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Abstract A stochastic convergence analysis of the parame-
ter vector estimation obtained by the recursive successive
over-relaxation (RSOR) algorithm is performed in mean
sense and mean-square sense. Also, excess of mean-square
error and misadjustment analysis of the RSOR algorithm is
presented. These results are verified by ensemble-averaged
computer simulations. Furthermore, the performance of the
RSOR algorithm is examined using a system identification
example and comparedwith other widely used adaptive algo-
rithms. Computer simulations show that the RSOR algorithm
has better convergence rate than the widely used gradient-
based algorithms and gives comparable results obtained by
the recursive least-squares RLS algorithm.

Keywords Adaptive filters · Successive over-relaxation ·
Gauss–Seidel · System identification · Convergence analysis

1 Introduction

Adaptive filter algorithms can be classified into two main
groups: gradient based and least squares based. The well-
known gradient-based adaptive algorithms are the least-
mean-squares (LMS) algorithm [1], the normalized LMS
(NLMS) algorithm [2], and the affine projection algorithm
(APA) [3]. These algorithms are widely used in practical
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implementations because of their relatively low computa-
tional complexity. The major limitations of the gradient-
based algorithms are their relatively slow convergence rates
and sensitivity to the eigenvalue spread of the input correla-
tion matrix. The other type of adaptive algorithm is based on
the least squares, and the most widely used one is the recur-
sive least-squares (RLS) algorithm. The RLS algorithm has
a faster convergence rate than the gradient-based algorithms,
although the computational complexity is greater [4,5].

There is a clear difference between gradient-based algo-
rithms and the RLS algorithm in terms of the convergence
rate and computational complexity [4,5]. However, a recur-
sive algorithm based on the solution of the time-averaged
normal equation using a single-step Gauss–Seidel iteration
between two consecutive data samples has been proposed as
an intermediate method [6]. The Gauss–Seidel algorithm has
also beenused as anoptimization algorithmcalled theEuclid-
ean direction search (EDS) algorithm [7–13]. An accelerated
version of the EDS algorithm is also presented in [14]. As
an alternative to the Gauss–Seidel iterations, the one-step
Jacobi iteration is used in [15]. A recursive implementation
of the Gauss–Seidel algorithm (RGS) is also used to adjust
self-tuning adaptive controller parameters directly in [16].
The main advantage of the RGS algorithm as an intermedi-
ate method is a faster convergence rate than gradient-based
algorithms and a lower computational complexity than the
RLS algorithm. Similar to the RGS algorithm, the recursive
successive over-relaxation (RSOR) algorithm is proposed for
adaptive FIR filtering based on the use of a one-step suc-
cessive over-relaxation (SOR) iteration between two data
samples [17].

The aim of this paper is to present a steady-state con-
vergence analysis of the parameter error vector which is
performed in the mean sense and mean-square sense. Also,
the convergence performance of the RSOR algorithm is
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examined using computer simulations and compared with
thewell-known gradient-based algorithms and the RLS algo-
rithm.

The paper is organized as follows: in Sect. 2, the use of the
RSOR algorithm for adaptive filtering is presented. Stochas-
tic convergence analysis of the RSOR algorithm is presented
in Sect. 3. Computer simulations using a system identifica-
tion example are presented in Sect. 4. Concluding remarks
are given in Sect. 5.

2 Review of the RSOR algorithm

An adaptive filter is a digital filter whose parameters ŵ(n)

are adjusted by an adaptive algorithm. The output signal y(n)

can be obtained by the following adaptive FIR filter model

y(n) = xT(n)ŵ(n) (1)

where the input vector x(n) and the parameter vector ŵ(n)

can be defined as follows:

x(n) = [ x(n) x(n − 1) . . . x(n − M + 1) ]T (2)

ŵ(n) = [ ŵ0(n) ŵ1(n) . . . ŵM−1(n) ]T (3)

where x(n) is the input signal of the filter and M is filter
length. An error signal e(n) is defined by comparing the
desired signal d(n) and the output signal y(n) as follows:

e(n) = d(n) − xT(n)ŵ(n). (4)

Least-squares-based algorithms use the following cost func-
tion

V(n,w) =
n∑

i=1

λn−i e2(i) (5)

where λ is the forgetting factor, 0 < λ ≤ 1. The estimated
parameter vector ŵ(n), which minimizes least-squares error
function (5) for n-step data, can be computed by

ŵ(n) = R−1(n)p(n) (6)

where ŵ(n) can also be obtained by solving the following
time-averaged normal equation:

R(n)ŵ(n) = p(n) (7)

where R(n) denotes an estimate of the M × M- dimensional
autocorrelation matrix of the input vector x(n), p(n) denotes
an estimate of theM×1-dimensional cross-correlation vector
between x(n) and the desired signal d(n), and ŵ(n) is an
estimate of the M × 1- dimensional parameter vector (3).

