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Abstract This paper presents an automatic method of
computing a high-resolution adaptive time–frequency dis-
tribution. A recently developed locally adaptive directional
time–frequency distribution (ADTFD) achieves high energy
concentration and cross-term suppression, but it requires
manual tuning of certain parameters. One set of parame-
ters is not applicable to all types of signals. Moreover, the
ADTFD fails to achieve optimum results when a given signal
has both short-duration signal components and close compo-
nents. This paper overcomes the limitation of the ADTFD by
locally adapting the shape of the filter. Experimental results
demonstrate the efficacy of the proposed approach for a large
class of signals.

Keywords Double-derivative directional Gaussian lter ·
Adaptive directional time–frequency distribution · Cross-
term · Wigner–Ville distribution

1 Introduction

Studying the signal’s structure simultaneously in both time
and frequency domains can be done by projecting the signal
onto the time–frequency plane. The possibility of tracking
the mutation of the signal’s spectral content in time, which is
typically represented by amplitude and frequency variations
in the signal components, is provided by such projections that
are called time– frequency representations (TFRs) [3]. There
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exist two main TFR classes: linear and quadratic. Linear
TFRs are easy to compute but suffers from low resolution. A
thorough review of liner TFRs such as the windowed Fourier
transform (WFT), wavelet transform (WT) and their syn-
chrosqueezed versions (SWFT, SWT) is presented in [3].
The quadratic class offers higher resolution. The core repre-
sentative of the quadratic class of TFRs is the Wigner–Ville
distribution (WVD). The WVD is obtained by taking the
Fourier transform (FT) of an instantaneous autocorrelation
function expressed as [2]:

Wz(t, f ) =
∫

R

z
(
t + τ

2

)
z∗

(
t − τ

2

)
e−2 jπ f τdτ (1)

where z(t) is the analytic associate of a real signal s(t)
obtained by the use of the Hilbert transform. The WVD
defined in Eq. 1 gives perfect localization for mono-
component signal of linear frequencymodulation (LFM), but
it produces undesired cross-terms for nonlinear frequency-
modulated (FM) ormulti-component signals due to toomany
correlations. Filtering of the WVD removes cross-terms
according to a kernel design, thus resulting in the quadratic
time–frequency distributions (TFDs) [2].

ρ(t, f ) = γ (t, f ) ∗
t
∗
f
Wz(t, f ) (2)

where γ (t, f ) is the 2D (t, f ) smoothing kernel. Previous
studies have shown that in case of quadratic class, separable
kernel TFDs such as the extended modified B distribution
(EMBD) and compact kernel distribution (CKD) can pro-
duce high-resolution TFDs [2,10]. The parameter of such
TFDs is usually optimized manually, but there are many
automatic methods such as the one presented in [7]. Separa-
ble kernel methods do not have any parameter to adapt the
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direction of their smoothing kernels. Hence, the limitation of
such separable kernel TFDs is their inability in concentrating
energy for the signals with a certain direction of energy in
the (t, f ) plane [2]. This problem can be solved to certain
extent by using time–frequency representations that take into
account directions, e.g., multi-directional TFDs [2]. These
methods fail to achieve optimum energy concentration when
auto-terms of signal components overlap with cross-terms in
ambiguity domain.

In order to prevail the problems affiliated with designing a
single kernel for all points in the (t, f ) plane, adaptive kernel
TFDs have been developed including the adaptive optimal
kernel TFD (AOK-TFD) and adaptive fractional spectro-
gram (AFS) [1,4,5,11]. The time-invariant adaptive kernel
TFDs are suitable for signals with a fixed (t, f ) direction
of energy distribution, while the time-varying ones, i.e., the
AOK distribution [4,6] provides higher (t, f ) concentration
for signals with time-varying (t, f ) direction. Both of the
AOK and AFS methods are limited in concentrating energy
in case signal components have significant variation in their
relative amplitudes [6]. The ADTFD is recent method that
optimizes direction of the smoothing kernel locally [6]. The
limitation of this technique is its manual tuning of filter para-
meters which cannot be adapted locally. This work defines an
automaticmethod for locally adapting the filter parameters in
ADTFD, thus resulting in a new variant of theADTFDwhich
is namedas highly adaptive directionalTFD(HADTFD).The
rest of the paper is organized as follows. The HADTFD is
defined in Sect. 2. Results are presented in Sect. 3. Section 4
concludes the paper.

