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Abstract The paper proposes a band-pass correlation filter
in frequency domain for frontal face recognition task under
both poor illumination and noisy condition. The band-pass
nature of the proposed filter is achieved through combina-
tion of a modified high-pass filter and a continuous wavelet
filter. An optimal range of scale is selected for this wavelet
filter. The performance of the proposed band-pass correlation
filter for face recognition tasks under variations in illumina-
tion and noise is evaluated and compared with other filters
using standard databases (YaleB and PIE). High recognition
accuracy is achieved in this proposed technique.

Keywords Band-pass correlation filter · Face recognition ·
Noise tolerant · Illumination tolerant

1 Introduction

Many correlation filters (CFs) have been proposed in recent
years for pattern recognition and/or object detection. Impor-
tant works for face recognition tasks using correlation filters
can be found in [1–10]. Figure 1 shows the technique of car-
rying out frequency-domain correlation for face recognition
using correlation filter. The correlation process is mathemat-
ically expressed as
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Gi = FFT−1[Xi ◦ H∗], Gi ∈ �d1×d2 (1)

whereGi is the i th correlation plane in response to i th Fourier
transformed image Xi , of size d1 × d2 and H is the desired
2D correlation filter. The notations ◦ represents the element-
wise array multiplication and ∗ stands for complex conjugate
operation. As per conversion, fast Fourier transform (FFT) is
an efficient algorithm to perform discrete Fourier transform
(DFT).

Though many illumination–normalization schemes are
now available [11–13], yet the variations in illumination of
face images and noise have placed major constraint on appli-
cations of many such techniques during face recognition
tasks. In addition to spatial domain processing [14–17] for
illumination invariant face recognition, several frequency-
domain approaches are also proposed [18–21]. In most of
the cases, where illumination invariant face recognition is the
only concern, either constrained [22] or unconstrained [23]
minimum average correlation energy (MACE) type filters are
used since these filters emphasize the high-frequency com-
ponents of the face images. Since poorly illuminated images
contain more energy at low frequencies, the high-pass fil-
tering of poorly illuminated images is a logical choice as
high-pass filter enhances the edges of the images. As amatter
of fact, the autocorrelation of the edge-enhanced or high-pass
filtered image produces a sharper correlation peak compar-
ing to original image, and therefore, better discrimination
is guaranteed. However, when noise is present along with
illumination variations, the application of high-pass filter-
ing only may not be sufficient, because (1) noise in a image
corresponds to high-frequency signals which suppresses the
discriminative nature of individual faces and also (2) the
design process of only high-pass filters does not include any
noise information, and thus, such filter usually results in mis-
classification.
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Fig. 1 Basic frequency-domain correlation technique for face recog-
nition [24]. The information of N number of training images from kth
face class is Fourier transformed to form the kth correlation filter. In
ideal case, delta-type correlation plane with high peak-to-sidelobe ratio
(PSR) [24] is obtained, when any Fourier transformed test face image
of kth class is correlated with kth correlation filter, indicating authen-
tication. In response to impostor faces (from j th class), no such peak
will be found

This paper proposes a technique which takes care of
problems related to variations in illumination and noise for
face recognition tasks. Instead of using a MACE-type filter,
a modified unconstrained high-pass filter (MHPF) is pro-
posed which works in combination with a Mexican hat-type
band-pass filter. The proposed MHPF provides an inter-
mediate solution of maximum average correlation height
(MACH) [23] and unconstrained MACE filter. Hence, both
edge enhancement and distortion tolerance ability can be
achieved. The combination has another advantage. Mexican
hat filter has a circular symmetry; i.e., it selects frequen-
cies of face image in a band around the origin, and hence, it
works for better noise immunity [25]. Combining these two
filters, the proposed filter becomes a band-pass correlation
filter (BPCF).