The estimated values R(n) and p(n) are computed at time
step n as follows, respectively:

R(n) =
n∑

i=1

λn−ix(i)xT(i) (8)

p(n) =
n∑

i=1

λn−ix(i)d(i). (9)

In practical applications, the values of R(n) and p(n) are
updated as follows:

R(n) = λR(n − 1) + x(n)xT(n) (10)

p(n) = λp(n − 1) + x(n)d(n). (11)

By using a strategy similar to that of the RGS algorithm [16],
the recursive implementation of the SOR (RSOR) algorithm
to minimize the least-squares error function (5) can be given
as

ŵi (n + 1) =
⎡

⎣pi (n) −
i−1∑

j=1

Ri j (n)ŵ j (n + 1)

−
M∑

j=i+1

Ri j (n)ŵ j (n)

⎤

⎦ ω

Rii (n)
+ (1 − ω)ŵi (n)

i = 1, 2, . . . , M, (0 < ω < 2) (12)

whereω is known as the relaxation parameter, ŵi (n) is the i th
element of the estimated parameter vector ŵ(n), pi (n) is the
i th element of the estimated cross-correlation vector p(n),
and Ri j (n) indicates the i th row and j th column of the esti-
mated autocorrelation matrix R(n). Equations (10)–(12) are
used to implement the RSOR algorithm. In the RSOR algo-
rithm, the discrete-time index n is used as the iteration index.
Thus, the RSOR algorithm is implemented using a one-cycle
SOR iteration between two consecutive data samples. When
ω = 1, the SOR iterations are equal to the Gauss–Seidel
iterations [18]. By taking ω > 1, the RSOR algorithm can
be used to obtain faster convergence than the RGS algorithm
[17].

3 Stochastic convergence analysis

In this section, the asymptotic convergence, i.e., the steady-
state behavior, of the RSOR parameter estimation vector is
analyzed in the mean sense and mean-square sense. The
analysis is similar to that in [19,20].

The parameter convergence of the RSOR algorithm is
based on the positive definiteness of the autocorrelation
matrix R(n). In the analysis, the following assumption is
used:

123



SIViP (2017) 11:137–144 139

Assumption The excitation signal x(n) is persistently excit-
ing, i.e., there exist α > 0 and β > 0 satisfying

0 < αI ≤ 1

n

n∑

i=1

x(i)xT(i) ≤ βI < ∞ (13)

over a set ofn consecutive data samples for all i.This assump-
tion means that the minimum and maximum eigenvalues of
the sum in (13) are bounded by α and β [21].

3.1 Mean convergence analysis

The estimated autocorrelation matrix R(n) can be decom-
posed as the sum of its lower triangular matrix, diagonal
matrix, and upper triangular matrix as

R(n) = RL(n) + RD(n) + RU(n). (14)

Given the classical SORmethod in [18], the splitting ofR(n)

can be written as

ωR(n) = [RD(n) + ωRL(n)]
− [(1 − ω)RD(n) − ωRU(n)]. (15)

Based on the splitting in (15) and using (14), the correspond-
ing RSOR algorithm (12) for the solution of (7) is rewritten
as recursion

[RD(n) + ωRL(n)]ŵ(n + 1) = {[RD(n) + ωRL(n)]
−ωR(n)}ŵ(n) + ωp(n). (16)

Let us define

x(i)xT(i) = R̄ + R̃(i) (17)

x(i)d(i) = p̄ + p̃(i) (18)

where R̃(i) denotes the random part of the autocorrelation
matrix, p̃(i) denotes the random part of the cross-correlation
vector, R̄ = E{x(i)xT(i)}, p̄ = E{x(i)d(i)}, and E{·} is the
statistical expectation operator. Similar to (14), R̄ and R̃(i)
can also be decomposed as

R̄ = R̄L + R̄D + R̄U (19)

R̃(i) = R̃L(i) + R̃D(i) + R̃U(i). (20)

By substituting (17) into (8) and (18) into (9), the following
equations are, respectively, written as

