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Abstract This paper introduces an algorithm for single-
image super-resolution based on selective sparse representa-
tion over a set of low- and high-resolution cluster dictionary
pairs. Patch clustering in the dictionary training stage and
model selection in the reconstruction stage are based on
patch sharpness and orientation defined via the magnitude
and phase of the gradient operator. For each cluster, a pair of
coupled low- and high- resolution dictionaries is learned. In
the reconstruction stage, the most appropriate dictionary pair
is selected for the low- resolution patch and the sparse cod-
ing coefficients with respect to the low- resolution dictionary
are calculated. A high-resolution patch estimate is obtained
by multiplying the sparse coding coefficients with the cor-
responding high-resolution dictionary. The performance of
the proposed algorithm is tested over a set of natural images.
Results validated in terms of PSNR, SSIM and visual com-
parison indicate that the proposed algorithm is competitive
with the state-of-the-art super-resolution algorithms.
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1 Introduction

Single-image super-resolution (SR) is an ill-posed inverse
problem of reconstructing a high-resolution (HR) image esti-
mate based on a low-resolution (LR) imageof the same scene.
Several approaches to SR exist in the literature. These can be
classified into three main categories [1,2]. The first category
includes interpolation-based methods where unknown pixel
values are estimated by interpolation. Interpolation meth-
ods tend to blur the SR outcome. However, interpolation
is shown to perform better when combined with exploit-
ing natural image features. Still, interpolation methods lack
the capability of handling the visual complexity of natural
images, especially for fine textures. The second category
is reconstruction-based methods which impose reconstruc-
tion constrains on the HR image estimation. Such constraints
enforce a similarity between a blurred and downsampled ver-
sion of the HR image estimate and the LR image. However,
suchmethods produce jaggy or ringing artifacts around edges
because of the lack of regularization. The third category is
the learning-based methods employing a training stage and
a testing stage. This is based on utilizing the relationship
between the LR and HR image patches as a natural image
prior. This is carried out by assuming a similarity between
training and testing sets of signals. One of the most success-
ful learning approaches is the sparse representation-based
approach [1,2].

In the context of sparse representation SR, sparsity is
effectively used as a regularizer. This usage is essentially
based on the assumed invariance of the sparse coding coef-
ficients of HR image patches and their LR counterparts with
respect to scale, as originally proposed by Yang et al. in [1]
and [3]. This means the possibility of reconstructing a HR
patch by multiplying the HR dictionary with the sparse cod-
ing coefficients of its LR counterpart.
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The sparse coding problem requires the availability of a
dictionary. It is customary to obtain dictionaries by training
over example signals through the dictionary learning (DL)
process. In the DL process, a dictionary is learned aiming at
giving a sparse yet loyal representation to signals in a given
training set. The fundamental advantage of learned dictionar-
ies is the signal fitting capability [4]. It is well known that the
representation power of a learned dictionary depends on its
redundancy. However, high redundancy of a dictionary tends
to cause instabilities and degrade the representation quality
[5,6].

A recent research trend considers the design of class-
dependent dictionaries. The basic motivation behind this
approach is that signal variability within a class is much less
than the general signal variability. Along this line, Dong et
al. [7] use K-means clustering to divide the training data
into a number of clusters, and learn compact cluster dictio-
naries. They then adaptively select the most relevant cluster
dictionary for a given signal. Feng et al. [8] split the signal
space into subspaces using K-space clustering and extract
shared bases in these subspaces to form a dictionary. More
recently, attention has been paid toward designing structural
dictionaries. An attempt at this is the work of Yu et al. in
[9] where they used a composition of orthogonal basis func-
tions to construct a dictionary. Each basis is concerned with a
specific signal structure. They applied a corresponding struc-
tural sparse model selection over the structural dictionary. In
[10], Yang et al. proposed a multiple geometric dictionary-
based clustered sparse coding scheme, which first trains the
geometric dictionaries of geometric clusters, and then image
patches are sparsely coded over different dictionaries.