2 Highly adaptive directional TFD

2.1 Adaptive directional TFD

In ADTFD, the angle of the smoothing kernel is adapted
locally by exploiting the direction of the signal energy in
(t, f ) plane. The ADTFD is defined as [6]:

ρ(adapt)(t, f ) = ρ(t, f ) ∗
t
∗
f
γθ (t, f ) (3)

where γθ (t, f ) is the adaptive directional kernel. Its shape
is determined by θ . The parameter θ is adapted in a (t, f )
plane, at each point. The direction of a smoothing kernel
for any given (t, f ) point is estimated by maximizing the
correlation of the directional kernel with the modulus of a
quadratic TFD [6].

θ(t, f ) = argmax
θ

∣∣∣∣∣∣|ρ(t, f ) | ∗
t
∗
f
γθ (t, f )

∣∣∣∣∣∣ (4)

The smoothing kernel in this method is the double-derivative
directional Gaussian lter (DGF).

γθ (t, f ) = ab

2π

d2

d f 2θ
e−a2t2θ −b2 f 2θ (5)

where the rotation angle with respect to the time axis is
θ, tθ = t cos(θ) + f sin(θ), fθ = −t sin(θ) + f cos(θ).
The DGF spread along time or frequency axis is controlled
by parameters a and b [6].

2.2 The proposed method

In ADTFD algorithm, selection of different parameters of a,
b andwindow length affect the presence of the cross-term and
(t, f ) resolution. In order to achieve optimum performance,
both shape and direction of the smoothing kernel should be
adapted locally at each point in the time–frequency plane.
This leads to the definition of the fully adaptive method:

ρFADTF(t, f ) = ρ(t, f ) ∗
t
∗
f
γa,b,θ (t, f ) (6)

where γa,b,θ (t, f ) is the same directional DGF defined in
Eq. 5, but now it is optimized both for all three parameters that
are a, b and θ . The optimization criterion for angle is already
defined in Eq. 4. For the optimization of the shape parame-
ters, we exploit the fact that for less extensive smoothing
auto-terms have little change in the amplitude. However, as
smoothing becomes more extensive the amplitudes of auto-
terms decrease and the amplitudes of the cross-terms rapidly
lead to zero [8]. Based on this observation, the following
procedure is adopted to optimize the shape parameters of the
fully adaptive method:

– Analyze the given signal using a number of adaptive
directional kernels.

ρi (t, f ) = ρ(t, f ) ∗
t
∗
f
γai ,bi ,θ (t, f ) (7)

where i = 1 to L . The parameters of the directional
kernels are adapted such that smoothing becomes more
intense as for increasing values of i .

– For each (t, f ) point, compute the difference between
two consecutive ADTFDs.

�ρi (t, f ) = ρi+1(t, f ) − ρi (t, f ) (8)

– The parameters that lead to the minimum difference
between two ADTFDs are selected as the desired shape
parameters for that (t, f ) point.

(a, b) = argmin
(ai ,bi )

|�ρi (t, f )| (9)
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Fig. 1 Algorithm for implementing highly adaptive directional time–
frequency distribution

– The desired value for a given (t, f ) point is then obtained
by taking average of two ADTFDs that lead to the mini-
mum difference.

