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Abstract The desired local feature descriptor should be
distinctive, compact and fast to compute and match. There-
fore, many computer vision applications use binary keypoint
descriptors instead of floating-point, rich techniques. In this
paper, an optimisation approach to the design of a binary
descriptor is proposed, in which the detected keypoint is
described using several, scale-dependent patches. Each such
patchis divided into disjoint blocks of pixels, and then, binary
tests between blocks’ intensities, as well as their gradients,
are used to obtain the binary string. Since the number of
image patches and their relative sizes influence the descrip-
tor creation pipeline, a simulated annealing algorithm is used
to determine them, optimising recall and precision of key-
point matching. The simulated annealing is also used for
dimensionality reduction in long binary strings. The pro-
posed approach is extensively evaluated and compared with
SIFT, SURF and BRIEF on public benchmarks. Obtained
results show that the binary descriptor created using the
resulted pipeline is faster to compute and yields compara-
ble or better performance than the state-of-the-art descriptors
under different image transformations.
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1 Introduction

Recently, many computer vision applications for object
recognition, tracking or scene reconstruction, have been
using local feature descriptors. Such descriptors capture
an image content that surrounds the detected keypoint and
express it in the form of a vector. Feature descriptors with
real-valued vectors produce the highest quality results, both
in terms of robustness and performance, against a variety
of image transformations. Scale-Invariant Feature Trans-
form (SIFT) [1,2] and Speeded Up Robust Features (SURF)
[3] approaches are such floating-point descriptors. However,
their computation time is long. Also, high dimensionality of
compared vectors has negative impact on the image match-
ing time. Therefore, binary descriptors have become more
attractive in recent years, since they are compact and faster
to compare using Hamming metric. In most cases, hand-
crafted binary descriptors are obtained using pairwise tests
between intensities of predefined parts of described image
patch, i.e., pixels or regions according to a sampling pattern
[4-8]. However, binary descriptors can be long, what requires
an additional procedure for their reduction. The bit selection
procedures use machine learning approaches [8—10] or opti-
misation [11,12].

In this paper, an approach to the design of the binary
descriptor is proposed. In the approach, 3.5M SURF key-
points were detected on 4000 transformed images. Then,
a simulated annealing (SA) algorithm [13,14] determined
a solution that maximised recall, as well as precision of
keypoint matching. The solution consists of a set of image
patches and their sizes. The patches are divided into dis-
joint pixel blocks. Finally, the binary string was created as a
result of pairwise tests on intensities and gradients of blocks.
Such binary string can be long; therefore, the SA was run
in order to determine the most important 128 or 256 bits.
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The main novelty of the proposed approach is the use of
the SA for optimisation of parameters of the binary descrip-
tor creation pipeline. The dimensionality reduction approach
of the binary descriptor with this optimisation technique is
also novel. The details of the descriptor and experimental
results showing its promising performance are presented in
the paper. SURF, SIFT and BRIEF [5] descriptors are evalu-
ated for comparison.

The remaining part of the paper is organised as fol-
lows. Section 2 provides a presentation of the state-of-the-art
approaches. A detailed description of the proposed method
can be found in Sect. 3. Extensive evaluation of the descriptor
on widely used image datasets is reported in Sect. 4. Section 5
concludes the paper.

2 Related work

A growing number of computer vision applications, incor-
porating different approaches to image content description,
reveal a tendency to construct faster, and still maintaining
desirable properties, solutions. Many of them are focused
on interest point (keypoint) description [15-18]. Here, a
keypoint is a meaningful pixel group which is repetitively
detected in spite of different image transformations (e.g.,
illumination, viewpoint change, or rotation). SIFT [2] is
the keypoint detector and the descriptor. This technique
produces high-quality results, both in terms of robustness
and performance against common image transformations.
In SIFT, keypoints are found using difference of Gaus-
sians applied in scale space. However, the keypoint detection
approach present in SIFT requires time-consuming rescaling
and smoothing of the image. Furthermore, high dimension-
ality of the descriptor (128 values) slows keypoint matching.
Another, high-dimensional, real-valued descriptor that in
some cases outperforms SIFT is SURF [3]. The method
is based on SIFT, but it incorporates many simplifications
reducing its complexity. In SURF, the orientation of the key-
point is extracted from a circular region with scale-dependant
radius. The descriptor is created by union of vectors resulted
from sums of horizontal and vertical Haar wavelet responses
and their absolute values calculated for a square region cen-
tred at the keypoint. Here, the descriptor consists of 64
floating-point values.

