-means approach was
adopted for assigning an initial label to each pixel.

3 Separation of clustered nuclei

After the segmentation step, a number of nuclei overlap
with each other forming clusters of cells. Splitting of clus-
tered or overlapped nuclei is one of the most critical steps
in microscopic image analysis. Semi-automatic approaches
[14,15] have been widely used in the past to improve seg-
mentation results, however, such methods are in general
time-consuming and often infeasible [16]. To this end, a
variety of techniques have been introduced [17–19] for
unsupervised splitting of clustered nuclei, with watershed
algorithm [21] to be the most popular. Nevertheless, water-
shed usually suffers from oversegmentation, as it is affected
by the existence of local minima. To suppress the overseg-
mentation effect, marker controlled approaches have been
introduced [15] and morphological operations have been
applied to address the problem of spurious markers. How-
ever, even in this case the accurate definition of markers
is a challenging issue, while the results heavily depend on
the size of the structuring elements [19]. On the other hand,
blob detection techniques, such as those based on LoG fil-
ter [20], allow the detection of nuclei without applying any
segmentation step (however in our case, segmentation is
important since it contributes significantly to the removal
of dendritic cells), but they transform the problem into a
local maxima detection problem. These techniques, how-
ever, require a tuning of the appropriate parameter setting,
while oversegmentation problems appear when nuclei devi-
ate significantly from blob shape or tiny regions are detected
as nuclei [20]. More sophisticated techniques attempt to for-
mulate the splitting of the clustered nuclei as an optimization
problem [16,22]. To avoid exhaustive search for the esti-
mation of the optimum number of seeds, in this paper we
propose an alternative approach aiming to initially identify
and purge spurious seeds from a list of candidate seeds and
then detect each nucleus using an ellipsoidal model. Finally,

Fig. 3 a Two different cases of clustered nuclei, b estimation of
regional maxima after the application of distance transform, c seeds
corresponding to local maxima are deleted using regional H-maxima
transforms, d the result of EM algorithm, e identification of weak seeds,
f the new results of EM for the remaining seeds, i.e., without weak seeds
and g the segmented nuclei. As we can see, in the first case (top clus-
tered nuclei) the weak seed is finally pruned, while in the second case
the weak seed is considered valid, since the EM solution in (d) provides
better results in terms of the validity index than the one in (f)

a validation criterion is introduced for the identification of
spurious seeds. The proposed methodology is illustrated in
Fig. 3.

3.1 Identification of candidate seeds and clusters
modeling

To handle the oversegmentation problem, we initially aim to
identify a list of candidate seeds. Toward this end, we apply
a distance transform and we estimate the regional maxima
in the generated distance image D (as shown in the exper-
imental results, the use of distance transform is adequate
for the case of FL, however, in more complicated micro-
scopic image analysis problems other preprocessing steps
could be adopted to detect the initial set of candidate seeds).
The result of this first preprocessing step is the extraction
of a number of seeds, some of which correspond to local
maxima located mainly in the vicinity of true regional max-
ima. Since there is a one-to-one correspondence between the
regional maxima and the nuclei, only one maximum can
be accepted in each neighborhood. To eliminate the local
maxima, we sort all candidate seeds in a descending order
according to their distance value vi , where i = 1, 2 . . . , n
is the seed and n is the total number of candidate seeds.
Starting from the seed with the highest vi value, we apply a
regional H -maxima transform [23] in order to suppress all
local maxima in its vicinity with radius equal to the value
of vi . Subsequently, the seeds corresponding to local max-
ima are deleted from the list and the same procedure is
repeated for the remaining maxima. The result of this first
preprocessing step allows us to identify a list of k candi-
date seeds driven by the morphology of clustered nuclei,
i.e., the regional maxima (Fig. 4). Based on the hypothesis
that nuclei can be spatially modeled as ellipsoids, the pixel
coordinates in each cell aremodeled using aGaussian distrib-
ution.More specifically, a Gaussianmixturemodel is applied
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Fig. 4 Methodology of the separation of clustered nuclei

with the number of clusters being equal to that of candidate
seeds.

