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Abstract This work presents a new recursive robust filter-
ing approach for feature-based 3D registration. Unlike the
common state-of-the-art alignment algorithms, the proposed
method has four advantages that have not yet occurred alto-
gether in any previous solution. For instance, it is able to deal
with inherent noise contaminating sensory data; it is robust
to uncertainties caused by noisy feature localisation; it also
combines the advantages of both L∞ and L2 norms for a
higher performance and a more prospective prevention of
local minima. The result is an accurate and stable rigid body
transformation. The latter enables a thorough control over
the convergence regarding the alignment as well as a correct
assessment of the quality of registration. The mathematical
rationale behind the proposed approach is explained, and the
results are validated on physical and synthetic data.
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1 Introduction

The widespread abundance of affordable 3D sensing devices
has encouraged many enthusiasts to contribute new solutions
for 3D reconstruction [1]. The latter require data align-
ment tools that enable the recovery of the 6DOF regarding
viewpoints where the different scans had been captured.
Theoretically, each viewpoint has a different coordinate sys-
tem. Knowledge of the transformation that maps a given 3D
point from one frame to another, therefore, becomes neces-
sary.

In practice, the alignment requires some keypoints from
a Source and a Target point cloud. Hence, alignment prob-
lem amounts to the determination of the mapping between
the source and the target frames. To this end, we assume
the keypoints being available and we focus on 3D registra-
tion. Generally, the determination of the best transformation
is based on L2 norm minimisation. However, L2 optimis-
ers assume a prior availability of the entire datasets before
processing takes place. From a practical point of view, such
an assumption is too optimistic due to sizeable noisy data
streamed at relatively high frame rates that one encounters in
practice. For this reason, our novel 3D registration solution
delivers the 6DOF pose between viewpoints recursively and
is capable of handling 3D points’ noise and uncertainty for a
more efficient estimation.

The remainder of this paper is organised as follows: In
the first section, the related works about 3D registration are
discussed and different alignment solutions that had been
proposed so far are analysed. In the following section, 3D
registration problem is formulated in a Least Squares (LS)
form. In the next section the link between 3D registration
and RLS is settled and fitted into Kalman filter’s (KF) equa-
tions [2]. The parametric uncertainty of the 3D feature points
is afterwards determined to be later used in the Robust H∞
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(RF)modelling for sparse alignment. Our contribution is val-
idated on both synthetic and real datasets. Lastly, the paper
is concluded and potential future works are recommended.

2 Related works

Since its invention byBesl andMcKay [3], the Iterative Clos-
est Point algorithm (ICP) has been considered as a reference
in point cloud alignment literature. However, a good initial
guess or some feature correspondences are necessary to avoid
local minima. Newer variants of that algorithm have been
proposed to deal with its limitations such as EM-ICP [4]
and Softassign [5]. Unlike the original implementation that
assigns to every point in the source its closest correspon-
dent in the target, subsequent variants allow each point to be
checked against the entire target dataset. To this end, weight-
ing coefficients are associated with the elements to discard
the describe their quality [5]. Other variants inspired by the
original algorithm (ICP) were further proposed such as non-
linear ICP [6], generalised ICP [7] as well as non-rigid ICP
[8]. Larusso et al. [9] showed that all closed-form solutions
are computationally similar. However, performance can sig-
nificantly differ from one solution to another. Thus, no single
algorithm is exclusively optimal for all scenarios. Umeyama
[10] states in his work that Horn and Arun’s algorithms fail
when the datasets become highly corrupted with noise. He
further proposed an alternative solution that utilises Lagrange
Multipliers [11].

