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Abstract Recently, a blind resolution enhancementmethod
that uses a two-dimensional and single-input multiple-output
extension of the constant modulus algorithm has been devel-
oped for pure translational motion. The method works well
in case of low bit depth unobserved true images, but its per-
formance decreases for high bit depth true images. In this
work, we propose a refined scheme in which complex repre-
sentation of images and a set of complex deconvolution FIR
filters are used. Simulations show that the refinedmethod suc-
ceeds in reconstructing the low and high bit depth true images
without the knowledge of blur parameters. Visual results for
the restoration case (single image, no subsampling) are also
given. No assumption is made about the blurs except that
they have low-pass characteristics. Also, they do not have to
be the same for the observed low-resolution images and they
do not need to be shift invariant.

Keywords Blind image restoration · Blind image
super-resolution · 2D constant modulus algorithm ·
Adaptive filters

1 Introduction

Super-resolution image reconstruction (or image resolution
enhancement) can be defined as the process of reconstruct-
ing a high-quality and high-resolution image by combining
several shifted, degraded, and under-sampled ones. Super-
resolution is proven to be useful if multiple frames of the
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same scene can be obtained from a single sensor or frommul-
tiple sensors. For example, in areas such as medical imaging
and satellite imaging, acquiring multiple images to form a
higher-resolution image is possible although the sensor res-
olution quality is limited. Also, a number of low-resolution
frames in a video sequence can be utilized to improve the
resolution for frame freeze or zooming purposes.

Thefirst attempt to combine several low-resolution images
to construct a higher-resolution one goes back to the fre-
quency domain approach of Tsai and Huang [1]. Since
then, an abundant number of super-resolution techniques
have been proposed. Early works include iterative back-
projection [2], projection onto convex sets (POCS) approach
[3,4], stochastic reconstruction methods such as maximum
a posteriori (MAP) or maximum likelihood estimations
[5,6], hybrid MAP/POCS super-resolution algorithm [7],
among others. More recently, edge-preserving stochastic
methods that perform adaptive smoothing based on the local
properties of the image are studied [8]. Kang and Lee [9] pro-
vided a least-squares solution with regularization. In [10], a
super-resolution algorithm that takes into account inaccurate
estimates of the point-spread function and the registration
parameters is presented. Frequency domain implementa-
tions of expectation–maximization (EM) and maximum a
posteriori methods are given in [11], which also includes
the shift estimation into the super-resolution routine. Other
works on the topic concentrate on super-resolution of com-
pressed video [12,13], space–time super-resolution [14], etc.
Comprehensive tutorials about the subject with emphasis on
difficulties and future directions can be found in [15,16].
Also a number of special journal issues on super-resolution
image reconstruction provide collections of recent work on
the topic [17,18].

In almost all above methods, the blur and the motion oper-
ators should be known in advance in order to construct the
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high-resolution image. Although the motion parameters are
estimated a priori to some extent, as known to the authors, the
blur operators (point-spread function, PSF) are just assumed
to be in hand. However, this is usually not the case in prac-
tice. The blur parameters must be estimated prior to the
super-resolution stage, or the high-resolution image must be
constructed without the need for the blur parameters. Super-
resolution in case of unknown blur is called blind image
super-resolution.

The blind super-resolution work up to date can be classi-
fied broadly into three categories: learning-based techniques,
techniques that can handle parametric PSFs and techniques
that can handle arbitrary PSFs. The methods that fall in
the first class store several high-resolution images in the
database in order to perform the training stage [19,20],
which obviously depends on the existence of such high-
resolution images. The methods of the second category
assume that the PSFs are of a special form and that only
one parameter is needed to fully characterize the blur oper-
ators. Unfortunately, this assumption is not realistic for
most of the applications. The methods based on general-
ized cross-validation Gauss quadrature theory [21], iterative
expectation–maximization algorithm [22], and soft maxi-
mum a posteriori (MAP) estimation framework [23] fall into
this category. The blind super-resolution techniques that do
not belong to the first two categories constitute the third cat-
egory which represents the most realistic case. In [24], a
three-stage method for blind multi-channel reconstruction of
high-resolution images is presented. The stages are a blind
multi-channel restoration, a wavelet-based image fusion, and
a maximum entropy image interpolation. The method is
claimed to estimate a high-resolution image in the case of
relatively co-prime blurring operators. In [25,26], the super-
resolution problem, which is single input multiple output
(SIMO) in nature, is turned into multiple-input multiple-
output (MIMO) case by using poly-phase components. In
[27], nonparametric blind image super-resolution is achieved
by building a regularized energy function and minimizing it
with respect to the original image and blurs. In [28], a uni-
fied method for blind image super-resolution and single- or
multi-image blind deconvolution is proposed. It is based on
alternating minimization of a cost function that is based on
the Huber–Markov random field (HMRF) model.