R(n) =
n∑

i=1

λn−i R̄ +
n∑

i=1

λn−i R̃(i) (21)

p(n) =
n∑

i=1

λn−i p̄ +
n∑

i=1

λn−i p̃(i). (22)

With (14), (19), and (20), the autocorrelation matrix in (21)
can be written as

RL(n) + RD(n) + RU(n) =
n∑

i=1

λn−i (R̄L + R̄D + R̄U
)

+
n∑

i=1

λn−i
[
R̃L(i) + R̃D(i) + R̃U(i)

]
(23)

which can be decomposed into its lower triangular, diagonal,
and upper triangular parts as

RL(n) =
n∑

i=1

λn−i R̄L +
n∑

i=1

λn−i R̃L(i) (24)

RD(n) =
n∑

i=1

λn−i R̄D +
n∑

i=1

λn−i R̃D(i) (25)

RU(n) =
n∑

i=1

λn−i R̄U +
n∑

i=1

λn−i R̃U(i). (26)

Using the Eqs. (21), (24), and (25), the following equations
can be formed.

RD(n) + ωRL(n) =
n∑

i=1

λn−i (R̄D + ωR̄L)

+
n∑

i=1

λn−i
[
R̃D(i) + ωR̃L(i)

]
(27)

RD(n)+ωRL(n) − ωR(n)=
n∑

i=1

λn−i (R̄D+ωR̄L − ωR̄)

+
n∑

i=1

λn−i
[
R̃D(i) + ωR̃L(i) − ωR̃(i)

]
(28)

Let us define

ŵ(n) = w̄(n) + w̃(n) (29)

where w̄(n) = E{ŵ(n)} and w̃(n) is the stochastic part of
ŵ(n). Substituting (22), (27), (28), and (29) into the RSOR
algorithm (16) gives

{
n∑

i=1

λn−i (R̄D + ωR̄L)

+
n∑

i=1

λn−i
[
R̃D(i)+ωR̃L(i)

]} [
w̄(n+1) + w̃(n + 1)

]
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=
{

n∑

i=1

λn−i (R̄D + ωR̄L − ωR̄)

+
n∑

i=1

λn−i
[
R̃D(i)+ωR̃L(i)−ωR̃(i)

]} [
w̄(n)+w̃(n)

]

+ω

n∑

i=1

λn−i p̄ + ω

n∑

i=1

λn−i p̃(i). (30)

The deterministic part of (30) is written as

{
n∑

i=1

λn−i (R̄D + ωR̄L)

}
w̄(n + 1)

=
{

n∑

i=1

λn−i (R̄D + ωR̄L − ωR̄)

}
w̄(n)

+ω

n∑

i=1

λn−i p̄ (31)

which is independent of the sums. Therefore, (31) can be
reduced to

(R̄D + ωR̄L)w̄(n + 1) = (R̄D + ωR̄L − ωR̄)w̄(n) + ωp̄.

(32)

Now, let us define

w̄(n) = wo + �w(n) (33)

where wo is the optimum solution of the normal equation.
Writing the normal equation as

R̄wo = p̄ (34)

and using (33) and (34) in (32), we can write

(R̄D + ωR̄L)[wo + �w(n + 1)]
= (R̄D + ωR̄L − ωR̄)[wo + �w(n)] + ωR̄wo. (35)

By multiplying both sides of (35) from the left by (R̄D +
ωR̄L)−1, we obtained after some rearrangement

�w(n + 1) =
[
I − ω(R̄D + ωR̄L)−1R̄

]
�w(n). (36)

The result in (36) is a time-invariant equation with a system
matrix [I − ω(R̄D + ωR̄L)−1R̄], and its solution is

�w(n + 1) =
[
I − ω(R̄D + ωR̄L)−1R̄

]n+1
�w(0). (37)

According to the solution (37), if themaximum eigenvalue of
the systemmatrix satisfies

∣∣λmax[I − ω(R̄D + ωR̄L)−1R̄]∣∣ <

1, then [I−ω(R̄D+ωR̄L)−1R̄]n+1 → 0M×M for 0 < ω < 2,
ensuring that �w(n) → 0M×1 as n → ∞. Therefore, the
definition (33) shows that the expected value of the filter
weight vector converges to its optimum value as

w̄(n) = wo. (38)

Thus, the RSOR algorithm is an unbiased parameter estima-
tor for the optimal Wiener solution of the normal equation in
the mean sense.