A solution for the recursive estimation of rigid body trans-
formations with the Extended Kalman Filter (EKF) was first
proposed by Pennec and Thirion [12]. Ma and Ellis [13]
followed the same strategy in order to align datasets contam-
inated with isotropic Gaussian noise using the Unscented
Particle Filter (UPF) [14]. This algorithm can accurately
estimate the parameters for very small datasets (less than
one hundred elements). An Unscented Kalman Filter (UKF)
algorithm was also adapted by Julier and Uhlmann [15] to
align two datasets following a sequential estimation. All
these recursive algorithmsminimiseL2 normbut consider the
parameters being accurately determined beforehand. Never-
theless, it is impossible to assert the certainty of parameters
in real scenarios. In our solution, however, we consider
them (parameters) being uncertain, and we confine estima-
tion error to a small range by optimising L∞ norm instead
of L2.

Micusik and Pflugfelder [16] used a second-order cone
programming (SOCP) to minimise the L∞ norm for non-
overlapping cameras. They have shown a good performance
with a fairly small error magnitude. Lee et al. [17] further
claimed that by using L∞ a number of computer vision prob-
lems such as homography estimation can be formulated and
solved using Bisection method.

In the light of this background, our work takes advantage
of the mature recursive estimation framework in order to
compute a robust and optimal solution for 3D registration
problem by means of L∞ norm minimisation.

3 Problem statement

Given two sets of source and target 3D point clouds Q ={
q1, . . . , qn

}
,P = {

p1, . . . , pn
}
respectively. Each of the

elements pi, qi within the sets of points has three components
pi = (xp, yp, zp)i and qi = (xq, yq, zq)i. The kth point qk
in the source point cloud has been matched a priori with
the kth point in the target point cloud pk. The purpose of
3D registration is to find a rigid body transformation (R:
rotation, t: translation) that maps the sourceQ onto the target
P. The determination of such a mapping can be modelled
as an optimisation problem [18]. Nevertheless, due to noisy
outputs streamed by the sensor, an exact solution is very
unlikely to determine. Thus, a realistic model must take into
account alignment error ei as follows:

pi = Rqi + t + ei (1)

The rigid body transformation [R, t] is optimal when the sum
of the squares of errors (ei ) becomes minimal:

e2 = argmin
R,t

n∑

i=1

‖pi − (Rqi + t)2‖ (2)

where

R =
⎡

⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦; t =
⎡

⎣
tx
ty
tz

⎤

⎦ (3)

It is possible to simplify the problem of Eq. (2) by decoupling
the translation vector t and eliminating scale difference as
follows:

t̂ = p̄ − R̂q̄; ŝ =
n∑

i=1

(
p̄i R̂q̄i
‖q̄i‖2

)

(4)

t̃ = p̄ − q̄; s̃ =
n∑

i=1

(
p̄i q̄i

‖q̄i‖2
)

(5)

As claimed by Horn et al. [19], q̄ and p̄ are the centroids
respective to the source and the target point clouds; t̂, ŝ are
the optimal translation and scale between the two dataset.
Whereas t̃, s̃ are their respective initial guesses when the ini-
tial rotation is assumed to be R0 = I3. As a result of this
simplification, the problem of pose estimation in Eq. (2) is
now reduced to:

123



SIViP (2016) 10:835–842 837

e2 = argmin
R

n∑

i=1

‖ p̄i − Rq̄2i ‖ (6)

Once the optimal rotation R̂ computed, t̂ and ŝ can be
deduced usingEq. (4).On the other hand, the optimal rotation
R̂ can be obtained by minimising

∑n
i=1 ‖ p̄i − Rq̄i‖2 using a

LS optimiser. The resulting estimation is sufficient for most
applications as long as robustness is not a determining factor.
However, if the inputs become significantly contaminated
with noise, the result becomes unstable (i.e., very sensitive
to perturbations in the data) and more likely to drift away
from the optimal solution.

4 3D registration with RLS

Despite the performance of time-varying filters, 3D regis-
tration has profited very poorly from their assets even after
closed-form methods were proven weak in various practi-
cal situations. Moreover, the authors of a number of recent
image registration surveys did not even allude to the possi-
bility of solving 3D alignment with recursive filtering tools
[20]. The power of the recursive solutions can be appreciated
due to what has been claimed earlier and to the possibil-
ity of cooperation between different registration instances
working together. The latter can share their most updated
estimates instantaneously. As a result, they can benefit from
each other’s contributions, which in turn reduces the proba-
bility of falling into a local minimum.