In comparison with newly developed approaches, the
performance of SIFT (and SURF) has not been signifi-
cantly outperformed [18]. However, in order to speed up
the keypoint description and to reduce the dimensionality
of the descriptor, binary descriptors have been introduced.
Most of them apply pairwise tests between intensities of
image regions or pixels according to some sampling pattern.
Intensity comparison makes these solutions robust to photo-
metric changes. Binary Robust Invariant Scalable Keypoints
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(BRISK) [4] uses AGAST [19] corner detector to find key-
points; then, a circular pattern with equally spaced points
is used in binary tests. In this technique, the orientation of
the keypoint is estimated using local gradients between the
sampling pairs. In Binary Robust Independent Elementary
Features (BRIEF) [5], the binary vector is obtained in tests
between the intensities of point pairs along the same lines.
Points are selected randomly from an isotropic Gaussian dis-
tribution. Since it is not rotation invariant, Oriented FAST
and Rotated BRIEF (ORB) [6] was developed. The sampling
pairs in ORB are determined in a learning process involving a
greedy algorithm working on 300K keypoints, maximising
the amount of information carried by the descriptor. Here,
FAST [20] detects keypoints. The dominant orientation in
ORB is obtained using the intensity centroid approach [21].
In spite of introduced improvements, ORB performs bet-
ter than BRIEF only in presence of large rotation or scale
change [17]. In Fast Retina Keypoint (FREAK) [7], the
sampling pattern was inspired by the human visual system.
Here, the learning process is similar to ORB’s with addi-
tional rejection of correlated pairs. The orientation of the
keypoint is estimated using local gradients of 45 sampling
pairs. FREAK seems to be outperformed by other binary
descriptors according to [22,23]. In recently developed Local
Difference Binary (LDB) [8, 11] descriptor, in turn, the image
patch of a predefined size (e.g., 45 x 45, 50 x 50 pixels [11])
is divided into 4, 9, 16 and 25 square cells. Then, binary tests
between values representing cells are applied. In this binary
descriptor, gradients are compared, as well as cells’ mean
intensities. AdaBoost-based important bit selection method,
working on 400K patches from [24], is applied to produce
256 bit binary strings. The orientation of the keypoint is
estimated using the intensity moments. In works [9,10], a
supervised learning framework that finds low-dimensional
descriptors is proposed. Here, the content of the image patch
is modelled using local nonlinear filters that are selected with
boosting. Boosting also helps in selection of the most impor-
tant bits. In another approach [12], the descriptor design
and its dimensionality reduction are formulated as convex
optimisation problems involving separation of positive and
negative patches. The solutions are found using support vec-
tor machine (SVM) solvers.

3 The approach

In the following subsections, the proposed binary descriptor
is presented. At first, its design is formulated as an opti-
misation problem. Then, a simulated annealing algorithm is
used to determine its creation pipeline. Finally, the simulated
annealing is used for dimensionality reduction in long binary
strings.
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3.1 Optimisation problem

The proposed approach is partially inspired by Multiscale
Block Local Binary Pattern (MBLBP) [25], in which authors
propose to compare average intensities of neighbouring
blocks of pixels in order to create a binary string. In MBLBP,
three patches with 3 x 3,9 x 9, and 15 x 15 pixels are divided
into nine blocks (cells). MBLBP is a dense descriptor typ-
ically applied to all pixels in the image. Here, the binary
string is created by concatenation of strings obtained for three
patches. The pairwise tests are performed only between some
cells. It is worth mentioning that BRISK descriptor was also
inspired by the dense approach (DAISY [26]). MBLBP uses
only three image patches, and their sizes are given in pixels.
The similar limitation can be seen in [11]. The approach pro-
posed in this paper follows the idea of nine cells (pixel blocks)
for the image patch. Moreover, the number of image patches
and their sizes for the pipeline of creation of the descriptor
are found in optimisation experiments. The proposed solu-
tion also uses intensity gradients inspired by SURF.