3.2 Mean-square convergence analysis

The stochastic part of (30) can be written as

{
n∑

i=1

λn−i
[
R̃D(i) + ωR̃L(i)

]}
w̄(n + 1)

+
{

n∑

i=1

λn−i (R̄D + ωR̄L)

+
n∑

i=1

λn−i
[
R̃D(i) + ωR̃L(i)

]}
w̃(n + 1)

=
{

n∑

i=1

λn−i (R̄D + ωR̄L − ωR̄)

}
w̄(n)

+
{

n∑

i=1

λn−i (R̄D + ωR̄L − ωR̄)

+
n∑

i=1

λn−i
[
R̃D(i) + ωR̃L(i) − ωR̃(i)

]}
w̃(n)

+ω

n∑

i=1

λn−i p̃(i). (39)

Using definition (29), (39) can be rearranged as

{
n∑

i=1

λn−i (R̄D + ωR̄L)

}
w̃(n + 1)

=
{

n∑

i=1

λn−i (R̄D + ωR̄L − ωR̄)

}
w̃(n)

−
{

n∑

i=1

λn−i
[
R̃D(i) + ωR̃L(i)

]}
ŵ(n + 1)

+
{

n∑

i=1

λn−i
[
R̃D(i) + ωR̃L(i) − ωR̃(i)

]}
ŵ(n)

+ω

n∑

i=1

λn−i p̃(i). (40)
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Using (29) and (33), we can write the following equations

ŵ(n + 1) = wo + �w(n + 1) + w̃(n + 1) (41)

ŵ(n) = wo + �w(n) + w̃(n). (42)

If (41) and (42) are used in (40), then the last three terms on
the right-hand side of (40) become

−
{

n∑

i=1

λn−i
[
R̃D(i) + ωR̃L(i)

]}
[�w(n + 1) + w̃(n + 1)]

+
{

n∑

i=1

λn−i
[
R̃D(i)+ωR̃L(i)−ωR̃(i)

]}
[�w(n)+w̃(n)]

+ω

n∑

i=1

λn−i p̃(i) − ω

n∑

i=1

λn−i R̃(i)wo. (43)

Using (17), (18), and (34), the last termof (43) can be reduced
as follows

ω

n∑

i=1

λn−i p̃(i) − ω

n∑

i=1

λn−i R̃(i)wo

= ω

n∑

i=1

λn−i [x(i)d(i) − p̄
]

−ω

n∑

i=1

λn−i
[
x(i)xT(i) − R̄

]
wo

= ω

n∑

i=1

λn−ix(i)
[
d(i) − xT(i)wo

]

−ω

n∑

i=1

λn−i p̄ + ω

n∑

i=1

λn−i R̄wo

= ω

n∑

i=1

λn−ix(i)
[
d(i) − xT(i)wo

]
. (44)

If we define the error as

eo(i) = d(i) − xT(i)wo (45)

and consider the orthogonality between x(n) and eo(n) [4],
then the last term of (43) converges to the zero vector as

ω

n∑

i=1

λn−ix(i)eo(i) → 0M×1. (46)

In addition, the first two terms in (43) can be considered as the
weighted time averages of an ergodic process, and they are
equal to their expected values by the ergodicity assumption.
Based on the assumption of statistical independence between
the x(n) and ŵ(n), which is used in the analysis of the LMS
algorithm [4], the first two terms in (43) can be considered

zero vectors. Consequently, the last three terms on the right-
hand side of (40) converge to zero vectors, and therefore,
according to (40), the stochastic part of (30) can be reduced
to

{
n∑

i=1

λn−i (R̄D + ωR̄L)

}
w̃(n + 1)

=
{

n∑

i=1

λn−i (R̄D + ωR̄L − ωR̄)

}
w̃(n). (47)

Removing the deterministic quantities in (47), it can be
reduced to

(
R̄D + ωR̄L

)
w̃(n + 1) = (R̄D + ωR̄L − ωR̄)w̃(n). (48)

The following result is obtained by multiplying both sides of
(48) by (R̄D + ωR̄L)−1

w̃(n + 1) = [I − ω(R̄D + ωR̄L)−1R̄]w̃(n). (49)

To obtain the covariance matrix of the weight error vector,
the equation in (49) is multiplied by its transpose:

w̃(n + 1)w̃T(n + 1)

= [I − ω(R̄D + ωR̄L)−1R̄]w̃(n)w̃T(n)[I
−ω(R̄D + ωR̄L)−1R̄]T. (50)

