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Abstract Techniques for finding regularized solutions to
underdetermined linear systems can be viewed as imposing
prior knowledge on the unknown vector. The success ofmod-
ern techniques, which can impose priors such as sparsity and
non-negativity, is the result of advances in optimization algo-
rithms to solve problems which lack closed-form solutions.
Techniques for characterization and analysis of the system
to determine when information is recoverable, however, still
typically rely on closed-form solution techniques such as
singular value decomposition or a filter cutoff estimate. In
this letter we propose optimization approaches to broaden
the approach to system characterization. We start by deriv-
ing conditions for when each unknown element of a system
admits a unique solution, subject to a broad class of types
of prior knowledge. With this approach we can pose a con-
vex optimization problem to find “how unique” each element
of the solution is, which may be viewed as a generalization
of resolution to incorporate prior knowledge. We find that
the result varies with the unknown vector itself, i.e., it is
data-dependent, such as when the sparsity of the solution
improves the chance it can be uniquely reconstructed. The
approach can be used to analyze systems on a case-by-case
basis, estimate the amount of important information present
in the data, and quantitatively understand the degree to which
the regularized solution may be trusted.
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1 Introduction

We focus on techniques that use norms such as the �1-
norm (sum of absolute elements) or the �∞-norm (maximum
absolute element) for regularization and/or denoising of an
underdetermined linear system,Ax = b, whereA is a known
m × n matrix with m < n, b is a known measurement
vector, and x is the unknown vector we seek. These tech-
niques are generally not solvable in closed form (unlike,
e.g., regularizationwith the �2-norm). Howevermodern opti-
mization methods can incorporate such information without
difficulty using linear inequalities or convex conic constraints
[2]. In this paper we will develop a framework for analyz-
ing the results from such approaches, with specific focus on
thosewhichmay be specifically formulated as linear inequal-
ity constraints (see Appendix for some examples). In broad
terms, instead of considering the restrictions on x in the set
{x | Ax = b}, we focus on the (hopefully smaller and hence
more informative) set {x | Ax = b, Dx ≥ d}. We first ask
the question: Subject to this new constraint, has x become
unique? We then extend this to the question: How well does
this new information improve our ability to resolve x?

Uniqueness has been extensively studied for the case of
�1-regularization,wherewe are concerned, for example, with
whether the solution found via Basis Pursuit [8] is unique.
This is especially interesting because under the right con-
ditions this solution is the optimally sparse solution (e.g.,
[12]). Published conditions for uniqueness come in several
forms, such as the restricted isometry property [6], the null-
space property [12], and neighborliness properties [11,13].
A significant limitation of these methods is their compu-
tational intractability for realistic system sizes [22]. This
renders them unusable for analysis of systems, except for
those with special structure that may be addressed theoret-
ically (e.g., the random matrix designs used in compressed
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sensing [23]). Additionally, non-negativity constraints have
received increased interest recently due to their relationship
to the �1-regularized case [5,14]. In this application, if the
true solution is sparse enough (and a necessary condition
for the matrix holds), then the system has a unique non-
negative solution. There is no regularization in this case, and
the non-negativity is directly applied as deterministic con-
straints on the solution. Box constraints on x are a related
case which has received some interest as well [15,19]. In all
these approaches, however, the goal is a single cutoff which
may be determined for the system itself, whereas as we show
in this letter, the answer actually varies, generally depending
on thedata and evenbetween elements of the unknownvector.

Uniqueness can be directly related to system resolution,
as suggested in Backus–Gilbert theory [1,3], though the
approach is limited to �2-based penalties. Stark [21] pro-
posed an extension of this approach to incorporate arbitrary
forms of prior knowledge using optimization. However it is
not clear whether the optimization problem is tractable for
particular implementations, and a formulation for discrete
systems is not provided. A different direction is introduced
by Candès [7], where gains due to sparsity of the unknown
vector are described in terms of a super-resolution factor,
essentially a higher-resolution cutoff. However this method
requires the unknown to have a very particular structure, such
as an impulse train.