Combination of correlation filter with wavelet is, how-
ever, not new. In [26], wavelet is combined with MACH
filter for in-plane rotation invariant object detection. In [21],
eigenphase correlation filter is combined with MHW. How-
ever, the optimal range of the scale of wavelet has not been
reported in both [21,26]. WaveMACH filter [26] has also not
been tested under noisy conditions. Unlike [26], this study
includes a combination of MHPF [3] filter with Mexican
hat wavelet (MHW), termed as band-pass correlation fil-
ter (BPCF). In [21], eigenphase correlation filter was used
for handling both illumination and noise for face recogni-
tion. But phase is very much sensitive to noise. Moreover, in
noisy environment, the phase enhances the irrelevant details
of noise. This may reduce the recognition accuracy. Hence,
this study discards the phase component.

In addition to this, the study proposes MHPF combined
with MHW, which by design differs from WaveMACH and

eigenphase filters. The proposed approach uses an optimal
range of scale factor forMHWwhich is determined by cross-
validation method to enhance the efficiency. Depending on
the optimal range of MHW, a set of BPCFs are gener-
ated. Test face is correlated with this set of BPCFs. From
a set of peak-to-sidelobe (PSR) values, the maximum one
is selected for making the decision during authentication.
Hence, unlike [26] and [21], this work proposes multicor-
relation approach, instead of a single correlation for MHW
with fixed scale.

Some of the salient issues and advantages offered by the
proposed technique are: (i) MHW is combined with MHPF
and is termed as BPCF; (ii) MHW is used for noise-tolerant
face recognition as it behaves as a band-pass filter; (iii)MHPF
is used for better distortion tolerance ability as it can be tuned
by a controlling parameter; (iv) optimal range of scale of
MHW is determined; (v) decision of authentication is taken
after multicorrelation operations. Compared to standard cor-
relation filters, test results with the proposed BPCF on two
standard face databases (PIE and Cropped YaleB) show bet-
ter performance.

2 Modified unconstrained high-pass filter (MHPF)

In case of standard correlation filter design [22,23,27], con-
ventionally, xi is used as an exemplar. However, instead of
using xi , (xi − βm) is introduced in [3], so that the relative
influence of average image (m in vector form) is incorpo-
rated in the filter solution. β is a controlling parameter which
depends on the relative influence of the mean image. There-
fore, the exemplar (xi − βm) can be the i-th training image
where a part of the mean is subtracted. It is desirable for all
images in the training set to follow the exemplar’s behavior.
This can be ensured by forcing every image in the training
set to have similar correlation output plane corresponding to
an ideal correlation output shape f. To find f that best matches
all these exemplar’s correlation output planes, its deviation
from their correlation plane is minimized. This deviation can
be quantified by the average squared error (ASE) which is
given by

ASE = 1

N

N∑

i=1

|gi − f|2 = 1

N

N∑

i=1

(gi − f)+(gi − f) (2)

where,

gi = (X̄i − βM̄)∗h (3)

and X̄i = diag{xi } and M̄ = diag{m}.
Equation (3) represents the correlation plane in vector

form in response to the i-th training image andh is the desired
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filter. To find the optimum shape vector f, the gradient of ASE
in Eq. (2) is set to zero and f is obtained as,

f = 1

N

N∑

i=1

gi (4)

Hence, the optimal shape vector can be formulated as,

f = 1

N

N∑

i=1

(X̄i − βM̄)∗h

=
{
1

N

N∑

i=1

X̄i − βM̄

}∗
h

= {
(1 − β)M̄

}∗
h (5)

A new form of average similarity measure(ASM) [28] can
now be denoted as the measure of dissimilarity of the corre-
lation planes of training images from (1 − β)M̄

∗
h and can

be mathematically expressed as

ASMnew = 1

N

N∑

i=1

|X̄∗
i h − (1 − β)M̄

∗
h|2

= h+
{
1

N

N∑

i=1

(X̄i −(1−β)M̄)(X̄i −(1−β)M̄)∗
}
h

= h+P̄h (6)

where,

P̄ = 1

N

N∑

i=1

(X̄i − (1 − β)M̄)(X̄i − (1 − β)M̄)∗ (7)

Now, an objective function can be formulated which min-
imizes the average similarity measure by minimizing the
performance criteria h+P̄h while maximizing [23] the aver-
age correlation peak intensity |m+h|2. The objective function
J (h) given in Eq. (8) looks similar to that given in [23] with
a difference in the diagonal matrix.