4.1 Recursive modelling of 3D registration

In order to express the cost function of Eq. (6) in a recur-
sive fashion, the original problem should be rewritten as
shown in Eqs. (7)–(10). Such a transformation allows us
to fit 3D registration problem in a recursive least squares
framework.

p = Rq + e (7)
⎧
⎨

⎩

px = r11qx + r12qy + r13qz + ex
py = r21qx + r22qy + r23qz + ey
pz = r31qx + r32qy + r33qz + ez

(8)

By analogy, the state variable xk now represents the rotation
matrix R of Eq. (7). The optimiser uses pairs of correspond-
ing points in order to refine the entries of the state vector now
containing the entries of rotation matrixR9. For instance, at
every time-step k we have:

v = [
qx qy qz

]

⎡

⎣
px
py
pz

⎤

⎦ =
⎡

⎣
v

v

v

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r11
r12
r13
r21
r22
r23
r31
r32
r33

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
⎡

⎣
ex
ey
ez

⎤

⎦ (9)

p = HRR9 + e (10)

xk = [
r11 r12 r13 r21 r22 r23 r31 r32 r33

]T ∈ �9;
Ak = I9;Bk = 09 as no control variable is required. wk ∼
N (

0,Qk
)
is a random variable representing process noise

for which Qk = σ 2
kI9; σ k > 0 should be small because the

process is accurately determined. zk ∈ �3 is the actual noisy
measurement vector whose elements are the coordinates of
the target feature point. yk ∈ �3 is the predicted observation
vector that contains the 3Dposition of the target feature point.
vk is a random variable for which Rk = [

σ x σ y σ z
]
I3, it

represents noise process contaminating target feature point
localisation. The complete scheme of KF-based registration
is explained in Algorithm 1. The latter works as follows: (1)
Initialise the state vector (rotation matrix) with the entries
of I9. If available, an initial guess would be preferable. (2)
Iterate over feature points; acquire a new target feature zk
and buildHk. (3) KF prediction. (4) KF correction where the
estimate xk and the covariance of error in estimation Pk are
corrected with Kk.
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The computational complexity of KF registration is pro-
portional toO(n×93) in theworst case,wheren is the number
of keypoints used to compute the optimal registration and 9
is the size of the state vector. On the other hand, the best com-
plexity regarding alternative registration algorithms such as
ICP, EMICP andWICP is proportional toO(n2 × 32.37). KF
3D registration can be easily expanded to include the three
components of translation vector in Hk.

5 Robust H∞ registration

5.1 3D points uncertainty

In order to handle instability in parameters estimation, the
uncertainties should be confined into a small range. To this
end, the behaviour of the noisy inputs must be thoroughly
studied. Uncertainties are modelled empirically by looking
at how 3D points are distributed, and how do 3D sensors
sense the real world.

5.2 z-Resolution of RGBD cameras

The authors have already shown in a previous research [21]
that the points within a 3D image lie on parallel clusters
that were named “Z-Levels”. Such a structure allows us to
quantify correctly the amount of uncertainty in every feature
point.

5.3 Depth noise statistics

RGBD sensors’ measurement-noise has a Gaussian distri-
bution with varying standard deviations. These standard
deviations rely on the range between the sensor and the scene.
The standard deviation σ zk of a given Z-level zk is defined
by the length of the interval where zk is expected to vary as
shown below:

σzk = (Zk+i − Zk−i )/2 (17)