In this paper we will formulate a novel approach to
uniqueness by providing conditions on an element-wise (i.e.,
coordinate-wise) basis. This approach allows us to directly
use convex optimization theory and makes the relationship
to the classical case (i.e., with no prior knowledge) clear.
Further, we may relax the conditions with a test for unique-
ness that, when it fails, can provide a resolution estimate
for the system. The estimates can be formulated as linear
programs which can be efficiently solved using off-the-shelf
software [4]. Finally, we provide simulations for different
super-resolution scenarios, demonstrating how achievable
resolution varies depending on both prior knowledge used
and with the object itself, and how we are able to extract
additional high-resolution information which would other-
wise be lost if we used a single global resolution cutoff.

2 Methods

In our analysis we will neglect noise and model errors, pre-
suming they are addressed by a prior denoising step, and so
assume our underdetermined system Ax = b has infinite
solutions, which form the set,

FEC = {x ∈ R
n|Ax = b}. (1)

The subscript “EC” implies the solutions are equality-
constrained. In this paper we will consider the following set

which has an added restriction representing our prior knowl-
edge about the solution,

FM = {x ∈ R
n | Ax = b,Dx ≥ d}, (2)

where the subscript “M” impliesmixed constraints. By defin-
ing A, D, b, and d in Eq. (2) appropriately we may represent
a variety of cases (see Appendix). For example, we can con-
sider the incorporation of non-negativity, as well as forms of
regularization and denoising, and combinations of these.

2.1 Uniqueness conditions

Our first goal is to derive conditions for uniqueness of the kth
element xk in FM , for any selected k ∈ {1, . . . , n}. To do this
we will use optimization problems to solve for bounds on
each element of x. When we refer to bounds on an element,
we imply the maximum and minimum values that unknown
element may take which are consistent with the information
we have, as we investigated in [10]. The bounds of the kth
element (for any k ∈ {1, . . . , n}) of a solution to a system
are the scalar values given by

x (max)
k = max{xk ∈ R | x ∈ F}, (3)

x (min)
k = min{xk ∈ R | x ∈ F}. (4)

An element xk is uniquely determined if x (max)
k = x (min)

k .
We can test whether this is the case with the optimization
problem,

δk = max
x

xk

Ax = b
Dx ≥ d

− min
x

xk

Ax = b
Dx ≥ d

= max
x,x′ (xk − x ′

k)

Ax = b
Ax′ = b
Dx ≥ d
Dx′ ≥ d.

(5)

If the optimal value is δk = 0, then xk must be uniquely
determined. Equation (5) forms a linear program, and we
can use duality theory for linear programming [9] to find an
upper bound on δk . The dual can be written as

δ̃k = min
y,y′,z,z′

bT
(
y − y′) + dT

(
z − z′)

AT y + DT z = ek
AT y′ + DT z′ = −ek (6)

z ≤ 0

z′ ≥ 0.

We form uniqueness conditions by requiring a feasible point
exists such that the objective equals zero, giving the condi-
tions,
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bT
(
y − y′) + dT

(
z − z′) = 0

AT y + DT z = ek

AT y′ + DT z′ = −ek (7)

z ≤ 0

z′ ≥ 0.

As Eq. (5) calculates the difference between a maximum and
minimum over the same set, δk ≥ 0. Further, if a solution
exists to Eq. (7), then δ̃k = 0, since δk ≤ δ̃k , and by duality
theory we have 0 ≤ δk ≤ δ̃k = 0. Finally, strong dual-
ity holds for linear programs under very general conditions
(which we presume to hold), which requires δk = δ̃k .

To understand the conditions of Eq. (7), note that ifD and
d are set to zeros [and hence we are back to the classical case
of Eq. (1)], then the conditions can be met for any y such that
AT y = ek . Note that ek is a column of the identitymatrix, and
so for the classical case y is simply a (transposed) row of the
left inverse ofA. This condition can therefore be viewed as an
element-wise version of the condition thatA is non-singular.
Note that this classical condition does not depend on b, while
the conditions of Eq. (7) do. Since b = Ax, uniqueness when
there is prior knowledge included will (in general) depend on
the particular value of x in each case. Further, for the case
where there is no solution to AT y = ek , we may still able
to solve the equation AT y + DT z = ek , if we can find an
appropriate choice of z. So the prior knowledge represented
by Dx ≥ d results in a restriction on the possible x, but a
relaxation of the uniqueness conditions. As a simple exam-
ple, an underdetermined linear system cannot have a unique
solution, but it may have a unique non-negative solution.