Defining K(n) = E{w̃(n)w̃T(n)} and by taking the statisti-
cal expectation of both sides of (50), the following result is
obtained:

K(n + 1) = [I − ω(R̄D + ωR̄L)−1R̄]K(n)[I
−ω(R̄D + ωR̄L)−1R̄]T. (51)

Similar to (36), the solution of (51) can be written as

K(n + 1) = [I − ω(R̄D + ωR̄L)−1R̄]n+1K(0){[I
−ω(R̄D + ωR̄L)−1R̄]T}n+1. (52)

According to the solution given in (52), if the
maximum eigenvalue of the system matrix satisfies∣∣λmax[I − ω(R̄D + ωR̄L)−1R̄]∣∣ < 1, then [I − ω(R̄D +
ωR̄L)−1R̄]n+1 → 0M×M for 0 < ω < 2, ensuring that
K(n) → 0M×M as n → ∞ in the mean-square sense. In
addition, by using both (37) and (52), we can see that the
covariancematrix of theweight error vector,K(n), converges
to the zero matrix much faster than the weight error vector
in (37).
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3.3 Excess of mean-square error and misadjustment

Considering the filter output error e(n) = d(n) − y(n) as
defined in (4), let us denote themean-squared error as J (n) =
E[e2(n)]. TheMSE produced by an algorithm can be written
as [4]

J (n) = Jmin + E
{
w̃T(n)x(n)xT(n)w̃(n)

}
, (53)

where Jmin is the minimum MSE produced by the optimum
Wiener filter given as Jmin = σ 2

d − p̄Two in which σ 2
d is the

variance of the desired signal d(n), and the excess of MSE
defined by Jexc(n) = J (n) − Jmin [4] can be written for the
RSOR algorithm to have the form

Jexc(n) = trace{R̄K(n)}. (54)

It is seen from (52) and (54) that Jexc(n), and therefore the
misadjustment,which is defined byM = Jexc(∞)/Jmin, con-
verges to zero as n → ∞. Thus, similar to theRLSalgorithm,
the RSOR algorithm converges to zero excess of MSE value
and zero misadjustment value.

3.4 Choice of filter parameters

According to (10)–(12), there are two initial parameters for
the RSOR algorithm, ω and δ, whereas the RGS algorithm
has one initial parameter, δ [16]. Typical values of the δ para-
meter are δ = 1, 0.1, 0.01, . . ., and it is an initialized the
autocorrelation asR(0) = δIM×M . Similar to the RGS algo-
rithm, δ can be used to control the convergence speed of the
parameter estimation vector in the initial steps of the RSOR
algorithm.The secondparameterω is knownas the relaxation
parameter, and it can also be used to control the convergence
speed of the RSOR algorithm. The initial parameters ω and
δ both affect the convergence speed of the RSOR algorithm,
and they must be chosen carefully in the initial steps of the
algorithm. According to the analysis of the iteration matrix
of the RSOR algorithm in (36), a more suitable condition for
convergence can be established easily for uncorrelated input
signals. When the autocorrelation matrix is decomposed as
R̄ = Q�QT, where the columns of Q contain the eigenvec-
tors of R̄ and the diagonal matrix� contains the eigenvectors
of R̄, the iteration in (36) is written as

�w(n + 1) =
[
I − ω(R̄D + ωR̄L)−1Q�QT

]
�w(n). (55)

If the input signal x(n) is uncorrelated and zero mean, the
correlation matrix becomes R̄ = σ 2

x IM×M and thus, (55)
reduces to

�w′(n + 1) = [I − ω(σ 2
x )−1]�w′(n) (56)

where�w′(n) = QT�w(n) is the rotatedweight error vector
[5]. For the iteration (56) to converge, the absolute values of
the diagonal elements of the iteration matrix must be less
than 1:
∣∣∣1 − ω(σ 2

x )−1λi

∣∣∣ < 1 for i = 1, . . . , M. (57)

Thus, the following result, which is the same as that for the
accelerated EDS algorithm [14], is obtained from the above
inequality for uncorrelated Gaussian input signals:

0 < ω <
2σ 2

x

λmax
(58)

where λmax is the maximum eigenvalue of R̄. The result in
(58) is valid when an uncorrelated input signal is used, but
can also be a guide for highly correlated input signals.