3.2 Identification of weak seed

Having estimated the ellipsoidal models of nuclei for all
seeds, we need to identify the spurious ones from the list
of candidate seeds in order to estimate the correct number
of nuclei. To do so, we attempt to compute an overlap mea-
sure for the estimated clusters. In [24], a clustering method is
proposed to construct visual vocabularies for image retrieval.
The method attempts to compute the overlapping of neigh-
boring clusters and uses an overlap threshold to purge all
redundant clusters. In our case for the segmentation of clus-
tered nuclei, instead of using a threshold, we attempt to
identify the weak seed in the cluster and we use a valida-
tion process in order to decide whether a cluster is redundant
or not. More specifically, for the estimation of the overlap-
ping metric, we compute for each Gaussian component pi
the quantity r , which indicates the responsibility of com-
ponent for itself relative to the set of remaining seeds k̂ =
[1, . . . , i − 1, i + 1, . . . k]:

ri,k̂ = γ̂i i

γ̂i i + ∑
j∈k̂ γ̂i j

, where i /∈ k̂ (2)

where γ̂i j = γ̂ j (pi ) ∈ [0, 1] is the generalized responsibility
of component p j for component pi with each component of
the mixture to correspond to a unique seed:

γ̂ j (pi ) =
〈
p j , pi

〉
∑k

i=1

〈
p j , pi

〉 (3)

with
〈
p j , pi

〉 = π jπi N (µ j |µi , � j + �i ). However, instead
of purging all seeds corresponding to components with a
value ri,k̂ lower than a predefined threshold, in this paper
we propose the identification of the weak seed based on the
criterion of Eq. (2). That is, the seed whose cluster has the
lowest ri,k̂ among all themixture components in the clustered
nuclei is considered as theweak seed, i.e., sw = argmin

i
(ri,k̂).

Thismeans that the identified sw is likely to be redundant, as a
low ri,k̂ value implies that the components in k̂ can adequately
describe component pi .

3.3 Validation process

The above indication, however, is not enough for purging sw
from the list; therefore, a cluster validation process is needed
to make the final decision. To this end, we also propose a
new validation index in order to evaluate whether seed sw is
spurious or not, that is,whether the newEMsolution Θ̂ corre-
sponding to seeds in k̂ is better than the previous solutionΘ of
k components. In general, cluster validation is a critical issue
in cluster analysis. An objective approach has been proposed
in [25], especially for fuzzy clustering, which introduces a
combined function of clusters compactness and separation
in order to determine the correct number of clusters. In other
words, the validation criterion requires the clusters to be well
separated and with a compact structure.

However, while the splitting of clustered nuclei can be
considered as a cluster analysis problem, there are also spe-
cific particularities that should be taken into account. For
instance, although the criterion of compactness provides sig-
nificant information about the structure of a cluster, i.e., large
distances between the members of a cluster or the existence
of outliers, in the case of nuclei splitting this measurement by
itself is not enough to evaluate the clustering result, as it pro-
vides little information regarding the relation of the mixture
of Gaussians with the nuclei morphology. For this reason, a
new validation criterion should be considered to include also
the fitness degree of the estimated ellipsoidal components
against the clustered nuclei data:

V (k̂) = Sep(k̂)

Comp(k̂) · Fitness(k̂) (4)

In the above equation, Sep(k̂) = trace(S) denotes the separa-
tion measure of components with S indicating the between-
components scatter matrix S = ∑

i∈k̂
∑n

j=1 u
r
i j (mi − m̄)

(mi − m̄)T , wheremi are the centers of components, m̄ is the
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centroid of the clustered nuclei, n is the total number of its
elements, i.e., the number of pixels, and ui j is the grade of
fuzzy membership of the j th element to the i th component.
Since, crisp clustering may be viewed as a special case of
fuzzy clustering, an element can get a membership value of
1 for the component to which it belongs, i.e., the component
from which the element has the shortest distance from its
centroid, and a value of 0 to all other components [26]. On
the other hand, the compactness measure in the denominator

of Eq. (4) is given as Comp(k̂) = ∑trace(�̄i )

i∈k̂ , where �̄i is

the normalized covariance matrix of i . The last factor of Eq.

(4) is Fitness(
�

k)=
∑

i∈�
k
Fc(i), which aims to measure how

well the ellipsoidal models fit to the elements of their clusters
and it is defined as the sum of the normalized fitness scores of
individual components. The score Fc(i) denotes the sum of
distances of all elements in setWi = Ei ⊕ Xi (where sets Ei

and Xi represent the elements of ellipsoidal component i and
the elements of the corresponding cluster, respectively, and
⊕ is the symmetric difference operator) from the centroid of
cluster i , normalized by the maximum radius of the nuclei:

Fc (i) =
∑τ

t=1

(
x̂t − mi

) (
x̂t − mi

)T

max∀ j

(
ui j

(
x j − mi

) (
x̂ j − mi

)T ) (5)

where x̂t ∈ Wi , τ indicates the number of elements belonging
toWi and x j are all elements of clustered nuclei, respectively.