2.2 Resolution

Now we will relax the uniqueness conditions to provide a
metric which we can then use to compare the improvement
due to various cases of prior knowledge. To motivate the
approach, consider the classical case again. If ay canbe found
such that AT y = ek , then we can compute yTb = yTAx =
eTk x = xk . So y is a linear functional that computes xk from
the data. In the event that finding such a functional is not
possible, our goal is to find one that gets as close as possible.
As depicted in Fig. 1, we replace ek with a vector c that has
some spread over multiple elements. To find the c closest to
ek we use an optimization problem such as the following,

d(EC)
k = min

c,y
‖c‖

AT y = c

c ≥ 0 (8)

ck = 1.

In the case where AT y = ek has a solution, Eq. (8) will
achieve c = ek . Otherwise, the result will be a metric of how
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Fig. 1 ek versus relaxed result for k = 50 with n = 100

similar c could be made to ek . To provide a intuitively mean-
ingful metric, we included the constraint c ≥ 0 and for the
norm use a �2-norm weighted with distance (in terms of spa-
tial or temporal location of the samples) from the kth element.
If the weighting increases quadratically, c can be viewed as
a distribution over space, and the metric can be viewed as its
variance. So the optimization seeks the distribution c about
the element of interest xk with the minimum spatial variance,
such that cT x, the local average over the spatial region, may
be uniquely determined.

Similarly, the conditions of Eq. (7) can be used to form the
analogous optimization problem subject to prior knowledge,

d(M)
k = min

c,y,y′,z,z′
‖c‖

bT
(
y − y′) + dT

(
z − z′) = 0

AT y + DT z = c

AT y′ + DT z′ = −c (9)

z ≤ 0

z′ ≥ 0

c ≥ 0

ck = 1.

The constraints are linear, so this is a convex optimization
problem.

3 Simulations

To demonstrate the approach, we formed three different sim-
ulations. We used CVX [17,18] to solve the optimization
problems, with the problems of Eqs. (8) and (9); the matri-
ces were formed as described in the Appendix. We also used
other published methods for comparison where possible.

3.1 Example 1: Structured one-dimensional system

Firstwe simulated a one-dimensional systemwhich performs
a low-pass filtering and downsamples the result by a factor of
two. The true vector x, the convolution kernel, and the low-
pass-filtered resultb are shown inFig. 2. In Fig. 3we compare
x(true) to some regularized estimates, including Basis Pursuit
and non-negative least-squares (NNLS) reconstructions, as
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Fig. 2 Test input x(true), the true values of the unknown vector,
kernel convolved with x prior to downsampling, and measured data
b = Ax(true); A is m × n with n = 100 and m = 50
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Fig. 3 Regularized estimates with different techniques: �1-
regularized, a.k.a Basis Pursuit (L1); non-negative least squares
(NNLS); box-constrained least squares (BOXLS). Dashed trace is a
estimate, and solid trace is true x for comparison

well as “BOXLS,” a result analogous to NNLS but with box
constraints (both a lower and upper constraints) on x, where
we use the constraint 0 ≤ xi ≤ 0.3 for each element of x.

We see that �1-regularization did not yield a very accurate
result; on the left side of x, where the signal is locally sparse
we have a correct estimate, but on the right side of the plot
where x is denser, the estimate is incorrect. NNLS gave a
better result, but still was incorrect in the densest region in
the center right of the plot. BOXLS produced an apparently
perfect result, as we used both the true upper and lower limits
as prior knowledge.