The aforementioned steps are also illustrated in Fig. 1. Note
that the aforementioned optimization for the shape of the
smoothing kernel is done locally for each (t, f ) point. In
order to reduce time complexity of the algorithm, and based
on the mentioned principle, a is selected in the range of 2–4
and b is selected in the range of 8–30. For producing each
ADTFD, the EMBD is used as the underlying distribution
based on the previous work [4].

3 Results and discussion

In order to demonstrate the efficacy of the proposed method,
we consider two synthetic signals and two real-life EEG sig-
nals.

3.1 Synthetic signals

In this section, we demonstrate the efficacy of the proposed
method through simulations both on the basis of visual and

quantitative analysis. Specifically, we consider the scenario
where we have both close signal components and short-
duration transients.

3.1.1 First example

Let us consider a multi-component signal which consists of
four nonlinear FM signals and a Gaussian atom. The ampli-
tudes of the chirps are selected in such a way to ensure the
presence of both strong and weak components. The signal
can be expressed as:

s(t) =

⎧⎪⎪⎨
⎪⎪⎩

s1(t) + s2(t) + 0.5s3(t) + 0.5s4(t)

+ s5(t) + s6(t) 0 ≤ t ≤ 255

0 otherwise

(10)

where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s1(t) = cos(0.1π t + 0.000002π t3)

s2(t) = cos(0.15π t + 0.000002π t3)

s3(t) = cos(0.9π t − 0.000001π t3)

s4(t) = cos(0.95π t − 0.000001π t3)

s5(t) = 2e−0.0015(t−94)2 cos(0.6t)

(11)

We compare the QTFD obtained from the proposed method
with AFS, AOK-TFD [4], adaptive directional TFD and S-
method [8], as shown in Fig. 2. The parameters of other TFDs
have been optimized based on visual inspection to maximize
their energy concentration and resolution properties. Figure 2
shows that the S-method has failed to distinguish close sig-
nal components. The quadratic chirps are resolved by AFS,
but the energy leakage between the close component peaks
is observable. The AFS has failed in concentrating signal
energy for the Gaussian atom. The AOK-TFD gives good
resolution for the strong components, but it fails in concen-
trating energy for the components with low amplitude and
the signal energy for the Gaussian atom is strewed. In case
of the ADTFD, there is a compromise to either resolve the
close components or maintain the time and frequency sup-
port of Gaussian atoms. Closely spaced components in the
ADTFD with parameters (a = 2, b = 30) are resolved, but
the signal energy is scattered in the case of the Gaussian
atoms. The ADTFD with parameters (a = 3, b = 8) main-
tains the energy concentration of the Gaussian atom, but fails
to resolve the nearly spaced components. It can be seen that
HADTFD is very efficient in resolving both the strong and
the weak signal components without degrading the energy
concentration of the Gaussian atom. In general good time–
frequency resolution without the presence of the cross-terms
is achieved by using the HADTFD.
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Fig. 2 The TFDs of amulti-component signal composed of both short-
duration transients and nonlinearly frequency-modulated components.
aTheAFS ;b theAOK-TFD; c the S-method- basedTFD;d theADTFD
(a = 2, b = 20, WL = 64); e the ADTFD (a = 3, b = 8, WL = 3s2);
and f the FAADTFD

In order to test the robustness of the HADTFD to noise,
let us now repeat the same experiment by adding additive
white Gaussian noise with signal-to-noise ratio (SNR) equal
to 10 dB to the signal given in Eq. 11. From Fig. 3, it can be
observed that HADTFD can suppress the noise and resolves
close components without degrading the energy concentra-
tion of the Gaussian atom.