J (h) = |m+h|2
h+P̄h

(8)

Maximizing the objective function J (h), the desired filter
h is found as the eigenvector corresponding to the largest
eigenvalue. The desired filter is therefore given as

hMHPF = P̄
−1

m (9)

The standard UMACEfilter solution can be obtained from
the Eq. (9) by simply substituting the value of β = 1. Inci-
dentally, if the value of β = 0, the filter is a MACH filter

which has better distortion tolerance ability. Hence, MHPF
differs from standard high-pass filter solutions as a tunable
parameter β is included in the design equation. Depending
on the applications, the value of β is selected for getting
optimum performance.

3 Design of band-pass correlation filter (BPCF)

Band-pass filtering is a trade-off between blurring and noise.
Low-pass reduces noise but enhances blurring, and high-pass
reduces blurring but accentuates noise. Hence, a band-pass
correlation filter is needed so that partial blurring of noise and
partial enhancement of edges under illumination is accom-
plished. This band-pass filtering approach boosts certain
midrange frequencies and partially corrects for blurring, but
does not boost the very high (most noise corrupted) frequen-
cies. This BPCF is designed by exploiting the frequency
distribution nature of MHPF and MHW.

MHW W (x, y) in spatial domain is expressed as the
second-order derivative of isotropic 2D Gaussian function
with scale sx = sy = s.

W (x, y) = ∇2Gs(x, y)

= 1

s2

{
x2 + y2

s2
− 2

}
exp

{
− x2 + y2

2s2

}
(10)

where Gs(x, y) is 2D Gaussian function.
Equation (10) represents Laplacian of Gaussian (LoG)

which enhances edges of smoothed face images. The smooth-
ing effect reduces the noise present in the image, and edge
enhancement is used for better description of face features.
Depending on the value of s, the wavelet transform of origi-
nal imagemay be either edge enhanced or smoothed out. The
wavelet transform of face image F(x, y) with MHW can be
expressed as

W {F} = F(x, y) ⊗ W (x, y) (11)

where W represents the wavelet transform.
The equation is represented in frequency domain as,

F [W {F}] = F(u, v)W∗(u, v) (12)

where F represents the Fourier transform and W(u, v) is
the Fourier transform version of W (x, y) and W(u, v) is
expressed as [26]

W(u, v) = 4π2s2(u2 + v2)exp{−2π2s2(u2 + v2)} (13)

Consider any test face image T (x, y). Its wavelet trans-
form with MHW in spatial and frequency domain is given
as
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W {T } = T (x, y) ⊗ W (x, y) (14)

or

F [W {T }] = T(u, v)W∗(u, v) (15)

For face recognition (or for face matching purpose),
the frequency-domain correlation between F [W {F}] and
F [W {T }]must be performed. The operation is expressed as

F [W {T }]F [W {F}]∗
= T(u, v)W(u, v)∗{F(u, v)W(u, v)∗}∗
= T(u, v)F(u, v)∗W(u, v)∗W(u, v)

= T(u, v)F(u, v)∗|W(u, v)|2 (16)

where F(u, v)|W(u, v)|2 is the wavelet modified filter with
which T(u, v) is correlated. Hence, replacing F(u, v) with
HMHPF [2D form of filter given in Eq. (9)], the desired BPCF
is obtained as

BPCF = P̄
−1

m|4π2s2(u2 + v2)exp{−2π2s2(u2 + v2)}|2
(17)

where P̄ is given in Eq. (7).