Figure 4 gives element-wise resolution estimates com-
putedviamultiple differentmethods.Wecalculated a discrete
implementation of the Backus–Gilbert method [1,20], which
we see performs similarly to the equality-constrainedmethod
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Fig. 4 Resolution estimate for each sample for different cases: EC case
computed using Eq. (8), discrete implementation of the Backus–Gilbert
method (B–G), and NN and BOX cases based on Eq. (9) utilizing non-
negativity and box constraints, respectively
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Fig. 5 Low-resolution estimates of x for different cases; essentially
an adaptive estimate that varies in resolution depending on the best
resolution achievable at each sample

of Eq. (8). The resolution is also given using Eq. (9) for
non-negativity and box constraints.We also provide element-
wise “low-resolution” estimates using the optimal resolution
cells, i.e., cTb, analogous to eTk x, in Fig. 5. The equality-
constrained and Backus–Gilbert methods return essentially
constant resolutions (except for edge effects) which quantify
the amount of low-pass filtering performed by the kernel. The
box-constrained case achieves best resolution (resolution =
1 sample implies c = ek) for most of the elements, as we
might have guessed given the accurate reconstruction, except
in a small interval around sample 80. This poorer-resolution
region underlines the fact that an apparently accurate regu-
larized reconstruction does not necessarily imply a unique
solution and hence a sufficient system resolution. The non-
negative case achieved results in between. These results
demonstrate the key determinant of uniqueness and reso-
lution improvement with prior knowledge, which is active
constraints, be they active non-negativity constraints (mean-
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ing zeros in the signal) for a sparse signal, or a signal reaching
both min and max values for a box constraints.

3.2 Example 2: Chirped impulse train

Next we formed a model consisting of impulses with varying
amplitudes and intervals, so we could compare the method to
the estimates of [7], which require such structure. The pulses
are monotonically decreasing at a linear rate to discern the
cutoff where the pulse repetition rate becomes too high for
different methods. In this example, in addition to a low-pass
filtering kernel as in the first example, we imposed a hard
low-pass cutoff at a frequency of 75 cycles, corresponding to
a wavelength of λc = 13.3 samples. Figure 6 gives the true
signal, the filtered version b, and the �1-regularized recon-
struction via Basis Pursuit.

Figure 7 gives element-wise resolution estimates using
the discrete Backus–Gilbert method, the estimate of Eq. (9)
utilizing non-negativity, and a cutoff estimated using the
principles of [7] which is labeled SRF (denoting a super-
resolution factor) limit. For the Backus–Gilbert method we
again see the essentially constant behavior, independent of
signal structure. For Eq. (9) optimization we see an estimate
of high resolution (i.e., a single pixel) for the left half of the
signal, where the impulses are widely spaced; as the pulse
intervals become shorter, the resolution transitions to the
spectral cutoff of approximately 13 samples. This roughly
agrees with our ability to discern individual pulses in b and
in the accuracy of the �1 solution in Fig. 6. The resolution esti-
mate is more conservative, as it determines when samples are
able to be uniquely determined at the given resolution,while a
probability maximization approach such as �1-regularization
may still serendipitously achieve a correct estimate. However
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Fig. 6 Chirped impulse train, low-pass-filtered version, and �1-
regularized estimate
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Fig. 7 Resolution estimate for Backus–Gilbert (B–G) method, the
method of Eq. (9) utilizing non-negativity (NN case), and an analyt-
ical estimate based on [7] (SRF limit)

our result tells us that the �1-regularized result is not reliable
for these shorter pulse intervals.

The SRF limit was determined according to [7], where
unlimited super-resolution of the impulse is possible as long
as the spacing is at least 1.87λc, for real signals. Note that
this result is significantly more conservative as it does not
take advantage of non-negativity, and it requires a cutoff
where the result (as long as it is composed of impulses) may
be infinitely resolved; hence, the resolution estimate is zero
(meaning zero-width resolution cells, and perfect resolvabil-
ity), while our estimate is “1,” to the far left of the signal,
where the pulse intervals are greater than approximately 29.
For intervals shorter than that of cutoff, we set the estimate
equal to the filter cutoff for the system. Note that here we
also presumed the cutoff could be applied to a signal on a
partial basis, rather than discarding the high-resolution sig-
nal completely due to the less-resolvable region on the right.