The variability in the pipeline of the creation of the
descriptor caused by the number of used patches and their size
expressed in terms of relation between the length of patch’s
side and the kyepoint’s scale, has led to the formulation of
the following optimisation problem. In the problem, preci-
sion and recall of keypoint matching were maximised. At the
beginning, a keypoint detector generates M; keypoints for an
input image i,i = 1,..., N, where N denotes the number
of input images. The keypoint KX (K = 1,..., Kl-M") is
described with the help of P image patches. Each patch p
(p = 1,..., P) has its keypoint’s scale multiplier S, and
nine square pixel blocks Bj ,J =1,...,9. The §, deter-
mines the size of the patch, i.e., the patch’s side in pixels
is equal to S, multiplied by the keypoint’s scale. The Bls,—th
block is centred at the keypoint’s location (x, y). In order
to create the binary descriptor, pairwise tests are performed
between blocks’ intensities. Such test returns true (1) if a dif-
ference of values is smaller than 0, and false (0), otherwise.
Since blocks for the p-th patch have the same number of pix-
els, sums of their intensities (/ (B;’,)) can be compared. This
solution is motivated by efficient calculation of such sums
using the integral image technique [3,27]. Also, the first-
order intensity gradients in the x and y directions (Dx(B,],)
and Dy(B{,)) are computed using Haar-like box filters and
the integral image, as in SURF [3]. Gradients for B,J,—th
block are obtained for its central pixel. The results of pair-
wise tests performed on gradients, in a form of the binary
vector, are added to binary strings obtained for intensity 1.
Finally, for the p-th patch 108 binary tests are performed,
and for the K lk -th keypoint 108 P-bit string is obtained.
Exemplary image patches and their division are presented
on Fig. 1.

\
[,
||

B

Gl

B
L mv
Fig. 1 An exemplary four image patches centred at the keypoint and
their division

The number of image patches P and multipliers S can
be seen as decision variables in the optimisation problem.
Since precision and recall measures [17] reflect the quality
of performance of a given local feature descriptor in image
matching tests, they can be used as an objective function.
Precision counts correctly matched pairs out of all returned
matches, while recall, in turn, counts such pairs out of corre-
sponding pairs. Higher values of both metrics are considered
better; therefore, their multiplication was used as the objec-
tive function in the proposed approach.

3.2 Descriptor design using simulated annealing

The simulated annealing algorithm (SA) [13, 14] reflects phe-
nomena observed while slow cooling of molten metals. The
annealing process achieves the global minimum state using
random fluctuations in energy. Such fluctuations help the
process to escape local minima. The SA algorithm requires
definitions of: (1) a vector of decision variables x, (2) an
objective function Fc(x), (3) a method G(x) for generation
of a neighbouring solution x’, based on information stored in
X, (4) a temperature drop 7', and (5) an acceptance criteria of
a weaker solution F4 (x, x’, T). The temperature drop T can
be seen as the number of iterations of the SA. The algorithm
consists of the following steps:

1. Create random x
2. Calculate F¢(x)
3. While T > Tj,,p then:

(a) Create x’ = G(x)

(b) Calculate F¢(x)

(c) If Fe(x') is better than F¢(x) or Fa(x, x’, T) accept
x,x=x

(d) Decrease T'.

F 4 is calculated as follows:

AFc

Fa(x,x',T)=¢eT, (1)

@ Springer
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where % expresses the difference between values of F¢ (x)
and F¢ (x'). T is iteratively decreased, at the beginning caus-
ing that weaker solutions to have a higher chance to be
accepted, i.e., if F4 is larger than arandomly selected number
in the range [0, 1), the solution x’ is accepted.