3.1 A physical insight to proposed BPCF

Figure 2 shows the magnitude spectrum of both UMACE
filter and proposed BPCF. From Fig. 2, the difference in
frequency distributions for both the filters are prominent.
The frequency response of UMACE filter shows large high-
frequency values when compared to BPCF. However, the
later contains a mid-band frequency range instead of very
high and very low frequencies. Thus, it is expected that, when
any noisy image is tested (by correlation) with UMACE type
filters the, high-frequency components will be amplified,
whereas in case of BPCF, the high frequencies correspond
to noise will be attenuated, and as a result, more or less flat
Fourier spectrum is achieved in case of BPCF. The inverse
FT will therefore give a sharper and distinct peak at the cor-
relation plane comparing to that of the UMACE filter.

Fig. 2 Difference in frequency distribution of UMACE filter and the
proposed BPCF has been shown. aMagnitude spectrum of UMACE, b
magnitude spectrum of BPCF

4 Test results

Computer simulation has been carried out in support of the
proposed formulation of BPCF. To perform the comparative
study of BPCF with standard filters like MACH, UMACE
and OTMACH filters, two standard face databases Extended
YaleB [29] and PIE [30] are used. Extended Yale Face Data-
base B contains face images of 38 individuals under 64
different illumination conditions with 9 poses while the PIE
database contains 41,368 face images of 68 people, each
person under 13 different poses, 43 different illumination
conditions and with 4 different expressions. All gray scale
images from both the databases are resized to 100 × 100
and are used for training and testing. The value of tunable
parameter β has been empirically selected to 0.4.

4.1 Peak sharpness measurement

Initially, the test is performed to compare the correlation peak
sharpness of BPCF comparing andUMACEfilter in response
to an authentic face image by noting the PSR values. Image
index {10, 19} from PIE and subset 1 from YaleB are used
separately for synthesizing both UMACE and BPCF. Image
index {14} for PIE and {30} for YaleB are used for testing.
The selection these training and testing image is justified as
we are interested to verify the illumination-tolerant perfor-
mance of proposed BPCF, since the training images contain
only the frontal light, whereas the test image contains poor
lighting condition. Figure 3 shows high values of PSRs are
achieved by BPCF in both the cases which also shows bet-
ter illumination-tolerant capability of BPCF comparing to
UMACEfilter. In both cases, PSRvalue obtained byUMACE
filter is less than 10, whereas BPCF 1 gives 12.027 for PIE
and 16.045 for YaleB. If the threshold PSR is set at 10 as
authentication threshold, UMACE filter fails to authenticate
a true face image where BPCF can. For a set of s in the range
of 0.01 to 1 with 0.01 interval, a set of BPCFs are synthe-
sized. The test face is correlated with this bank of BPCFs
and for each case PSRs are calculated. Highest PSR value
is taken, and the corresponding values of scale factors are
s = 0.19 and s = 0.3.

4.2 Optimal range selection for scale factor s

As a set of BPCFs are already synthesized for a set of s in
the range of 0.01–1 with 0.01 interval, the test face has to
be correlated with this bank of BPCFs. Since this process
requires large number of correlations and therefore is time-
consuming, it is desirable to find an optimal range of s for
obtaining reduced numbers of BPCFs.