Blind image restoration is the process of reconstructing
the original image when only a blurred version is available.
Thus, blind image restoration can be considered as a spe-
cial case of blind image super-resolution where there is no
subsampling and only one image is available. Comprehen-
sive reviews and references about the subject can be found
in [29,30]. The blind super-resolution algorithm presented
here is also applicable to the blind restoration case.

Constant modulus algorithm (CMA) is a popular tool in
the area of blind equalization in communications, where the

aim is to suppress the inter-symbol interference (ISI) [31,32].
If the source is of constant modulus or from a finite alpha-
bet, then CMA can be used in the receiver to reduce the
channel impairments on the transmitted signal. Vural and
Sethares utilized the property of images that each pixel is rep-
resented by a finite number of bits to develop a CMA-based
single-image blind blur removal algorithm [33]. In [34], this
workwas extended to cover the blind resolution enhancement
problem such that the high-resolution image is estimated by
superposing the degraded images after they passed through
distinct adaptive finite impulse response (FIR) filters whose
coefficients were updated by using the 2D version of the
CMA.Themethodworked for pure translationalmotion only.
However, both in [33,34], it was mentioned that as the bit
number per pixel increased, the performance of the meth-
ods decreased and that this was a consequence of increasing
image kurtosis.

The work presented here is in fact based on [34], but
to work out the stated problem, two significant modifica-
tions are made. The first one is the assumption that the
image pixel values are complex numbers of constant mod-
ulus. As opposed to the previous method, which assumed
that the image pixel values had odd integer values between
−(L − 1) and +(L − 1) inclusive, where L is the number
of gray levels, the kurtosis of the image does not increase as
the bit number increases. Apparently, the image pixels are
not complex-valued, but a pre-processing scheme in which
the real image pixel values are mapped to some complex
numbers via a complex mapping diagram can be utilized to
fulfill the complex-value assumption. The second modifica-
tion is the use of complex-valued FIR reconstruction filters
instead of using real-valued ones. This is a direct conse-
quence of using a complex-valued cost function and utilizing
a gradient-descent-based optimization method.

The paper is organized as follows: In Sect. 2, the obser-
vation model that links the high-resolution image to the
observed low-resolution images is presented. If the motion
between the low-resolution images consists of only pure
translational motion, then the model can be simplified.
Based on the simplified model, the super-resolution prob-
lem is formulated. In Sect. 3, the improved CMA-based
high-resolution image reconstruction algorithm is developed.
In Sect. 4, experimental results are presented for single
image (restoration) and multiple subsampled image (super-
resolution) cases. Finally, some conclusions are drawn in
Sect. 5. Preliminary versions of this work have been pre-
sented at two previous conferences [35,36].

2 System description

Super-resolution is an inverse problem, where the desired
unknown high-resolution image is to be constructed from
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the observed low-resolution ones. The desired and observed
images are linked through linear operations such as geometric
warp, blur, decimation, and additive noise [7]. The geomet-
ric warp operator is the representation of the scene/camera
motionwith respect to one reference frame in fractional-pixel
units. It may consist of global or local translation, rotation,
etc. The blurring process results from factors such as rela-
tive motion between the imaging system and the scene, out
of focus, point-spread function of the sensor, and so on. It is
generallymodeled as a linear shift-invariant two-dimensional
FIR filter to be convolved with the original (warped) image.
Although some super-resolution frameworks assume that the
blur is the same, the more general and accurate case would
be that it is different for all low-resolution observations.
Unlike in the single-image restoration problem, where the
source of the blur is optical factors or motion, the super-
resolution problem also deals with the blur caused by the
finiteness of the dimensions of low-resolution sensors. This
is incorporated in the model as spatial averaging. The aliased
low-resolution image is then generated by the sensor by sub-
sampling the warped and blurred high-resolution image. The
model also assumes additive noise which may be caused by
quantization errors, model errors, sensor measurement, etc.
As a result, the image formation model can be summarized
as follows:

yi = S (bi ∗W (x)) + vi (1)

where the true image is represented by x, the observed low-
resolution images are represented by yi , bi denotes the blur
operators, i = 1, 2, . . ., M , and M is the number of low-
resolution images. S denotes the subsampling operator, W
shows the warping process, and vi is the additive noise. * is
the 2D convolution operator.