The problem of determination of the descriptor creation
pipeline is solved using the SA, x in this case refers to find-
ing P and S. For the important bit selection problem, or
dimensionality reduction, the solution x takes a form of a
binary vector indicating which bits are used while maximis-
ing Fc(x) and reducing the descriptor’s binary string to a
given length (e.g., 128, 256 bits). F¢ is given as

N
Fo(x) = Z P.R;, (2)
i=1

where P denotes precision, R recall, and i is the input image.
The G(x) function changes values in S, and adds or rejects
the patch p. In the dimensionality reduction problem, G(x)
selects a predefined number of the most important bits ran-
domly changing information carried by x.

The choice of the SA was motivated by its simplicity, in
terms of implementation, and the small number of parame-
ters. Furthermore, the proposed objective function does not
require a process of preparation of negative examples, as in
approaches with SVM or boosting. Population-based opti-
misation algorithms (e.g., genetic, immune, or swarm) were
also taken into consideration. They evaluate and reject many
solutions in iterations, since each solution requires time (and
memory)-consuming computation of the objective function;
the SA seems to be a reasonable approach, providing accept-
able results with fewer objective function calls.

Once P and S are obtained, K lk keypoints are generated
by a keypoint detector on the input image i. It is assumed
that the detector provides keypoints with scales. Then, the
keypoints are described in the following manner:

1. For each keypoint K lk

(a) Select p =1, ..., P patches with size S,0 x S0,
where o denotes keypoint’s scale (in pixels).
(b) For each patch
i. For each B, block, j = 1,..., 9, within the p-
th patch: Calculate 1 (B}), Dy (B}), and D, (B;,)
associated with the centre of the block.
ii. Perform 9!/(2! x 9!) = 36 pairwise tests for
1(B}), Dx(Bj},) and Dy(B}).
(c) Concatenate 108 P binary strings into the descriptor
of the keypoint K lk .

The dominant orientation of the detected interest point

is estimated using wavelet responses in horizontal and ver-
tical direction. A similar step is present in SURF, but here
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only half-wavelet responses are used. The orientation helps
to determine the position of the central pixel of each outer
block (B}, j # 5).

4 Experiments

In the following subsections, experiments on the design of the
pipeline for the creation of the descriptor and the most impor-
tant bit selection are presented. Then, the resulting descriptor
family is evaluated on public benchmarks.

4.1 Optimisation

For the design of the descriptor’s pipeline, 1K images were
randomly selected from 25 K MIRFLICKR dataset [28]. The
dataset consists of images downloaded from the social pho-
tography site Flickr. They were rotated (90° and 45°) and
scaled (1/2 and 2/3). Then, 225 images from Phos dataset
[29] were added to the resulting dataset. Phos contains 15
scenes captured under different illumination conditions (i.e.,
uniform and nonuniform). Each scene has selected one base
image. It can be seen that the number of images being under
different illumination changes is significantly smaller than
rotated or scaled images. Since constructed binary descriptor
uses pairwise intensity tests, it is, like other binary descrip-
tors, robust against illumination changes. Therefore, this part
of the learning dataset was smaller.

3,519,420 keypoints were detected by SURF on 5225
images, prior to the optimisation experiments. Integral
images for the learning dataset, as well as lists of keypoints
have large memory requirements, thus only one solution, x,
was evaluated at a time, i.e., in terms of calculation of the
objective function F,. onused CPU with 16 GB RAM. The SA
maximises Fc (see Eq.(2)) which uses precision and recall
metrics. For a given input image, precision was calculated
as the number of correct matches, i.e., the number of corre-
sponding pairs of keypoints between the base image and the
distorted one, to the number of all returned pairs. The match
was accepted if a distance ratio between the first and the sec-
ond close described keypoint on the second image was below
or equal a threshold of 0.8 [2,17] and the location of the key-
point on the second image was within three pixels from the
expected location. The expected location of the keypoint was
inferred using homography [17]. 4K distorted images from
MIRFLICKR were matched with the original 1 K images, and
15 reference images were selected from Phos for the same
purpose. Since the dataset consists of 4210 pairs of images
and used metrics have maximum value equal 1, the best (max-
imal) possible objective function value is 4210. This would
indicate the case in which each detected keypoint was suc-
cessfully matched. Due to image transformations, such large
F, value was not likely to be found.
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Table 1 Objective function values obtained in experiments