Here, σ zk represents the average distance separating the two
Z-levels Zk+i and Zk-i and the central one zk. Empirically,
the best estimation of the standard deviation regarding noise
affecting the 3D points lying on zk is obtained when i = 3.
That is, the true depth ẑk taken by a given Z-level is expected
to be equal to zk ± ((Zk+3 − Zk-3)/2). The standard devi-
ations concerning the remaining two coordinates (xk, yk)
are deduced from the intrinsic parameters of the camera
(f x, f y, cx, cy) and σ zk as follows:

{
ui = ( fx/zi )xi + cx
vi = ( fy/zi )yi + cy

(18)

{
xi = (zi/ fx ) (ui − cx )
yi = (

zi/ fy
) (

vi − cy
) (19)

⎧
⎨

⎩

σzk = 0.5(Zk+i − Zk−i )

σxk = (
σzk/ fx

)
(uk − cx )

σyk = (
σzk/ fy

) (
vk − cy

) (20)

Every point is, therefore, affected by certain amount of
noise characterised by the standard deviations σ xk , σ yk , σ zk
towards the directions of the axes x, y and z, respec-
tively. Hence, the covariance matrix attributed to each point
p(x, y, z) is described as:

C (x, y, z) =
⎡

⎣
σ 2
x σxσy σxσz

σyσx σ 2
y σyσz

σzσx σzσy σ 2
z

⎤

⎦ (21)

C represents the spread of uncertainty around the point
p(x, y, z). As can be seen in Fig. 1 a, the projection of covari-
ance ellipsoids of a given 3D point on the planes zx, zy, yx
yields three ellipses. The more accurately a feature point is
captured, the smaller the norm of its covariance matrix (blue
point in Fig. 1a). On the other hand, the less accurate the cap-
ture of a given feature is, the larger the norm of its covariance
matrix (red point in Fig. 1a).

Kanazawa and Kanatani [22] claimed that the incorpora-
tion of feature uncertainty does not contribute any further
improvements to the estimation. On the other hand, Brooks
et al. [23] as well as us in a previous work [24], both
noticed a reduced error in estimation after considering uncer-
tainty. Based on the conducted experiments with registration
algorithms and the fact that Weighted-ICP (WICP takes
into account data uncertainty) outperforms ICP, as will be
shown in the results, it is obvious that the incorporation
of feature-location uncertainty improves pose estimation
remarkably.

6 Robust H∞ (RF) filter for 3D registration

In this section, we propose a time-varying registration algo-
rithm that incorporates modelling and measurement uncer-
tainties as follows:

xk = (Ak + �Ak) x̂k−1 + Bkuk + wk (22)

yk = (Hk + �Hk)xk + vk (23)

�Hk represents the uncertainty in observation model,
whereas �Ak is the uncertainty in process model. In our
case, the two matrices take the values:

�Ak = σA I9

σA = [
σr11σr12σr13σr21σr22σr23σr31σr32σr33

]
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Fig. 1 a 3D points uncertainty ellipses, b ground truth (OptiTrack) and
real data acquisition with Kinect in an indoor scene, c, d 3D registration
RMSE (m) of the new and the old Kinect, respectively; e, f time elapsed

during registration for the new and the old Kinect, respectively. EMICP
(pink), WICP (green), Horn (red), RF (black), KF (blue) (colour figure
online)

Vk = [
qx + σx qy + σy qz + σz

]
(24)

�Hk =
⎡

⎣
Vk

Vk
Vk

⎤

⎦ (25)

If these matrices cannot be determined, RF would still be
able to control the instability disturbing its parameters [25]
by assuming it being of the form:

[
�Ak

�Hk

]
=

[
M1k

M2k

]
Γk Nk (26)

M1k,M2k and Nk are known matrices, Γ k is unknown but it
should satisfy the bound:

Γ T
k Γk ≤ I (27)

Our purpose is to design a state estimator of the form:

xk+1 = Ãk xk + K̃k tk (28)

The latter should be stable (the eigenvalues of Ãkmust be less
than one in magnitude). The determination of the parameters
of the filter can be done through the procedure described in
our previous work [24].