In some applications, where the motion is controlled and
there is no localmovement, the only type ofmotionwithin the
low-resolution image sequences is translational motion. For
example, the scanner resolution can be increased by scanning
the document more than once with slightly changed initial
points. Also in some video sequences, the scene is static
and image sequences are obtained by translational motion
of the video camera. There are works in the literature which
consider this special super-resolution case [37,38]. Here, a
frameworkwhich assumes this specific property is presented.

If the only motion within the observed low-resolution
images is global translational motion, then the warp and the
blur operators can be merged into a single blur operator [34]
and the observation model described above can be reduced
to what is seen in Fig. 1a.

For now, let us pretend that the subsampling operator does
not exist. In this case, to recover the high-resolution and
distortion-free image, a set of FIR complex reconstruction
filters is applied to the low-resolution images as in Fig. 1b.

Fig. 1 a Simplified observation model, b reconstruction stage

By using FIR reconstruction filters instead of IIR (infinite
impulse response) ones, we avoid the problem of instabil-
ity. Also in [39], it is reported that using IIR reconstruction
filters for the blind image deconvolution case requires recur-
sion within a recursion, which is computationally complex.
Based on these facts, FIR filters are chosen over IIR filters. In
the ideal case, the impulse response sequence of the recon-
struction filters, gi , satisfies

M∑

i=1

gi ∗ bi = α × δ (n1 − S1, n2 − S2) . (2)

InEq. (2),α, S1 and S2 represent the gain and shift ambigu-
ities that exist in the described blind image super-resolution
setup just like in the blind image deconvolution problem.
Thus, the purpose of the proposed blind super-resolution
scheme can be stated as follows: Construct a set of 2D FIR
filters to be applied on the observed low-resolution images
in order to reconstruct a scaled and shifted version of the
original high-resolution and high-quality image without the
explicit knowledge of the incorporated blur operators.

3 Algorithm development

The constant modulus (CM) cost is a popular tool in com-
munications for blind equalization of communication signals
over dispersive channels [31,32]. Recently, it has been
reformulated for use in 2D in the area of blind image decon-
volution [33] and blind image super-resolution [34]. For a
true image x(n1, n2) which has zero mean and whose ele-
ments are i.i.d. (independent and identically distributed),
where (n1, n2) shows high-resolution pixel locations, the 2D
version of the CM cost can be stated as:

JCM = E

{(∣∣∣x̂2 (n1, n2)
∣∣∣ − γ

)2}

= E
{∣∣∣x̂4 (n1, n2)

∣∣∣
}

− 2σ 2
x κx E

{∣∣∣x̂2 (n1, n2)
∣∣∣
}
+σ 4

x κ2
x

(3)
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where γ and κx are the dispersion constant and the normal-
ized kurtosis of the true 2D image, respectively. They are
defined by

γ = E
{∣∣x4 (n1, n2)

∣∣}

E
{∣∣x2 (n1, n2)

∣∣} , κx = E
{∣∣x4 (n1, n2)

∣∣}
(
E

{∣∣x2 (n1, n2)
∣∣})2

(4)

where γ = σ 2
x κx . The impact of JCM on the estimation of the

true image x(n1, n2) is twofold. First, it penalizes the devi-
ations of x̂2(n1, n2) from the dispersion constant γ , where
the dispersion is caused by the PSF. Second, when the true
image does not suffer from the effect of the PSF, its out-
put histogram tends to be wide. Blurring the image has the
effect of forcing the histogram to be narrower. By applying
the constant modulus algorithm on the image, its histogram
is constrained to be wider resulting in a sharper image. Only
the types of PSFs that have low-pass characteristics have
the effect of narrowing the image histogram, so the constant
modulus algorithm cannot operate with less regular kernels
such as the blur caused by camera shake.

The CM cost assumes two specific properties for the true
image. The first one is the zero-mean assumption. In [33,34],
the high-resolution image pixels are thresholded to have odd
integer values between −(L − 1) and +(L − 1) inclusive,
where L is the number of gray levels in the original high-
resolution image, to fulfill this assumption. Unfortunately,
in this approach, the CM cost surface flattens as the number
of gray levels (bit number per pixel) increases as a result of
increasing image kurtosis. Hence, the algorithm that utilizes
the CM cost with this approach shall have problems when
the bit number per pixel is high, which is the case in [33,34].
To figure out the stated problem, in this work, the true image
pixel values are assumed to have complex values of constant
modulus. A mapping diagram like the one shown in Fig. 2
can be used to validate this assumption. The diagram in Fig. 2
is for four-bit images. The diagrams for other bit levels can
be constructed in a similar way. In the figure, the true image
pixel values are represented by {.}, and the bold black dots
represent the complex values for the pixels after mapping.
Complex mapping also provides approximately zero-mean
images if each pixel value is equally likely in an image. With
this approach, the cost surface does not flatten as the bit num-
ber per pixel increases, because the image kurtosis is constant
(equal to 1) for all bit levels in contrary with the previous
approach.

The second assumption is that each gray level of the true
image is an independent and identically distributed random
variable. This assumption does not state that the pixels are
i.i.d., which is also not the case in reality. It states that the
gray levels are equally likely, which may not be true for a
single image, but which may be a suitable assumption for a
general image processing framework.

Fig. 2 Complex mapping diagram for 4-bit images

Because a closed-form solution does not exist for mini-
mizing JCM, a stochastic gradient-descent (GD) minimiza-
tion method is used. A CM cost surface is generated by
plotting the CM cost versus the (complex) adaptive filter
parameters. The minimization algorithm tries to minimize
the cost by starting at some point on the surface and then
following the trajectory of the steepest descent. An instanta-
neous estimate of JCM is given by

J := 1

4

(∣∣∣x̂2 (n1, n2)
∣∣∣ − γ

)2
. (5)

In Fig. 1b, it is shown that the degraded images yi (n1, n2)
are applied to a set of 2D adaptive complex FIR filters
gi (n1, n2) which try to remove the blur and generate the
high-resolution image (note that the subsampling process is
still ignored). The true image estimate is then used to obtain a
better estimate of the adaptive filter coefficients for the next
spatial location in an adaptive manner. An estimate of the
true image is obtained as the output of the complex adaptive
filters at the j th iteration:

x̂ j (n1, n2) =
M∑

i=1

A∑

a=−A

B∑

b=−B

gi, j (a, b) yi (n1 − a, n2 − b)

(6)

where A×B is the support of the adaptivefilters and gi, j (a, b)
are the coefficients for the i th adaptive filter at the j th iter-
ation. The derivative of J with respect to the adaptive filter
coefficients is needed in order to implement the GD mini-
mization. Let g j denote the lexicographically ordered vector
which is composed of the coefficients of the adaptive filters
at the j th iteration:
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g j := [
g1, j , g2, j , . . . , gM, j

]T
, i = 1, 2, . . . , M,

gi, j =
[
gi, j (−A, −B) , gi, j (−A, −B+1) , . . . , gi, j (A, B)

]T
,

and let y(n1, n2) be the regressor vector for the (n1, n2)th
pixel at the j th iteration:

y (n1, n2) :=

⎡

⎢⎢⎢⎣

y1 (n1, n2)
y2 (n1, n2)

...

yM (n1, n2)

⎤

⎥⎥⎥⎦ ,

yi (n1, n2) =

⎡

⎢⎢⎢⎢⎢⎣

yi (n1 + A, n2 + B)

yi (n1 + A, n2 + B − 1)
yi (n1 + A, n2 + B − 2)

...

yi (n1 − A, n2 − B)

⎤

⎥⎥⎥⎥⎥⎦

where i = 1, 2, . . . , M . The estimate of the true image for
the (n1, n2)th pixel at the j th iteration can be written as

x̂ j (n1, n2) = gTj y (n1, n2) . (7)

The derivative of J with respect to g j is given by

dJ

dg j
=

(∣∣∣x̂2j (n1, n2)
∣∣∣ − γ

)
x̂ j (n1, n2) y• (n1, n2) . (8)

(•) denotes complex conjugate. The adaptive filters are
updated according to

g j+1 = g j − μ
dJ

dg j
(9)

whereμ is a small positive step size that guarantees the algo-
rithm stability. Unlike in [33,34], where smaller step sizes
must be chosen as the bit number per pixel increases, it can
have afixedvalue independent of the bit level here. In the sim-
ulations, something in the order of 10−3 is chosen as the step
size parameter. There is a trade-off in choosing the step size,
setting it to a large value provides fast convergencewith a risk
of instability of the algorithm. It is determined empirically
to obtain fastest possible convergence while maintaining sta-
bility.

The discussion above assumes that the subsampling oper-
ator does not exist. But obviously this is not the case in
the super-resolution problem. To obtain resized versions of
the observed low-resolution images as inputs to the adap-
tive filter set, the low-resolution images are registered on
the high-resolution grid and zero values are assumed for the
non-occupied pixels.

The CM cost is not convex; hence, the algorithm may
result in a local minimum instead of the global minimum

depending on how the adaptive filters are initialized. Ini-
tialization of each adaptive filter is made by using a 2D
spike characterized by a nonzero coefficient whose location
is determined by themotion vector of the corresponding filter
input as the real part and zero as the imaginary part, i.e.,

gi,0 = δ (n1 + Hi , n2 + Vi ) , i = 1, 2, . . . , M. (10)

This eliminates the effect of the motion at the beginning
by initially shifting the interpolated low-resolution images
to their original motion-free positions. Because only transla-
tional motion is assumed, the motion vector can be estimated
using a simple block-matching method that considers sub-
pixel movement [40,41].

Based on the above discussion, the proposed CMA-based
blind image super-resolution algorithm is given in Table 1. In
the table, (l1, l2) shows low-resolution pixel locations. Note
that bold case g j and y denote the lexicographically ordered
vectors, while non-bold italic gi, j and yi denote scalar-valued
2D functions. The algorithm terminates when the average
difference between successive iterations of the adaptive fil-
ter parameters falls below a pre-specified value. The image
may be scanned more than once if the termination condition
of the algorithm is not satisfied by processing of all pixels.
Because the instantaneous gradient of the cost function is
used to update the adaptive filter parameters, the proposed
blind super-resolution scheme has the capability of coping
with spatially varying blur filters also, if they change slowly
and smoothly as a function of pixel location. The algorithm
can also be used as a solution to the blind single-image decon-
volution problem, where there is no subsampling and there
is only one image.

4 Simulation results

In this section, some simulation results of the proposed
method are provided for the restoration and super-resolution
cases. To prevent ambiguity, all the algorithms mentioned
are given names. For the restoration case, the previous (real-
valued) method [33] is called CMA2, and the proposed
method is called CMA2-C (to indicate that it uses complex
values and complex mapping). For the super-resolution case,
the previousmethod is calledCMA2-SR, and the newmethod
is called CMA2-C-SR.

4.1 Blind restoration

To evaluate the performance of CMA2-C for the single-
image blind deconvolution case, a simulation is performed
on a boat image (which is given in Fig. 3a). First, histogram
equalization is applied to the 8-bit boat image, and then,
complex-valued pixels are formed by using the mapping dia-
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Table 1 Pseudo-code of the
proposed algorithm

Inputs: yi (l1, l2), i = 1, 2, . . ., M (low-resolution images)

Initialize:

Estimate (Hi , Vi ) (motion vectors)

yi (n1, n2) ← yi (l1, l2) (placement on the HR grid)

gi,0 ← δ(n1 + Hi , n2 + Vi ) (adaptive filter initialization)

(n1, n2) ← (0,0) (start with the upper left pixel)

j ← 0 (iteration number)

repeat

x̂ j (n1, n2) ← gTj y (n1, n2) (find an estimate of the pixel)

dJ
dg j

←
(∣∣∣x̂2j (n1, n2)

∣∣∣ − γ
)
x̂ j (n1, n2) y• (n1, n2) (derivative)

g j+1 ← g j − μ dJ
dg j

(update the adaptive filters)

j ← j + 1 (increment the iteration number)

Increment (n1, n2) (proceed to the next pixel)

until
∥∥g j − g j−1

∥∥ < ε

Output: x̂ (n1, n2) = ∑
i
gi, j (n1, n2) ∗ yi (n1, n2) (high-resolution image)

Fig. 3 Restoration case. aOriginal image, b degraded image, BSNR=
30dB, c CMA2, ISNR=1.15, d CMA2-C, ISNR=4.07, e maximum
likelihood blind method, ISNR=1.87, f non-blind Lucy–Richardson
method, ISNR=4.75

gram described in Sect. 3. After this, a Gaussian blur of size
7 × 7 and variance 1 is applied on the original (complex-
valued) image. Gaussian PSF is a common type of blur
that arises especially in aerial imaging and remote sensing
because of the long-term exposure through the atmosphere.
Finally, the degraded image is obtained by adding varying
levels of white Gaussian noise. The blurred and noisy image
for blurred signal-to-noise ratio (BSNR) of 30 dB is shown
in Fig. 3b.