Sharp image regions contain high-frequency features.
Reconstruction of such regions is a challenging part for SR
algorithms. Therefore, representation of these features is cru-
cial for the SR problem. It is noted that image regions having
high-frequency details have high magnitudes of the gradient
operator. In this regard, one can define a sharpness measure
(SM) [11] as an indicator to image spatial intensity variations.
The gradient operator has been employed as a natural image
prior to solve ill-posed image processing problems such as
SR [12] and denoising [13].

In [14], we proposed a SR algorithm based on sparse rep-
resentation over multiple learned dictionaries. SM is shown
to posses approximate scale invariance and is thus used as
a clustering and model selection criterion. In [14], SM is
defined in terms of the magnitude of the patch gradient oper-
ator and is used to classify patches based on their spatial
intensity variations. In this paper, we extend the work con-
ducted in [14] making use of the patch gradient operator’s
phase as a directional secondary classifier. The scale invari-
ance of this classifier has been established in [15,16]. Such
a classifier is defined in terms of the dominant phase angle
(DPA) of the gradient operator. In this work, three main SM

clusters are employed. Then, data in each SM cluster are
further clustered into five DPA sub-clusters. In this setting,
sub-clusters have distinct sharpness levels and directionality.
For each sub-cluster, a dictionary pair is learned in the DL
stage. In the reconstruction stage, the SM and DPA values
of each LR patch are used to classify it into a certain sub-
cluster. Then, the sparse coding coefficients of this patchwith
respect to the cluster LR dictionary are calculated. Then, a
HR patch is reconstructed by multiplying the cluster HR dic-
tionary with the calculated coefficients.

Experiments conducted on natural images validate a com-
petitive performance of the proposed algorithm as compared
to the state-of-the-art SR algorithms at reasonable computa-
tional complexity. This result is validated in terms of the peak
signal- to-noise ratio (PSNR) and structural similarity index
(SSIM) quality measures as well as visual comparisons.

The remainder of this paper is organized as follows. Sec-
tion 2 details the single-image SR via sparse representation
approach. In Sect. 3, the proposed SR algorithm is pre-
sented. Section 4 presents experimental results testing the
performance of the proposed algorithm and the representa-
tion power of the learned dictionaries. In Sect. 5, conclusions
are made.

2 Single-image super-resolution via sparse
representation

Denoting by xH a HR image patch reshaped into the column
form, one can write a sparse approximation of this patch over
a HR dictionary DH with a sparse representation coefficient
vector αH , as follows

xH ≈ DHαH , (1)

In the samemanner, given a dictionary trained over LR image
patches as DL , a LR patch of the same scene xL can be
sparsely represented with a sparse representation coefficient
vector αL , as follows

xL ≈ DLαL . (2)

It is customary to model the relationship between xH
and xL via a blurring and downsampling operator Ψ , as
xL ≈ Ψ xL . Given that DL and DH are trained in a cou-
pled manner, one can further assume that the same operator
links DL and DH , as DL ≈ Ψ DH . Following this assump-
tion, it can be shown that xL ≈ Ψ xH ≈ Ψ DHαH ≈ DLαH ,
or equivalently, αH ≈ αL . This forms the foundation for
HR patch reconstruction. More precisely, given DH and the
sparse coding vector of xL over DL as αL , one may recon-
struct the corresponding HR patch as

xH ≈ DHαL . (3)
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3 The proposed super-resolution algorithm

In this work, SM of image patches is first used to classify
image patches into three main clusters based on their sharp-
ness. Then, DPA is used to further cluster the patches of
each main cluster into several sub-clusters based on their
directional structure. Analogously, these two measures are
employed to select the most relevant cluster dictionary pair
for each LR patch during the reconstruction stage.

3.1 Clustering and sparse model selection with the
patch sharpness measure and dominant phase angle

The image gradient operator is believed to be crucial to the
perception and analysis of natural images [17–19]. SM can
be defined in terms of the magnitude of the gradient opera-
tor as a numerical measure to quantify the spatial intensity
variations of image patches. For a given image patch, SM is
defined as [20]

SM =
N1∑

i=1

N2∑

j=1

√
| Gh

i, j | + | Gv
i, j |, (4)

whereGh andGv denote the horizontal and vertical gradients
and N1 and N2 denote the patch dimensions.

In [12,21], