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Abstract The lifting style biorthogonalwavelet implemen-
tation has a nice property of enabling flexible design; it is
immediately reversible and has a simple relation to sub-
band filters. In this work, we present a general wavelet
prediction (P) and update (U ) filters of two-channel lift-
ing structures. A previous research of the author introduced
signal-specific wavelets, which minimizes the difference
between block wavelet transform matrix of the wavelet and
the Karhunen–Loéve transform of a stochastic process with
certain autocorrelation sequence. This research introduces a
general wavelet, which can work on any stochastic process.
Numerical results are provided in terms of the filter coeffi-
cients and experimental performances on 16 test images.

Keywords Biorthogonal wavelets · Lifting scheme ·Block
wavelet transform · Filter design

1 Introduction

Despite their vast variation of applications and design bases,
wavelets have a common property of de-correlation. The typ-
ical implementation of the discretewavelet transform (DWT)
is subband filtering. Due to its design flexibility and imme-
diate relation to classical subband filtering, the lifting style
decomposition is popular [7,8,11,12]. Besides, the synthe-
sis operation is completely symmetric and the de-correlation
concept is automatically implemented in the “prediction”
scheme (P) of the lifting decomposition. Obviously, other
types of transforms, including the classical matrix-based
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transforms, also aim for the de-correlation of the input ran-
dom vector. The relation between a (multi-level) subband
decomposition and a transform matrix was explained in [2],
where a technique to define a wavelet decomposition struc-
ture in terms of a block transform matrix (hence the name;
block wavelet transform—BWT) was devised. In that work,
the generation method of the corresponding BWT from any
DWTfilter bankwas explained, and various numerical exam-
ples of such transforms were provided [2]. The original
methodology of BWT generation was feeding the balanced
subband tree with shifted unit sample trains, each with a
period of L = 2N , where N is the number of decomposi-
tion levels. The outputs of each branch in the subband tree
naturally become constant, rendering a column of the BWT.

In the previous research by the authors, the iterative deter-
mination of a 2N × 2N BWT matrix generating algorithm
(from smaller BWT counterparts) was developed, a filter
design technique using the orthogonality constraints of BWT
matrices for the lifting scheme (envisaged by Sweldens
[11,12]) was proposed together with another filter design
technique which yield BWT matrices that would mimic sta-
tistically optimal Karhunen–Loéve transform (KLT) matri-
ces, which are, by construction, best de-correlating matrices
[9,10]. In essence, the previous research is the dual prob-
lem of the method in [2], instead of generating a BWT from
DWT, to try to determine filter coefficients of DWT, which is
expected to produce a particular BWT (that is close to KLT
in a Frobenius norm). One attempting method was investi-
gated by Dogan and Gerek [4–6] for orthogonal wavelets
using orthogonal QMF subband structures. However, QMF
subband filters are too restrictive, and the distance between
a KLT matrix and the BWT of a QMF DWT cannot be made
arbitrarily close.

The drawback of author’ s previous research is the
wavelets’ dependence to the test images, i.e., wavelets varied
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for each test image [9,10]. Questions are, would one wavelet
of a certain test image work on the other test images or is
there a possibility of the existence of a general wavelet?
This research deals with the second question. Signal-specific
wavelets bring problems with them, and a general solution
must be found. This paper concludes the previous research
[9] by generalizing the signal-specific wavelets described in
[9]. Thus, the aim of this paper is to achieve a general solu-
tion by designing the general wavelet. Hence, in this work,
the more flexible case of biorthogonal lifting style wavelet
parametrization is not considered through the same KLT
approximation idea as in the previous research [9,10], but
a general wavelet is introduced which is only based on the
KLT approximation idea.

The paper starts by briefly explaining the lifting scheme
in Sect. 2. In the lifting scheme, the author describes the
motivation behind. Next, the general wavelet is introduced
in Sect. 3, and finally in Sect. 4, conclusions are provided.

2 Lifting scheme

Lifting is a smartmethod to implement a 2-channel decompo-
sition in the polyphase domain (Fig. 1). For the 1-level lifting
decomposition structure, the polyphase matrix is defined as

Hp =
[
H0,ev(z) H0,od(z)
H1,ev(z) H1,od(z)

]

where

H0,ev(z) = 1− P(z)U (z)

H0,od(z) = U (z)

H1,ev(z) = −P(z)

H1,od(z) = 1

and the subband decomposition filters are

H0(z) = H0,ev(z
2) + zH0,od(z

2)

Fig. 1 1-level lifting structure

H1(z) = H1,ev(z
2) + zH1,od(z

2)

In order to design a regularized wavelet having at least
one vanishing moment so that its corresponding scaling and
wavelet dilation equations converge iteratively, H0(z = −1)
and H1(z = 1) must equal to 0. This condition automati-
cally imposes that, when the prediction filter is in the form:
P(z) = ∑

i a−i zi and the update filter is in the form:
U (z) = ∑

i bi z
−i , the coefficients must obey the following

conditions:

α =
∑
i

a−i = 1

β =
∑
i

bi = 0.5
(1)

These filter coefficient constraints are, therefore, adopted as
an initial condition for the BWT construction algorithms,
while the minimization of the difference between the BWT
and KLT matrices remains the optimization criterion.