4 Simulation results: system identification example

By ensemble-averaged computer simulations, the perfor-
mance of the RSOR algorithm is examined and compared to
that of the NLMS algorithm, the APA, the recursive inverse
(RI) algorithm [19], the RGS algorithm [16], and the RLS
algorithm. The simulation studies are performed using a sys-
tem identification problem described in [5]. The following
optimum parameter vector is used for the unknown system
impulse response

wo = [ 1.0 0.9 0.1 0.2 ]T. (59)

The filter length of algorithm is M = 4 taps, which is equal
to the length of the unknown system.

In the first simulation study for the system identification
example, the excitation signal of the unknown system was
generated using the following AR process:

x(n) = −1.20x(n − 1) − 0.81x(n − 2) + v(n) (60)

where v(n) is zero-meanwhiteGaussian noise sequencewith
variance σ 2

v = 1. Thus, the system is excited with a zero-
mean correlated input signal with variance σ 2

x = 5.863. The
eigenvalue spread of the autocorrelation matrix was com-
puted as 58.38. The system response is corrupted by an
additive white Gaussian signal, which is uncorrelated with
the input signal x(n). The SNR at the output of the system is
36dB. The following initial parameters are used in the simu-
lations. For the NLMS algorithm and the APA, the step size
parameter μ = 0.3. For the RI algorithm, μ0 = 0.00033,
μ(n) = μ0/(1 − λn), R(0) = 0M×M , and p(0) = 0M×1.
For the RGS algorithm, δ = 1, R(0) = δIM×M , and
p(0) = 0M×1. For the RSOR algorithm, ω = 1.5, δ = 1,
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Fig. 1 Comparison of the MSE curves of the NLMS, APA, RI, RGS,
RLS, and RSOR algorithms (ω = 1.5)

Fig. 2 Comparison of the normalized parameter error vector norms of
the NLMS, APA, RI, RGS, RLS, and RSOR algorithms (ω = 1.5)

R(0) = δIM×M , and p(0) = 0M×1. For the RLS algorithm,
R−1(0) = 10IM×M . The forgetting factor isλ = 0.995 in the
RI, RGS, RLS, andRSOR algorithms. The initial value of the
parameter estimation vector is the zero vector in all cases. All
simulation results were obtained by averaging 800 simula-
tions of all algorithms. Figure 1 shows theMSE curves for the
algorithms used. Figure 2 shows the ensemble-averaged nor-
malized values of the parameter error vector norms, defined
as

Δ = ∥∥ŵ(n) − wo
∥∥/‖wo‖ (61)

where the vector norm is computed as ‖w‖ = √
wTw.

The second simulation is performed to show the effect of
the ω parameter for the constant δ = 1. The MSE curves of
the algorithms for differentω values are shown in Fig. 3. The

Fig. 3 Comparison of the MSE curves for different ω values of the
RSOR algorithm and the other algorithms (δ = 1)

Fig. 4 Comparison of the MSE curves for different δ values of the
RSOR algorithm and the other algorithms (ω = 1.4)

third simulation study shows the effect of the δ parameter for
the constant ω = 1.4. The MSE curves of the algorithms for
different δ values are shown in Fig. 4. The initial parameter
values for the second and third simulations are the same as
those for the first simulation.

The ensemble-averaged simulation results in Figs. 1 and 2
show that the RSOR algorithm produces results that are very
close to the RLS results and better results than the results
obtained by the gradient-based algorithms. The RSOR algo-
rithm has a slightly better convergence rate than the RGS
algorithm forω > 1. Figure 2 also shows that the normalized
parameter error vector of the RSOR algorithm converges to
zero vector, i.e., the parameter estimation vector converges to
its optimum value. Also, the ensemble-averaged simulation
results in Figs. 1, 3, and 4 show that the RSOR algorithm
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approaches the same minimum MSE value with the RLS
algorithm, i.e., zero excess ofMSE andmisadjustment value.

5 Conclusion

In this paper, as a useful indication of performance, a sto-
chastic convergence analysis of parameter estimation vector
obtained by the RSOR algorithm was presented in the mean
and mean-square sense. It is shown that the RSOR algorithm
gives an unbiased estimate to optimum Wiener solution of
normal equation, and the obtained parameter estimations are
convergent in the mean and mean-square sense with zero
excess of MSE and zero misadjustment. The convergence
analysis results were verified by ensemble-averaged com-
puter simulations. The simulation results showed that the
RSOR algorithm has better convergence performance than
the gradient-based methods, a slightly better convergence
rate forω > 1with a slightly higher computational complex-
ity than the RGS algorithm, and comparable results obtained
by the RLS algorithm.
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