Visual results for CMA2, CMA2-C, the maximum likeli-
hood blind image deconvolution method [42], and the non-
blind Lucy–Richardson method [43] are given in Fig. 3c–f,
respectively, with the corresponding improvement in signal-
to-noise ratio (ISNR) values. The image shown in Fig. 3b is

used as the input. ISNR is a frequently used metric in image
restoration [44] which is given by:

ISNR=10 log10

{∑N1
n1=1

∑N2
n2=1 [x (n1, n2)−y (n1, n2)]2

∑M
m=1

∑N
n=1

[
x (n1, n2)− x̂ (n1, n2)

]2

}

(11)

where x(n1, n2) and y(n1, n2) are the original image and the
degraded image, respectively, and x̂2(n1, n2) is the recon-
structed image. ISNRcannot be usedwhen the original image
is not known, but it can be used to compare performances of
different methods when it is known. Both the visual results
and the ISNR values suggest that CMA2-C has superior per-
formance over CMA2. This is attributed to the fact that with
the aid of complex mapping, the cost surface does not flat-
ten and there is no need to choose a smaller step size as the
bit number per pixel increases (8 bits in this case). Because
CMA2 suffers from these effects, the improvement in image
quality for high bit levels is minimal when compared to
CMA2-C.Moreover, CMA2-Cperforms better than themax-
imum likelihood blind method and competes well against
the Lucy–Richardson method both in visual and ISNR terms
although the latter has the advantage of having the PSF para-
meters beforehand.

The ISNR values of CMA2-C and CMA2 for different bit
depths and noise levels are given in Table 2. When the input
is a 1-bit image, the performances of the methods are similar
because for the 1-bit case, CMA2-C is essentially similar to
CMA2. As the bit depth increases, the performance does not
decrease much for CMA2-C although there is a significant
performance loss for CMA2. As for the noise level, when the
BSNR is about 10 dB, the ISNR drops below 2 dB and there
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Table 2 ISNR values for CMA2 and CMA2-C for different bit levels and BSNR values

Bit level 1 4 8

BSNR Clean 40 30 20 10 Clean 40 30 20 10 Clean 40 30 20 10

CMA2 6.19 4.95 4.02 2.88 1.56 2.15 2.06 1.97 1.55 1.20 1.43 1.32 1.15 1.01 0.86

CMA2-C 5.96 5.02 4.18 2.76 1.61 5.62 5.07 4.51 2.49 1.41 5.46 5.18 4.07 2.37 1.39

Fig. 4 Super-resolution case, Gaussian blur. a Original image, b one of the low-resolution images (interpolated), c CMA2-SR, d CMA2-C-SR, e
bilateral shift-and-add method

Table 3 ISNR values for the former and new super-resolution methods for different bit levels and BSNR values

Bit level 1 4 8

BSNR Clean 40 30 20 10 Clean 40 30 20 10 Clean 40 30 20 10

CMA2-SR 4.42 3.61 2.28 1.57 1.01 1.42 1.34 1.15 0.94 0.74 1.01 0.96 0.73 0.41 0.19

CMA2-C-SR 4.48 3.49 2.32 1.56 0.92 4.22 3.76 2.55 1.63 1.12 4.08 3.54 2.56 1.48 0.98

is not a significant visual improvement in the reconstructed
image. Hence, it can be said that the method is mostly useful
when the BSNR is above 10 dB.