Daubechies 5-tap/3-tap (Daub 5/3) wavelet has the fol-
lowing prediction (P(z)) and update (U (z)) filters

P(z) = 1

2
+ 1

2
z

U (z) = 1

4
+ 1

4
z−1

(2)

where it must be underlined that the Daub 5/3 wavelet has
a major advantage. Its implementation consists of bitwise
shifts and additions [1,3]. Hence, it would be better if the
general wavelet to be proposed possesses such properties.

The basic methodology starts with the observation of
32 wavelet samples contained from 16 test images in the
author’s previous study [9]. Then, a general wavelet is pro-
posed, which possesses the shifting and addition operations
of Daubechies 5/3 wavelet. In the author’s previous research,
it has been described in detail that 8× 8 design works worse
than the 4× 4 case [9]. So it must be noted that the author’s
operations are on 4× 4 BWTs, i.e., 5-tap/3-tap biorthogonal
wavelets.

3 Results and discussion

When the 32 wavelets of the previous research are inves-
tigated [9], it is seen that the update filter approximated for
Barbara’s columnKLTmatrix is of length 1, i.e.,U (z) = 0.5.
This is due to the fact that Barbara’s column KLT matrix
has second and third rows where the magnitudes of the ele-
ments are close to each other forcing the differences and
summations of filter the coefficients to be equal. When
the summation and difference of two variables are close to
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Table 1 Variances of the wavelet tree images for the Daubechies 5/3 and the general wavelet

Test image LLLL LLLH LLHL LLHH LLH LHL LHH LH HL HH

Aerial, Daub 5/3 1474.75 927.91 1316.4 1730.7 489.75 812.23 575.57 110.45 192.70 60.402

Aerial, general 1147.75 595.03 803.03 1226.74 441.27 693.76 527.72 147.36 248.71 92.33

1st Plane, Daub 5/3 2322.74 747.636 603.588 532.46 186.485 259.872 116.906 48.5499 85.0399 10.9563

1st Plane, general 2002.32 437.057 419.323 380.71 181.419 264.845 117.483 82.6466 106.396 17.6138

2nd Plane, Daub 5/3 580.353 321.072 310.957 242.338 134.552 114.132 79.011 19.8558 23.0125 20.4354

2nd Plane, general 475.771 132.006 113.617 165.385 123.8 111.163 66.9966 23.629 29.3979 28.3982

Barbara, Daub 5/3 2171.94 369.743 259.986 277.296 536.058 148.513 623.975 472.443 34.799 75.5528

Barbara, general 1986.21 260.59 178.464 231.889 423.452 140.82 518.516 472.849 51.3802 131.041

Bus*, Daub 5/3 399.856 1216.95 332.905 1145.89 1880.08 563.4 1688.61 2412.79 221.111 453.78

Bus*, general 236.097 933.059 229.243 705.079 1514.98 434.68 1380.21 2461.03 258.386 649.34

Elaine, Daub 5/3 2329.48 286.069 268.352 210.787 109.29 121.275 84.1716 26.867 47.5747 110.481

Elaine, general 2115.84 209.891 155.34 170.111 112.564 122.161 73.3208 35.4041 53.7308 125.469

Foreman*, Daub 5/3 3.9733 20.391 8.8136 45.206 41.385 16.918 50.441 58.892 9.7729 21.404

Foreman*, general 2.6965 12.511 8.8461 37.203 32.544 12.870 40.667 58.312 10.686 28.093

House, Daub 5/3 2348.49 557.813 565.01 478.884 296.748 337.392 191.885 96.7139 127.167 19.0444

House, general 2019.58 532.601 390.338 357.519 261.488 316.891 173.928 131.831 149.172 30.8287

Lena, Daub 5/3 2464.13 272.89 518.885 490.206 122.431 212.094 138.107 21.9546 46.9018 21.1248

Lena, general 2253.33 157.469 362.422 330.592 120.968 209.867 119.307 31.2051 64.3419 29.632

Lena*, Daub 5/3 0.01251 0.02472 0.01225 0.05748 0.06479 0.02912 0.10691 0.07247 0.03463 0.10023