A large value of Fitness
(
k̂
)
indicates that the ellipsoidal

models are not well fitted to the clusters.
Based on the calculation of these threemetrics (separation,

compactness and fitness), we can easily compute the valida-
tion index V of the estimated clusters from Eq. (4). Then,
we can simply claim that if a new EM solution increases the
validity index V , the weak seed sw can be considered as a
spurious seed and is deleted from the list. The same proce-
dure is repeated for the identification of other spurious seeds
in the list until the new validity index is lower than the previ-
ous one. Finally, the segmentation of the clustered nuclei is
performed by applying Bayesian classification (Fig. 4), i.e., a
pixel x is assigned to cluster Ci with the maximum posterior
probability.

4 Nuclei classification

After the segmentation of nuclei, the extra cellular material
is removed along with a number of follicular dendritic cells,
appearing as blue-colored nuclei in PAX5-stained images.
In order to assess the shape of nuclei, the perimeter of each
nucleus is extracted and the best fitting ellipse is estimated
using the Orthogonal Distance Regression (ODR) algorithm

Fig. 5 Representative case of a a CB and b a small non-CB cell in a
H&E image

[27]. Subsequently, ellipse residual is being estimated as the
average geometric distance of the pixels in the perimeter from
the ellipse. This feature is referred to as nuclear regularity,
since it estimates the regularity of the shape of the nucleus.

Since morphological characteristics are not enough for
the classification of nuclei in CBs or non-CBs, textural
information needs to be extracted from the corresponding
H&E-stained images. To do so, we first need to align H&E-
and PAX5-stained images corresponding to the same tissue
section. Our main concern here is to address mostly rota-
tion and translation problems as by using the same camera
setup and tissue section (with different stains) we eliminate
possible scale or skew issues. Toward this end, we apply
intensity-based rigid image registration [28] to find the cor-
rect location of the corresponding nuclei in H&E images.

Having identified the corresponding nuclei in H&E-
stained image, textural analysis can be applied to extract
features related to the internal and external texture of nuclei
as well as the number and the size of nucleoli in their inte-
rior. More specifically, while non-CBs have relatively dark
nucleus, CBs are brighter and characterized by a higher non-
uniformity in their texture, as shown in Fig. 5. This is also
justified by the existence of a number of nucleoli in their
interior. On the other hand, it has been noticed that CBs do
not have sufficient cytoplasm and the exterior of their nuclei
appears brighter than that of non-CBs. To encapsulate the
properties of internal texture of CBs, we initially estimate
the mean value and skewness of the grayscale histogram of
nuclei and then we apply the GLRL algorithm [29] to calcu-
late the gray-level non-uniformity (GLN) value, which is a
quantitative measure of textural abnormalities in a nucleus.
Similarly, for the external texture of nuclei, the variance of the
cytoplasm histogram is estimated for the surrounding area of
each nucleus. Finally, for the detection of nucleoli, the expec-
tation maximization (EM) algorithm is used to estimate the
number of different intensity zones (classes), by using the
minimum description length (MDL) criterion [30]. Assum-
ing that intensity values are modeled as a Gaussian mixture
model, MDL works by attempting to find the model order
which minimizes the number of bits that would be required
to code both the input data samples (intensity values) and
parameters of the Gaussian mixture. Since, the darkest class
corresponds to the nucleoli, circular Hough transform [31]
is subsequently applied to detect small dark circles in the
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nucleus representing nucleoli [10]. After the detection of
nucleoli, their number, total area and maximum area are cal-
culated for each nucleus.

To better model the decision making procedure of pathol-
ogists, we propose a hierarchical Bayesian network (BN)
classifier, in which the final decision is not directly affected
by the initial features extracted from the pair of images, but
by a level of intermediate nodes aiming to quantify different
properties of nuclei. The structure of the proposed directed
acyclic graph (DAG) is depicted in Fig. 6. More specifically,
the proposed BN classifier receives as input a feature vec-
tor containing nine individual features (two morphological
and seven textural) extracted after the identification of nuclei
in both PAX5- and H&E-stained images. Finally, the deci-
sion for the classification of a nucleus is taken based on the
conditional probabilities of the parent nodes in the second
level of DAG, which quantify different properties of nuclei
associated with their morphology, internal texture, nucleoli
characteristics and external texture.