4.2 Blind super-resolution

To simulate the performance of the proposed method in the
blind super-resolution case, two images (Lena and car) are
used with two different kinds of blur (Gaussian and 2D uni-
form). Two-dimensional uniform blur is a representation of
an out-of-focus blur. Both Lena and car images are 8-bit
images, and their sizes are 128×128 and 176×132, respec-
tively. To simulate the low-resolution and degraded image
formation model along with the assumptions that are made
throughout this work, first histogram equalization is applied
on the Lena image, and then, the image is reduced to the
desired bit level by using uniform quantization. After this,
complex-valued pixels are formed by using the mapping dia-
gram described in Sect. 3. Then, (i) global translation, (ii)
Gaussian blur of size 5 × 5 and variance 1, (iii) subsam-
pling by two in both directions, and (iv) additive noise are
applied on the image to obtain a low-resolution one. Stages
(i) through (iv) are repeated three more times to have four
low-resolution images. These images are the inputs to the
algorithms under consideration. A similar process is also

applied to the car image except that the blur is a uniform
2D blur with size 5 × 5.

The visual results for the Gaussian blur case are given in
Fig. 4, and the ISNR values for different bit and noise levels
are given in Table 3. For comparison purposes, the visual
result for the bilateral shift-and-add method [45] which uses
the blind Lucy deconvolution algorithm [46] is also given in
Fig. 4e. The parameters of the bilateral shift-and-add method
and the iteration number for the blind Lucy deconvolution
algorithm are chosen to give the best visual performance. The
visual results are given only for the 8-bit case; the results for
other bit levels are not shown in order to save space. Both
the visual results and the ISNR values show that CMA2-C-
SR outperforms CMA2-SR because of the same reasons for
the single-image case. At first sight, the visual results for
CMA2-C-SR and the bilateral shift-and-add method looks
similar, but when the details are examined carefully, it can
be seen that CMA2-C-SR is more successful in removing
the blur. Besides, as seen in Table 3, there is not a significant
improvement in SNR when the BSNR is at or below 20 dB.
As a result, it canbe said thatCMA2-C-SRblind image super-
resolution method can be utilized when the BSNR values of
the images are above 20 dB. Similar results were obtained
using the car images, but the figures are removed from the
paper to save some space.
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Fig. 5 a Four low-resolution images, b one of the low-resolution images (linearly interpolated and thresholded to 2 bits), c result of CMA2-SR, d
result of CMA2-C-SR, e result of the bilateral shift-and-add method

Finally, CMA2-C-SR is tested using a set of real images.
Figure 5a shows four low-resolution images, and Fig. 5b
shows one of the low-resolution images (interpolated and
thresholded to 2 bits). The motion parameters are calculated
by a simple correlation-based block-matching method which
takes into account sub-pixel motion. The results of CMA2-
SR and CMA2-C-SR are given in Fig. 5c, d, respectively,
and the result for the bilateral shift-and-add method is given
in Fig. 5e. CMA2-C-SR outperforms CMA2-SR in terms of
readability, and it also competes well against the result of the
bilateral shift-and-add method.

5 Conclusion and future work

In this work, a new blind image restoration and super-
resolution method that is based on a 2D constant modulus
algorithm and complex filtering is developed. This method
does not suffer from the problem of degradation of perfor-
mance as the bit number increases, which was the case in our
previous method, because due to the complex mapping, kur-
tosis does not increase as the bit number per pixel increases.
The method can remove the blur and achieve increase in
resolution for any-bit images if the PSFs have low-pass char-
acteristics.

An important drawback of themethod is that it works only
for pure translational motion. More general motion models
include affine motion and local movement within images.
Some studies are being performed to cover the affine motion
model as well as pure translational motion. Another impor-
tant disadvantage is the difficulty in applying the method to
real-world distorted images. The reason for this situation is
that during simulations, the true image is first mapped to the
complex plane, and then, the degradations are simulated in
the complex domain. However, for a true application, the
distorted image(s) should be directly mapped to the complex
plane and the algorithmmust be run afterward. The results for
this case are not as successful as the simulated ones, but this
does not mean that the method cannot be used for real dis-
torted images. As observed in the true image simulations, the
method provides significant improvement over other meth-

ods including our previousmethod.Maybe if somemeans for
incorporating the complex mapping mechanism to the imag-
ing hardware can be found, then real-world applications of
the method can become more available.

Normally, carrying out the iterations to scan the image
a few times is enough for convergence, but for some cases,
scanning the image several times becomes necessary result-
ing in amajor increase in processing time. Hence, themethod
ismore suitable for offline applications.Also the convergence
analysis is not done properly, and the method can stuck in
a local minimum at some point. Work is still being carried
out to analyze and improve the convergence properties of the
method.
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