The adaptation of RF is proven to be flexible and capable
of delivering accurate state estimations, however uncertain
system’s parameters are. Estimation error compared to the
ground truthmeasurements will show the effectiveness of RF
3D registration against alternative non-robust methods such
as KF and the more established algorithms available in the
literature. In real scenarios, the exact model is very unlikely
to determine [26]. Yet the non-robust tools do not consider

uncertainties in their parameters. Hence, if by chance the
parameters are accurate, these tools perform as well as RF.
On the other hand, when the system is not precisely char-
acterised, they become significantly unstable. For instance,
RF registration combines the robustness of H̃∞ (it is less
affected by the accuracy of system’s parameters) and the opti-
mality of KF on linear systems to produce an accurate and
stable estimate. Such a quality guaranties a high precision of
estimation and more stability towards inputs’ perturbations.

7 Results and discussion

In this section, the results regarding KF and RF registration
are validated with tests on real and synthetic 3D data. Our
test benchmark includes: WICP [27]; Expectation Maximi-
sation ICP algorithm (EMICP) [28] and Horn’s closed-form
solution based on quaternions (HORN) [29].

Here, accuracy is measured by the distance separating
the target and the source point clouds after the registration.
In order to fairly assess every algorithm, processing time
elapsed to find the best pose is also recorded. Throughout
experiments, it is noticeable that the plottedmetrics (process-

ing time and RMSE =
√

1
n

∑n
i=1 ‖R̂Qi + t̂ − Pi‖2) are not

homogeneous. For this reason, a logarithmic scale was used
to cope with the difference of scale within the same plot.

The number of keypoints extracted from every point cloud
is about 400 points. In practice, an average-sized point cloud
in a single frame contains up to 400 useful key points. Com-
putation time has been calculated for the five algorithms
running on an i7-2670QMworking at 2.2GHz, with 12.0GB
of memory. A sample is a set of 400 pairs of correspond-
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Fig. 2 a–c 3D registration RMSE of the small, average and large noise, respectively; d–f time elapsed during registration for small, average and
large noise, respectively. EMICP (pink), WICP (green), Horn (red), RF (black), KF (blue) (colour figure online)

ing <source, target> keypoints. 30 samples were tested in
each of the following five scenario (two with real and three
with synthetic data).

7.1 Real data

In this experiment, image data are delivered by two versions
ofKinect1 sensor (Kinect 1 is based on structured light princi-
ple;whereas,Kinect 2 is a time-of-flight camera). In addition,
SIFT3D extractor and CSHOT [21] descriptor were used to
obtain feature points from the real data.

In order to collect real 3Dpoint clouds, the camerawas car-
ried and moved around in an infinity-shaped (∞) trajectory
within the arena of our autonomous navigation laboratory.
Simultaneously, a high-quality tracking system (OptiTrack2)
was used as a ground truth reference, Fig. 1b. One hun-
dred and twenty different pairs of overlapping point clouds
were captured by each of the two Kinects. RGBD image data
acquisition runs simultaneously as the robot moves around.
At each time-step, we acquire a single pair of colour and
depth images (both constitute a single point cloud) for the
indoor scene. Hence, a total of 120 pairs of point clouds are
aligned in a pairwise manner between (Ci,Ci+1). The last
sample C120 is registered against both C119 and C1 to test
the loop closure.

Scenario 1: New Kinect
RMSE The average RMSE for the five algorithms (see Fig.
1c) was as follows: 0.27m for EMICP (pink), 0.13m for
WICP (green), 0.28m for Horn (red), 0.15mm for RF (black)
and 0.7mm for KF (blue).

1 http://www.microsoft.com/en-us/kinectforwindows/. 2015.
2 http://www.naturalpoint.com/optitrack/. 2015.

Scenario 2: Old Kinect
RMSE was 0.28m for EMICP, 0.22m for WICP, 0.3m for
Horn, 0.95mm for RF and 1.13mm for KF (see Fig. 1d).
Average processing time for both scenarios was 114.3ms
for EMICP, 26.7ms for WICP, 1.05ms for Horn, 23.1ms for
RF and 11.64ms for KF (see Fig. 1e, f).