3.3 Example 3: Two-dimensional image

In the final simulation, we analyze the resolution for a noisy
blurred image, again taking into account non-negativity as
our prior knowledge. We used the non-negative denoising
(NNDN) formulation given in the Appendix. The true image
is given in Fig. 8, a blurred and downsampled version with
1% noise is given in Fig. 9, and a NNLS estimate is given in
Fig. 10.

In two dimensions, an element-wise estimate performed
for every pixel becomes challenging due to the large number
of pixels. However wemaymake use of several different tac-
tics to reduce computational time. First note that estimates
for different pixels may be calculated completely indepen-
dently, allowing parallelization up to the number of available
processors. In our case we utilized a quad core processor
achieving a reduction in time by a factor of four. Further,
cases where the pixel values are uniquely determined (res-
olution achieves unity) can be screened using an efficient
feasibility check of the uniqueness equations of Eq. (7).
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Fig. 8 True image of an eyechart, prior to filtering
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Fig. 9 Low-resolution image; result of blurring, downsampling by a
factor of two, and addition of 1% noise

Resolutions for approximately 40% of the pixels could be
determined this way for our example. Finally, for larger sig-
nals or images one may truncate a local region for each
estimate with a sliding window, to provide a problem small
enough to be tractable but large enough to include sufficient
neighboring pixels for a given location. In all, we computed
the resolution estimate of Fig. 11 in approximately 4h on a
3.2 GHz desktop processor with general optimization soft-
ware. For comparison, the 1000-sample estimate of Example
2 took approximately 5min.

In this example, the smallest characters had features on the
order of a pixel across, while a resolution of 1.5–2.0 pixels
was mostly achieved for them. The largest characters, con-
versely, had features four pixels in size, while a resolution of
two to three pixels was achieved. As a result, we are able to
better discern the larger characters despite the limit of a lower
resolution. The Backus–Gilbert resolution for this problem
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Fig. 10 Non-negative least-squares estimate of image
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Fig. 11 Element-wise resolution estimates; note that the pixels for
smallest characters achieve roughly double the resolution of the largest
characters; also note that pixels consistently achieve poorer resolution
for the characters whichweremost poorly reconstructed in Fig. 10, such
as the letter “s”

was computed using a version of the algorithm which can
accommodate noise [20], yielding a uniform resolution esti-
mate of 3.5 pixels. As before, this is roughly the worst case
compared with the estimates found with Eq. (9). Hence, even
with a more sophisticated resolution estimates which incor-
porate prior knowledge, if only a single resolution cutoff is
sought it often will not show improvement over conventional
resolution estimates.

4 Discussion

In this paper we gave uniqueness conditions for each ele-
ment of a systemof equations and inequality constraints. This
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element-wise approach allowed our conditions to be tested
using convex optimization, which, in turn, allowed us to esti-
mate resolution on an element-wise basis and incorporating
prior knowledge. As we saw with the simulated examples,
regularization techniques such as NNLS and Basis Pursuit
can achieve higher-resolution results than a conventional res-
olution estimate suggests. Indeed, this is the very important
reason for using such methods. The additional information
our resolution estimates provide allows us to better under-
stand such regularized results. For example, in the simulation,
reconstruction of the letter “s” consistently achieved lower
resolution (slightly apparent in the poorer reconstruction of
this letter in the NNLS result). Knowing this, we might
ascribe lower confidence to such letters in a subsequent clas-
sification stage. Further, we saw that while the resolution
cutoff remained fixed (i.e., it was spatially invariant across
the image), the resolution improved as the character size
got smaller; hence, the smallest characters could actually be
reconstructed surprisingly well using NNLS for this exam-
ple, due to the low noise level and non-negativity prior.

Generally, the resolution cell estimate is very interesting
when inequality constraints are included, as it yields a data-
dependent result. In the case of non-negativity, this result
depends on the sparsity of the elements which aremixedwith
our element of interest. In the case ofmore general inequality
constraints, the sparsity condition would be replaced with a
metric of the number of active constraints. For the simulated
cases, essentially super-resolution problems, this mixing is
localized so we see the effect due to the active constraints in
local regions. For such a system, a concentrated resolution
estimate makes sense. For more arbitrary systems a con-
centrated resolution cell may not be achievable. This would
imply that the ambiguity between high-resolution elements
cannot be explained with any locally concentrated combina-
tion. Our method could easily be extended to such problems,
to find the best resolution cell via some other desirable prop-
erty, such as the smallest number of combined pixels without
regard for localization. There are also a variety of ways one
could estimate the most compact resolution cell for each
pixel. The �2-norm was used here as it yielded an intuitive
interpretation in terms of the variance of a distribution over
space or time.