3.1.2 Second example

Let us now consider another signal composed of two
quadratic chirps and three Gaussian atoms, which is expres-
sed as:

q(t) =

⎧⎪⎪⎨
⎪⎪⎩

q1(t) + q2(t) + 0.5q3(t) + 0.5q4(t)

+ q5(t) 0 ≤ t ≤ 255

0 otherwise

(12)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1(t) = 2 cos(2π(0.075t + 0.0000015t3))

q2(t) = 2 cos(2π(0.05t + 0.0000015t3))

q3(t) = 4e−0.001(t−192)2 cos(2π ∗ 0.45t)

q4(t) = 4e−0.001(t−64)2 cos(2π ∗ 0.45t)

q5(t) = 4e−0.001(t−192)2 cos(2π ∗ 0.07t)

(13)

This nonlinear FM signal is analyzed using the AFS,
AOK-TFD, S-method, ADTFD (a = 2, b = 30), ADTFD
(a = 3, b = 8) and the proposed HADTFD. From Fig. 4,
it can be seen that the AFS maintains the time support of
Gaussian atom but has failed to resolve the close compo-
nent peaks. Figure 4 shows that the AOK-TFD strews the
signal energy for the Gaussian atoms. The S-method has
failed in resolving close signal components. The ADTFD
with parameters (a = 2, b = 30) is efficient in resolving
the nearly spaced components of the signal, but it distributes
signal energy for theGaussian atoms. TheADTFDwith para-
meters (a = 3, b = 8) maintains the energy concentration
of the Gaussian atoms but fails in resolving the components
with close frequency spectrum. The HADTFD has resolved
the close parts of the reference signal without suffering from
the problem of cross-terms andmaintains the energy concen-
tration of the Gaussian atoms.

Figure 5 shows the selected TFDs for the same signal with
the presence of additive white Gaussian noise with signal-to-
noise ratio (SNR) equal to 10 dB. From Fig. 5, it can be seen
that HADTFD suppresses the noise completely and resolves
close components without degrading the energy concentra-
tion of the Gaussian atoms.
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Fig. 3 The TFDs of a multi-component signal with additive white
Gaussian noise, composed of both short-duration transients and nonlin-
early frequency-modulated components. a The AFS ; b the AOK-TFD;
c the S-method-based TFD; d the ADTFD (a = 2, b = 20, WL = 64);
e the ADTFD (a = 3, b = 8, WL = 3s2); and f the HADTFD
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Fig. 4 The TFDs of amulti-component signal composed of both short-
duration transients and nonlinearly frequency-modulated overlapped
components. a The AFS; b the AOK-TFD; c the S-method-based TFD;
d the ADTFD (a = 2, b = 20, WL = 64); e the ADTFD (a = 3,
b = 8, WL = 32); and f the HADTFD

123



1374 SIViP (2016) 10:1369–1376

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

50

100

150

200

250

Frequency (Hz)

Tim
e (

s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

50

100

150

200

250

Frequency (Hz)

Tim
e (

s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10

20

30

40

50

60

Frequency (Hz)

Tim
e (

s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

50

100

150

200

250

Frequency (Hz)

Tim
e (

s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

50

100

150

200

250

Frequency (Hz)

Tim
e (

s)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

50

100

150

200

250

Frequency (Hz)

Tim
e (

s)

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5 The TFDs of a multi-component signal with additive white
Gaussian noise, composed of both short-duration transients and non-
linearly frequency-modulated overlapped components. a The AFS ; b
the AOK-TFD; c the S-method-based TFD; d the ADTFD (a = 2,
b = 20, WL = 64); e the ADTFD (a = 3, b = 8, WL=32); and f the
HADTFD

3.2 Quantitative comparison

In order to quantitatively compare the performance of
HADTFD method with other mentioned TFDs for the above
experiments, a measure of TF energy concentration is used.
The discrete form of the concentration measure for a normal-
ized TFD (i.e.,

∑N
n=1

∑N
k=1 ρ(n, k) = 1 ) is shown as [9]:

M[Px ] �= Mp
p =

(
N∑

n=1

N∑
k=1

|ρ(n, k)|
1/p

)p

(14)

with p > 1. In case of high energy concentration TFD, the
aforementioned energy concentration measure has a lower
value and it has a higher value for a TFD with poor energy
concentration. The performance of all the selected TFDs for
signals s(t) and q(t) is given in Tables 1 and 2. TheHADTFD
has the lowest value, thus implying highest energy concen-
tration, which is also confirmed by the visual inspection.