5 Experimental results

We created a dataset consisting of 28 pairs of PAX5- and
H&E-stainedHPF images (i.e., 56 images of size 1280×960)
using a Nikon Eclipse E600W microscope and a Nikon DS-
Fi1 digital camera. For the preparation of the 28 pairs of
images, containing in total more than 25.000 FL nuclei, we
adopted the following procedure: Initially, we stained each
slide with hematoxylin and eosin. Then, for the removal of
H&E stain, we placed each slide in xylene to dislodge the
coverslip. The slides were immersed in 0.3% HCl solution
until hematoxylin and eosin are almost completely destained.
The procedure of differentiation was used to remove excess
colour in overstained sections. The almost unstained sec-
tion was rinsed in tap water for 5–10min, in order to
remove acid and then immunohistochemistry for PAX5 (rab-
bit monoclonal, clone RBT-PAX5, dilution 1:30, BioSB,
Santa Barbara, USA) was performed, using the Bond Max
autostainer (Leica Microsystems, Wetzlar, Germany). The
above procedure was repeated four times in different days

(leading each time to seven pairs of images) in order to
avoid any dependence of the proposed technique to the initial
sample preparation. Moreover, we manually annotated three
hundred clustered nuclei consisting of two to five cells. In
order to crop the images containing the clustered nuclei, we
initially ran the energyminimization segmentation algorithm
on the HPF images stained with PAX5 and we visually iden-
tified the connected cells. The surrounding area was cleaned
from smaller objects so that each image contains just one
cluster of nuclei.

5.1 Separation of clustered nuclei

To evaluate the proposed method for the separation of over-
lapped cells, we used the aforementioned dataset consisting
of three hundred clustered FL nuclei. Specifically, in this
sectionwe elaborate a detailed evaluation analysis of the pro-
posedvalidation index andwevalidate the performance of the
proposed algorithm against three other state-of-the-art tech-
niques. For the evaluation of the proposed validation index,
we compare its performance against the validation index pro-
posed in [25] and applied in [16] for the segmentation of
overlapped nuclei on specimen of cervical cells and mam-
mary invasive ductal carcinomas. In addition, we present a
detailed analysis of its components, i.e., separation, compact-
ness and fitness, in order to assess their contribution to the
segmentation process. As shown in Fig. 7, the proposed val-
idation index outperforms with a correctly segmented nuclei
rate of 95%. This result is due to the introduction of the
new fitness function, which provides significant information
regarding the spatial relation of ellipsoidal models with the
morphology of clustered nuclei. On the other hand, the val-
idation index in [25] is based only on the estimation of the
separation and compactness factors ignoring completely the
fitness degree of the Gaussian components to the clustered
nuclei. To this end, EM solutions consisting of components
with large overlapped areas or areas that exceed the borders
of the clustered nuclei may be erroneously selected as the

Fig. 7 Evaluation of the proposed validation index against its three
components (separation, compactness and fitness) and the validation
index proposed in [25] and applied in [16]
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Fig. 8 Comparison of the proposed separation method against three
state-of-the-art methods

optimum ones. As a result using the validation index in [25],
the correctly segmented nuclei rate falls to 87.67%.

Figure 8 shows the comparison of the proposed method
with three state-of-the-art methods: the GMM-based [11]
algorithm proposed in our previous work for cell splitting
in H&E-stained images of 1µm, the fast radial symmetry
transform (FRST) [32], which was applied in [8] for the
segmentation of overlapped FL nuclei in 4-µm slides, and
the classical watershed algorithm. The introduction of the
responsibility criterion for the identification ofweak seeds in
conjunction with the proposed validation index reduces sig-
nificantly the number of spurious seeds and result in a low
oversegmentation rate for the proposed method. On the other
hand, and as was expected, the watershed algorithm leads to
high oversegmentation results, while the proposed separation
method seems to be extremely robust to undersegmentation.

5.2 Nuclei classification

The proposed methodology for the identification of CBs was
evaluated over a dataset of 25 pairs of PAX5- and H&E -
tained HPF images, while for the training of BN classifier
we used CB and non-CB cells from three additional pairs
of images. As shown in Fig. 9, our method provides an
average F-score 96.53% (average true-positive—TP—rate
of 94.56% i.e., 139 correctly detected CBs out of 147, with
a false-positive—FP—rate of 2.78%, i.e., around 22 nuclei
per slide, which is a relatively low false-positive rate). To
compare the performance of the proposed method with a
state-of-the-art approach, we decided to apply [11] (which
was also developed for tissue sections sliced at a thickness
level of 1µm) to the same slides stainedwithH&E, in order to
have a fair comparison. Experimental results show that the
proposed method achieves improvements up to 10.89 and
4.10% in terms of average detection rate and false-positive
rate, respectively.