Optimisation problem  Maximum  Minimum  Mean SD
Descriptor design 2119.1 2093.3 2106.3 5.6
Selection of 256 bits 2069.9 2060.3 2064.3 2.9
Selection of 128 bits 2004.1 1975.1 1987.5 74

The SA was run 30 times with Ty, = 1. The T

was decreased using Tyexr = 0.97,4 in 100 iterations of
the algorithm. The maximal possible number of patches P
was set to 15, values of scale multipliers S, were selected
in range 1 to 150 with step 1. Scale multipliers could be
floating-point values but the use of integers significantly
reduced the search space of the SA algorithm. Table 1 con-
tains mean, maximal, minimal and standard deviation of the
objective function of solutions obtained in experiments. The
best binary descriptor was the input to the second optimisa-
tion problem of finding the most 128 or 256 important bits.
The dimensionality of the binary vector was reduced since
it affects the matching time and the storage cost. Parame-
ters of the SA for the second problem remained unchanged.
It can be seen, the obtained mean values are promising,
and the results are characterised by small standard devia-
tions. The best result (Fc(xpes;) = 2119.1) was obtained
for the set of P = 12 patches with the following multipli-
ers S, = [7, 10, 16, 19, 23, 28, 30, 34, 44, 56, 69, 89]. This
gives the descriptor with 1296 bits. For comparison, objec-
tive function calculated for SURF approach was equal to
1642.2; BRIEF obtained F¢ = 136.7 and SIFT 2889.6. SIFT
used its own detector to generate keypoints, thus about half
of the number of SURF keypoints were detected. The pro-
posed descriptor using SIFT keypoints yielded F¢ = 2744.3.
They seem to be more suitable, but in experiments previ-
ously detected SURF points remained, since their number
was larger, making F¢ optimisation more difficult.

The creation of the descriptor using twelve patches can
be time-consuming. Therefore, a simplified version of the
descriptor was used. It contains only four patches (432 bits)
with S, =[5, 10, 15, 20], and obtained Fc = 1683.9 with
SUREF keypoints.

4.2 Evaluation

Evaluation of the proposed descriptor was made using two
publicly available, widely used, Mikolajczyk et al. [15]
(Oxford) and Heinly et al. [17] datasets. They contain image
sequences with known homography between the first image
in the sequence of images and the others. There are six to
nine images in each sequence. Images exhibit an increas-
ing amount of transformations, such as rotation (sequences:
Ceiling [17], Rome [17], Semper [17]), scaling (Venice [17]),

rotation with scaling (Bark [15], Boat [15]), view point
change (Wall [15], Graffiti [15]), blur (Bikes [15], Trees [15]),
illumination (Day and night [17]), exposure (Leuven [15])
and JPEG compression (Ubc [15]).

SUREF, SIFT and BRIEF were selected for comparison due
to their high performance reported in many works. BRIEF
(512bit) is representative of binary descriptors, and its per-
formance was confirmed in work [17], despite being not
fully rotation and scale invariant. The proposed descriptor,
since then called Optimised Binary Robust fAst Features
(OBRAF), is represented by its three versions, with 1296,
256, 128-bit vectors (twelve patches) and simple 432-bit ver-
sion with four patches (nonoptimised BRAF). For each image
pair, about 1 K SURF keypoints were detected and described.
SIFT generated similar number of keypoints and described
them, since, in the spirit of fairness, SIFT descriptor should be
coupled with its own detector. Keypoints were matched using
the same protocol as in the experiments with the optimisa-
tion. For comparative analysis, precision and putative match
ratio [17] were used. Precision of matching has a practical
significance, since all returned pairs often undergo further
processing, e.g., using RANSAC [30]. Putative match ratio
(PMR) counts how many detected keypoints were returned
as matched. This measure is influenced by the descriptor’s
ability to differentiate similar image regions, and could be
understood as a measure of distinctiveness of the descriptor.
In some cases, the keypoints can be detected close to each
other.