The computational complexity of the technique requires
one optimization problem per estimate, which poses a chal-
lenge for larger problems. In the simulations we described
a number of ways to alleviate this, including windowing the
problem, screening of unique samples, and parallelization.
A variety of other strategies may be helpful as well. When
the low-resolution distributions are large, the estimates at
neighboring elements are mostly redundant. We can there-
fore choose to increase the spacing between estimates such
that we still achieve a covering of all elements. Further, while
we used an off-the-shelf solver, one can typically achieve sig-

nificant improvements with a customized algorithm which
takes advantage of the structure of the problem.

Appendix

In this appendixwewill describe howa selection of variations
on prior knowledge can be formulated as linear inequality
constraints. Again the classical case with no prior knowledge
is based on the solution set FEC , with D = 0 and d = 0.

FEC = {x ∈ R
n|Ax = b}. (10)

Application of our bounds testing problem with the feasible
set x ∈ FEC forms an equality-constrained linear program
[16], for which optimality conditions give the row space con-
dition AT y = ek .
Non-negativity results in the solution set

FNN = {x ∈ R
n|Ax = b, x ≥ 0}. (11)

This can be implemented in our system with the simple defi-
nitions, D = I, d = 0, using the identity matrix and a vector
of zeros.
�1 − regulari zation can be formulated as a case of non-
negativity, which can be used to determine whether we have
a unique optimal solution to the Basis Pursuit problem [8],

α = min
x

‖x‖1
Ax = b. (12)

This can be tested by analyzing in the uniqueness of the
solutions in the following set,

FBP = {x ∈ R
n|Ax = b, ‖x‖1 = α}

= {x ∈ R
n|Ax = b, ‖x‖1 ≤ α}. (13)

This is equivalent to the following non-negative system,

FNN = {x̂ ∈ R
2n|Âx̂ = b̂, x̂ ≥ 0}. (14)

With the definitions

Â =
(
A,−A
1T

)
, b̂ =

(
b
α

)
. (15)

This can be seen by defining x = x̂(1) − x̂(2), where x̂T =(
x̂T(1), x̂

T
(2)

)
and x̂(1) ≥ 0, x̂(2) ≥ 0. We relate bounds found

using the feasible set of Eq. (14) to the bounds for the set of
Eq. (13) by noting that at the minimum, where we get α as
the optimal for Eq. (12), x̂(1) and x̂(1) are complementary. If
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they were not, we could take advantage of this fact to reduce
the minimum of ‖x‖1 = x̂(1) + x̂(2) further.
Box constraints define the following set,

FBOX = {x ∈ R
n | Ax = b, dmin ≤ x ≤ dmax }. (16)

Here dmin and dmax are vectors defining the box. We can
formulate this as Eq. (2) with the definitions

D =
(+I

−I

)
, d =

(+dmin

−dmax

)
. (17)

We can view this as a more general version of regularization
with the infinity norm, e.g.,

FBOX = {x ∈ R
n|Ax = b, ‖x‖∞ ≤ d}. (18)

Denoising can be viewed as a dual to regularization, where
rather than requiring the solution set be regular, we require
the error in the linear system to be regular, as in the following,

FDN = {x ∈ R
n | ‖Ax − b‖ ≤ σ, }. (19)

We can also form a denoised version of the non-negativity
case using the infinity norm as follows,

FNND = {x ∈ R
n | ‖Ax − b‖∞ ≤ σ, x ≥ 0}. (20)

This can be formulated as mixed constraints with no linear
constraint term (i.e., “A” and “b” in the original linear system
are all zeros), and with

D =
⎛

⎝
−A
A
I

⎞

⎠ , d =
⎛

⎝
−b − σ1
b − σ1

0

⎞

⎠ . (21)
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