1 Corresponding values of s for BPCF in Eq. (17) are 0.19 for PIE and
0.3 for YaleB.
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Fig. 3 Improvement in PSR value for authentic persons (for both PIE
and YaleB) under poor lighting condition is observed with BPCF com-
paring to UMACE filter

Toward this end, the following experiment is performed
to select the optimal range of s. For each face image, 100
BPCFs are developed as stated above. Such 10 persons are
taken from YaleB database. Each BPCF is synthesized with
32 images out of 64. In testing stage, all 64 images are tested.
Hence, for each image 100 correlations are performed and
100 PSR values are obtained. Thus, for each person 64×100
PSRs are calculated. This method is repeated for 10 persons
and then averaged. The distribution of average PSRs for 10
person for different s values is shown in Fig. 4a. It is observed
that high PSRs are obtained in the range of scale 0.1 to 0.4
for YaleB. Similarly the optimum range of s for PIE faces
is obtained as 0.1 − 0.35 with reference to Fig. 4b. Further
experiments are performed with these optimum range of s, to
study the tolerance to the variations in illumination and noise.

4.3 Noise- and illumination-tolerant capability of BPCF

To test the noise-tolerant capability of BPCF under differ-
ent illumination conditions, the test images are corrupted
digitally with Gaussian noise for different settings of mean
and variance. Nature of the correlation planes and PSR val-
ues corresponding to two different filters including BPCF in
response to an authentic image under noisy conditions are
shown in Fig. 5. The point spread function of BPCF in Fig. 5
shows the enhancement of facial landmarks, i.e., the eyes,
nose, mouth which become more prominent than UMACE
filter. Observation from Fig. 5 concludes that the PSR value
(22.58) is higher than the selected hard threshold2 value 10.
Other filter (UMACE) fails to authenticate the same image.
Further observation is madewith an impostor image to verify
whether BPCF can reject it properly or not. Figure 5b shows

2 PSR > 10 indicates authentic and PSR < 10 indicates impostor.
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Fig. 4 Optimal range selection of s using PSR distribution. a Cropped
YaleB faces shows that the high PSR values are obtained for scale range
of 0.1–0.4 (considered as optimal range) and b PIE faces shows that the
high PSR values are obtained for scale range of 0.1–0.35 (considered
as optimal range) of Mexican hat wavelet. a Average PSR distribution
of Cropped YaleB, b average PSR distribution of PIE

Fig. 5 Correlation planes in response to noisy authentic image using
different correlation filters. The point spread function of each filter is
shown

the correlation plane in response to an impostor using the cor-
relation filter BPCF. It shows that BPCF efficiently rejects the
impostor image as no peak is found in the correlation plane
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and PSR value is much less than 10. Above results confirm
that the proposed BPCF has better noise-tolerant capability.

4.4 ROC and AUC analysis

Another way of observing the performance of correlation
filter is by plotting receiver operating characteristics (ROC)
curves where ROCs are calculated with increasing PSRs as
threshold. ROCcurves for better performance lie closer to the
top left corner and the worst-case performance is indicated
by a diagonal line. Good detection performance is guaran-
teed from ROC curves by considering area under the curve
(AUC), which ideally should be equal to 1. Hence, AUC val-
ues are calculated for each ROC and given within parenthesis
corresponding to each filter in all the figures obtained from
further experiments.

To further observe the performance of BPCF for noisy
images instead of single image, the whole database is taken
and several ROC curves are developed and their correspond-

ing AUCs are calculated. Figure 6 shows a set of ROCs
corresponding noise variance from 0.007 to 0.03, while the
mean is fixed at 0. Figure 6 corresponds to Cropped YaleB
database and each filter is synthesized with subset 4. The
ROC curves of the figure justify that the proposed BPCF
outperforms the other filters under high noise. A change in
AUC from 0.942 to 0.902 is observed for BPCF while vari-
ance is varied from 0.007 to 0.03. This change is almost
negligible comparing to other filters as shown in Fig. 6. It is
observed from Fig. 6 that UMACE filter looses its classifica-
tion performance when the noise is set to mean value of 0.0
and variance value 0.009. Similar experiment is performed
with PIE faces. ROC curves correspond to PIE faces under
noisy condition are shown in Fig. 7 which indicates that with
the variance of 0.12 AUC decreased to 0.827, whereas for
other filters it becomes approximately 0.5. Hence, it may be
concluded that BPCF has much better noise-tolerant ability
when compared to other existing filters.