Figure2 shows mean values of the precision and PMR
results obtained for both datasets. For all 13 image sequences,
OBRAF family of descriptors was better, in terms of pre-
cision values, than one of the compared floating-point
descriptors. For the PMR metric, OBRAF descriptors were
better than one of the floating-point counterparts for seven
image sequences. BRIEF was outperformed by the other
methods, even in tests without rotation and scale changes.
The simplified version of the proposed descriptor, BRAF, in
some cases performed better than SIFT or SURF. Since mean
values were presented, the behaviour of the descriptors can-
not be seen in the most difficult tests, i.e., when the metrics
are evaluated for the last images in the sequences. There-
fore, Recall versus I-Precision curves obtained for the last
images in sequences, considered as the most challenging,
are shown on Fig.3. Here, the proposed descriptor family
achieved comparative or better performance than floating-
point descriptors. In the Night and day sequence, BRIEF
performed quite well, since it was designed for such trans-
formation.

Table2 contains comparison of descriptor computation
time. Since most descriptors in original works were com-
puted on similar or faster machines using different num-
bers of keypoints, the table contains timings per keypoint.
OBRAF is implemented in Java as a single-threaded appli-
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Fig. 2 Mean precision (a) and mean putative match ratio (b) for descriptors evaluated on Mikolajczyk et al. [15] and Heinly et al. [17] datasets
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Fig. 3 Recallversus 1-Precision curves for compared descriptors eval-
uated on Mikolajczyk et al. [15] and Heinly et al. [17] datasets. Curves
were obtained using the last image in a given image sequence. The name
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Table 2 Descriptor computation time (per keypoint)

Name Length (bits) Computation time (ms)

OBRAF 1296, 256, 128 0.027*°, 0.044*

BRAF 432 0.011*©, 0.026*

SIFT 1024 6.156 [4], 0.407*

SURF 512 0.43 [4], 0.66 [5], 0.67 [8], 0.15*
BRISK 512 0.037 [4], 0.026 [8]

BRIEF 512 0.0187° [5], 0.053*©

ORB 256 0.056 [8]

LDB 256 0.048 [8]

FREAK 512 0.039 [8]

Results with * were obtained in experiments reported in this paper (Java
implementations), © denotes an approach, in which the orientation of
the keypoint is not estimated

cation, and all presented experiments were run on Intel Core
i7-2720QM 2.2 GHz, 16 GB of RAM, Microsoft Windows
7, and Java 8.0. Therefore, BoofCV [31] (Java) implemen-
tations of SIFT, SURF and BRIEF were used. SURF in
BoofCV library is faster and produce better results than many
widely used SURF implementations, e.g., OpenSurf, ETH or
OpenCV [31]. It can be seen that OBRAF descriptor fam-
ily obtained similar or better computation time than other
descriptors. A simplified OBRAF version (BRAF), in which
the dominant orientation is not estimated, is computed in
0.011ms, 0.5 times faster than BRIEF that also does not
incorporate this operation. It significantly outperforms other
compared approaches. Cited descriptors were implemented
in C++, and their computation time was mostly optimised.
OBRAF’s computation consists of many steps which are
independent, e.g., each patch and each block within the patch
can be processed independently what makes the descriptor
easy to parallel. Therefore, some further improvements in
shortening the computation time are expected.

The matching time is strongly affected by the descrip-
tor length, and binary vectors can be efficiently compared
(Hamming distance) on modern CPUs using binary XOR
and population count instructions. The state-of-the-art sparse
binary descriptors are seldom shorter than 128 bits. Since 128
and 256-bit OBRAF versions yielded promising performance
results, they would also offer the state-of-the-art matching
time.

5 Conclusions

In this paper, a novel descriptor, OBRAF, is proposed as
a result of an optimisation approach to the design of the
descriptor creation pipeline. The SA algorithm was used to
solve two problems. At first, it determined the number of
patches and their sizes used for the description of the inter-

est point. Then, the solution of the dimensionality reduction
problem was found. In both cases, recall and precision of
keypoint matching were used as the objective function. The
obtained descriptor family was evaluated on two popular
image datasets. Experimental results showed that OBRAF
is faster than the state-of-the-art descriptors while maintain-
ing comparable or better performance under different image
transformations.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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