Figure 10 presents the different steps of the proposed
methodology in a Region of Interest (ROI) of Slide 10 con-
taining two CBs and a FL dendritic cell. As it can be easily

Fig. 9 Average and the individual F-scores for the 25 pairs of PAX5
and H&E images of size 1280 × 960

Fig. 10 Different steps of the proposed methodology using a ROI con-
taining two CBs (black circles) and a dendritic cell (red circle). a The
PAX5-stained image, b the corresponding H&E-stained image, c seg-
mentation result, d splitting of clustered nuclei, e registration result and
f classification result (color figure online)

seen in this characteristic example, the identification of the
dendritic cell in theH&E-stained image is extremelydifficult,
since it has similar characteristics with the other two CBs,
e.g., large size, nucleoli etc. However, in the PAX5-stained
image, the energy minimization algorithm can easily discard
it, as shown in Fig. 10c, thus reducing the false-positive rate.
It should also be noted that after the segmentation step, one
of the CBs forms a cluster with two other nuclei. Although
the size of this CB is much larger than the other clustered
cells, almost double from the middle one, and its shape is
more elongated, the proposed algorithm can successfully
segment it. On the other hand, a possible oversegmenta-
tion in this stage, e.g., by using Watershed algorithm, could
lead to its final misclassification, i.e., it would reduce the
detection accuracy of the algorithm. For the extraction of
textural information, the two images are aligned by applying
intensity-based rigid registration to find the correct location
of the corresponding nuclei in H&E stained images (Fig.
10e). Finally, the CBs are detected by combining the mor-
phological and textural characteristics of nuclei using the
proposed BN classifier (Fig. 10f).
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Fig. 11 Comparison of the proposed classifier with five other state-of-
the-art classifiers

91,46% 90,55%
94,56%

10,05%
4,17% 2,78%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

Morphological Features 
(PAX5)

Texture Features (H&E) Proposed

Detection Rate (%)
False Detection Rate (%)

Fig. 12 Contribution of morphological and textural features in the
classification process

To evaluate the performance of the proposed classifier,
we compare it with five other state-of-the-art classifiers
using the same training set: Adaptive Neuro-Fuzzy Inference
(ANFIS) [11],Adaboost, SVMwith radial basis function ker-
nel, Neural Networks (NN) andClassification Trees (CT). As
shown inFig. 11, the proposedBNclassifier outperformspro-
viding a higher detection rate than the other classifiers, while
at the same time the number of false detections remains rel-
atively low, i.e., 2.78% instead of 2.81, 3.41 and 2.69% for
ANFIS, Adaboost and SVM, respectively. On the other hand,
whileNNandCTprovide lower FP rates, their detection rates
is prohibitively low.

The contribution of both morphological and textural
features extracted from PAX5- and H&E-stained images,
respectively, is depicted in Fig. 12. As can be seen, although
nuclei morphology leads to higher detection rate than tex-
tural features, it also provides many false detections, which
is sensible since many non-CBs have similar morphological
characteristics with CBs. On the other hand, the extrac-
tion of textural features from H&E-stained images seems
to contribute significantly to the robustness of the algorithm,
although their detection rate is lower. This observation shows
that the role of morphological and textural features can be
considered supplementary in the classification process and
for this reason their combination in the proposed classifier
results in improved CB detection (TP) and false detection
(FP) rates.

6 Discussion and conclusions

Typically, computer-aided detection of CBs for FL grading
is performed using H&E-stained tissue sections sliced at
a thickness of 4–5µm. The use of such images facilitates
the segmentation of distinct cytological components and,
especially, the discrimination of nuclei from the cytoplasm.
However, while morphological characteristics of nuclei can
be accurately extracted, characteristics related to nucleoli or
the internal texture of the nucleus are not easily traceable.
As referred to [9], the classification accuracies of methods
using tissue sections sliced at this level range from 75 to 85%
(e.g., [6] provides an average detection accuracy of 80.7%
and average false-positive count of 30 cells per image). By
using tissue sections sliced at a lower thickness level, we
can increase the detection rate since more information about
the interior of nuclei is revealed [11]; however, the false-
positive rate remains relatively high. Experimental results
showed that the proposed method, based on PAX5 and H&E
stains and tissue sections sliced at the thickness of 1µm, can
increase the detection rate, while providing a relatively low
false-positive rate. In the future, we aim to examine the use of
histopathology images of consecutive tissue sections stained
with different histochemical or immunohistochemical stains
in order to avoid the destaining procedure of slides.
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