Fig. 6 ROC curves for
Cropped YaleB faces corrupted
with Gaussian noise with mean
= 0 and variance varied from
0.007 to 0.03

Fig. 7 ROC curves for PIE
faces corrupted with Gaussian
noise with mean = 0 and
variance varied from 0.07 to
0.12
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Fig. 8 Top row shows the ROC
plots for Cropped YaleB faces
and bottom row shows the ROC
plots for PIE faces under
different noise conditions
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4.5 Comparative performance of BPCF and
WaveMACH under illumination and noisy
conditions

Further comparative performance of the proposed BPCF is
tested with respect to WaveMACH filter indicated in [26].
Training and testing scheme are same for both the filters.
WaveMACH filters are also synthesized for optimal values
of s as done in the case ofBPCF.Hence, for bothWaveMACH
and BPCF multicorrelation approach is made and maximum
PSR value is recorded. In addition to Gaussian noise, salt-
and-pepper noise and speckle noise are used to corrupt the test
face image. The noise density for salt-and-pepper noise is set
to 0.01 for both the face databases. Speckle noise is generated
using the equation, Fn(x, y) = F(x, y) + nF(x, y), where
Fn(x, y) is the noisy image and n is uniformly distributed
random noise with mean 0 and variance v.

The value for v is set at 0.1 for YaleB faces and 0.5 for PIE
faces. ROC curves are plotted correspond to different cases
as shown in Fig. 8 to measure the performance improve-
ment in BPCF comparing to WaveMACH filter. As shown in
Fig. 8, improved performance with better classification accu-
racy is obtainedwithBPCFsince in all casesROCcorrespond
to BPCF traces better step function than WaveMACH filter.
AUCs are also calculated and shown in Fig. 8.

4.6 Comparative performance of BPCF, Coreface and
WPoCF

This sectiondiscusses the performanceof the proposedBPCF
in comparison to Coreface [31] and WPoCF [21]. Training
and testing schemes are same for all the filters. The scale fac-
tor ofMHWforWPoCF is set to 0.75 for testing. The test face
images are corruptedwith bothGaussian and salt-and-pepper
noise. Average PSR distribution over all classes from PIE
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Fig. 9 Average PSR distribution of BPCF, WPoCF and Coreface has
been shown in (a) and (c) with Gaussian noise (b) and (d) salt-and-
pepper noise for authentic classes of PIE database. In all the cases,
BPCF outperforms the other filters

database is shown in Fig. 9. Better PSR values are obtained
in case of BPCF comparing to WPoCF and Coreface. This is
due to the fact, in the design of both Coreface and WPoCF,
the phase spectrum is used, which is very much sensitive to
noise. Unlike Coreface and WPoCF, BPCF uses the circular
symmetry ofMHWand rejects a certain band of frequencies.
This leads to better discrimination capability of BPCF under
noisy conditions even with drastic changes in illumination.

5 Conclusions

This study is mainly focused on noise- and illumination-
tolerant face recognition. A band-pass correlation filter
(BPCF) is proposed by combining Mexican hat wavelet fil-
ter with proposed modified high-pass filter (MHPF). MHPF
emphasizes the facial edges resulting in better discrimination
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ability of proposed BPCF under noise. Instead of selecting a
single scale factor for Mexican hat wavelet, an optimal range
of scale factor forwavelet function is selected.Because of this
selection, multiple correlation approach is performed during
testing phase.

From experimental results, distinct and sharp peak is
found in the correlation plane for both PIE and YaleB faces,
when BPCF is employed and also high PSR value is obtained
comparing to standard filter. Correlation planes and ROC
curves establish the high recognition accuracyofBPCFunder
different noisy conditions of face images. However, further
investigation is needed to find an optimal value of scale for
MHW instead of an optimal range, so that the multicorrela-
tion can be replaced by a single correlation.
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