7.2 Synthetic data

In this experiment, we consider only artificial 3D keypoints,
where, Qi (source keypoints) as well as a random 3D trans-
formation [Ri, ti] had been generated randomly. The target
3D keypoints are built using the equation, Pi = Ri Qi + ti.
To realistically simulate physical data, a normally distrib-
uted anisotropic white noise was added to the clean datasets.
The latter had different magnitudes σ i: large (20mm ≤
σi ≤ 80mm), average (10mm ≤ σi ≤ 20mm) and small
(0.1mm ≤ σi ≤ 10mm). For each, is generated 1000 point
clouds, results were as follows:

Scenario 1: Small noise magnitude
RMSE was 0.42m for EMICP, 0.18m for WICP, 0.46m for
Horn, 0.18mm for RF and 0.44mm for KF (see Fig. 2a).

Scenario 2: Average noise magnitude
RMSE was 0.54m for EMICP, 0.48m for WICP, 0.56m for
Horn, 0.22mm for RF and finally, 0.43mm for KF (see Fig.
2b).

Scenario 3: Large noise magnitude
RMSE was 0.49m for EMICP, 0.35m for WICP, 0.51m for
Horn, 0.63mm for RF and 0.89mm for KF (see Fig. 2c).
Average processing time for all three scenarios was
115.1ms for EMICP, 27.03ms for WICP, 1.08ms for Horn,
22.8ms for RF and 10.43ms for KF (see Fig. 2d–f).

As illustrated in Table 1, one can obviously notice how
significantly poorly EMICP and Horn perform. This draw-
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Table 1 RMSE (mm) for the whole sets of samples: 1000 for each
simulation scenario and 120 for every version of Kinects

Noise EMICP WICP Horn RF KF

Kinect

New 274 152 246 0.72 1.62

Old 310 162 302 1.03 2.03

Small 298 193 285 0.55 1.52

Average 323 235 315 0.91 1.78

Large 332 260 343 0.96 2.10

back often occurs when the shapes present some symmetry.
On the other hand, WICP is better endowed to cope with
such drawbacks since it leverages knowledge about the qual-
ity of features, which helps it in discarding noisy elements.
More importantly, KF and RF are both comparably superior
in term of accuracy, but RF is more precise due to the control
of uncertainty in parameters.

8 Conclusion and future works

A novel approach for robust 3D point cloud registration was
presented. This contribution is based on a recursive opti-
mal state estimation. After establishing the link between
WLS and its original counterpart (LS), 3D point cloud regis-
tration problem was fitted to KF scheme. However, since
KF parameters for 3D registration (state and projection
matrices) are built from noisy data, a non-negligible esti-
mation instability was noticed. Consequently, we modelled
the uncertainty and overcame it with an RF-based solu-
tion.

The accuracy of the proposed solution was tested onmany
synthetic as well as real 3D samples delivered by Kinect.
Precision, on the other hand, can be seen on the relatively
small difference in accuracy among comparably noisy sam-
ples (red error bars in Figs. 1c, d and 2a–c on the black
line).

The proposed solution requires some feature points to be
extracted from the source and the target point clouds before
the alignment is carried out. The number of keypoints is rela-
tively small compared to the size of point clouds. In addition,
our solution can be extended to any dimension for data that
can be point clouds, meshes as well as surfaces, given that
some distinctive features are available.

As a future work, we intend to investigate alternative
applications of recursive filtering algorithms in the field of
computer vision. It would be also interesting to implement
RF registration in the graphic processor to reach higher frame
rates. In addition, in a multiview registration scenario (many
sensors streaming images concurrently), data fusion algo-
rithms open a new perspective for the users to reconstruct

3D scenes and to track moving objects cooperatively. This
new horizon is convenient for the technologies of virtual and
augmented reality.
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