Lena*, general 0.01033 0.01731 0.00819 0.03913 0.04807 0.02109 0.08784 0.07151 0.03423 0.11957

Mandrill, Daub 5/3 1408.32 544.516 610.79 1253.65 459.305 850.513 950.538 187.441 572.74 156.942

Mandrill, general 1248.15 345.986 400.348 825.676 379.435 678.221 784.919 218.704 616.323 202.834

Mandrill*, Daub 5/3 0.01889 0.02714 0.03419 0.09875 0.07832 0.10237 0.23089 0.09852 0.14420 0.21238

Mandrill*, general 0.01572 0.01949 0.02668 0.06299 0.05796 0.07552 0.18036 0.09832 0.14050 0.25232

Peppers, Daub 5/3 3090.76 413.967 403.286 254.218 141.06 162.715 82.4316 26.875 31.1291 20.0732

Peppers, general 2833.27 309.113 224.123 198.988 147.07 162.443 76.6928 39.4183 43.0221 23.4969

Ruler, Daub 5/3 496.437 649.295 647.757 670.04 7368.59 7188.88 2342.07 2826.18 2771.34 527.882

Ruler, general 399.439 867.421 915.513 308.622 5431.19 5262.7 1970.89 3608.94 3557.94 651.943

Sailboat, Daub 5/3 4492.7 701.039 741.515 790.858 230.075 276.786 205.657 69.6518 91.1597 83.4426

Sailboat, general 4126.54 520.709 519.342 560.864 236.577 264.346 193.951 101.328 129.34 101.095

Tank, Daub 5/3 758.424 245.605 269.936 177.249 124.279 146.336 104.447 36.6123 52.689 36.8455

Tank, general 685.756 105.309 124.1 127.275 111.903 129.876 86.7573 40.9287 59.5856 49.0407

each other, one variable approaches to 0. In this case, Bar-
bara’ s column KLT approximation resulted an update filter
U (z) = 0.5000, and the prediction filter was no different,
which was P(z) = 0.9932+ 0.0068z.

However, for the rest of the 31 cases (including 8 cases
given in Table 4 of [9]), a0 varies around 0.75, whereas
a−1 varies around 0.25. Similarly, b0 varies around 0.4375,
whereas a−1 varies around 0.0625 [9]. These picked pivot
numbers are the closest coefficients that can be described by
shifting and addition bitwise operations.

3.1 Definition of a general wavelet using the 4 × 4 KLT
approximation wavelets

Using these filter coefficient results obtained in our previous
research [9], we have devised general wavelet coefficients as
shown in Eq. 3

P = 3

4
+ 1

4
z

U = 7

16
+ 1

16
z−1

(3)
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The importance of these prediction and update filters is not
only their character to be generalized definitions, but also
they include bitwise additions and shifts as in Daubechies
5/3.

The delayer components (i.e., z/4 and z−1/16) are plain
bitwise shifting and addition operations. Compared to the
Daubechies’ delayer shiftings of 1 for P and 2 forU (i.e., z/2
and z−1/4), the wavelet introduced in this paper has delayer
shiftings of 2 for P and 4 for U .

Likewise, the wavelet introduced in this paper has scalar
shiftings of 2 for P (1/4) and 4 for U (1/16) compared to
Daubechies’ scalar shiftings of 1 for P (1/2) and 2 forU (1/4).
On the other hand, using parallel architecture, it is possible
to achieve bitwise shifting and addition operations for scalar
components, which are 3/4 and 7/16. Off course, this adds
3 addition operations for P and 7 addition operations to U
realizations.

The lifting filters of Eq. 3 result analysis subband filters
such as

H0(z) = 1

64

(
−7z2 + 28z + 42+ 4z−1 − 3z−2

)

H1(z) = 1

4

(
−z2 + 4z − 3

) (4)

and the synthesis subband filters become

G0(z) = −z−1H1(−z)

=
(
z + 4+ 3z−1

)
4

(5)

G1(z) = z−1H0(−z)

=
(−7z − 28+ 42z−1 − 4z−2 − 3z−3

)
64

(6)

The variances of the wavelet tree images are listed in
Table 1. As can be seen, the wavelet introduced in this
research gives better variance results with better coding gain
and energy unbalance.

4 Conclusions

In this research, a general wavelet is presented based on
a signal-specific methodology to design lifting wavelets at

certain sizes (5/3 for this case). The described generalwavelet
is inspired by wavelets which construct a 4 × 4 orthogonal
BWTmatrix that mimic a 4×4 KLTmatrix corresponding to
a time series. Experimentally, the general wavelet was tested
on the 16 different typical test images, and it was observed
that the designed wavelet has good regularity properties and
also provides plausible de-correlation performances as com-
pared to the Daubechies 5/3 wavelet.
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