Table 1 Performance comparison of selected TFDs for multi-
component signal s(t)

AFS AOK

8.6482e+10 5.6432e+12

S-method ADTFD (a = 2, b = 30)

2.1730e+10 8.2986e+8

ADTFD (a = 3, b = 8) HADTFD

4.3706e+8 3.8992e+8

Table 2 Performance comparison of selected TFDs for multi-
component signal q(t)

AFS AOK

2.4498e+11 1.4314e+13

S-method ADTFD (a = 2, b = 30)

4.2237e+10 2.0982e+09

ADTFD (a = 3, b = 8) FAADTFD

9.9023e+08 2.7052e+08
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Fig. 6 Two single-channel EEG signal. a The normal EEG signal; b
the seizure EEG signal
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Fig. 7 The TFDs of a seizure epoch. a The AFS ; b the AOK-TFD; c
the S-method-based TFD; d the ADTFD (a = 2, b = 20, WL = 64); e
the ADTFD (a = 3, b = 8, WL = 3s2); and f the HADTFD

3.3 Performance comparison using real-life EEG signal

Two types of EEG signal are illustrated using the selected
TFDs. The signal is recorded from patients suffering from
epilepsy. The recording includes both seizure and nonseizure
segments. Two segments of EEG signal with duration of 8 s
are sampled at 64 Hz. The first one is a nonseizure seg-
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Fig. 8 The TFDs of a normal epoch. a The AFS; b the AOK-TFD; c
the S-method-based TFD; d the ADTFD (a = 2, b = 20, WL = 64); e
the ADTFD (a = 3, b = 8, WL=32); and f the HADTFD
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ment which is recorded during the normal condition of the
patient (Fig. 6a). The other one is a seizure segment which is
recorded during seizure event from the same patient (Fig. 6b).
These segments are analyzed using the AFS, AOK-TFD, S-
method, ADTFD (a = 2, b = 30), ADTFD (a = 3, b = 8)
and the proposed HADTFD. Figure 7 shows the TFDs for
the normal signal, and Fig. 8 shows the TFDs for the seizure
signal. Both figures confirm that the HADTFD gives the best
performance in terms of suppressing cross-termswhilemain-
taining the quality of auto-terms.

3.4 Interpretation of results and computational cost
analysis

The HADTFD gives the best performance but at the expense
of extra computational burden. The computation of the
HADTFD involves optimization of both angle and shape
parameters, which is done by computing L number of
ADTFDs. So the computational cost of the proposed appro-
ach is L times the computational cost of the ADTFD. For a
TFD of dimensions N × M , the computational cost of the
ADTFD as given in [2] is O(NM logM + K NM), where K
is number of quantization levels used for angle optimization.
So the computational cost of fully adaptive method becomes
O(LNM logM + LK NM).

4 Conclusion

In this research, a generalization of adaptive directional TFD
has been presented by automatically adjusting the shape para-
meters of adaptive directional TFD locally at each point int
the (t, f ) plane. The new method is named highly adap-
tive TFD (HADTFD). It has been shown that by locally
adapting the size of the DGF, HADTFD overcomes the lim-
itation of adaptive directional TFD in analyzing signals that
have both short-duration and close components. Moreover, it
provides an optimization method for ADTFD, requiring no
additional inputs from the analyst except the analyzed signal.
Performance of theHADTFDdepends on the underlying dis-
tribution. Experimental results show that the HADTFD gives

high energy concentration without suffering from cross-
term interference problem. The limitation of the proposed
approach is its high computational cost as compared to exist-
ing methods. This problem can be mitigated to certain extent
by parallel computation of TFDs.
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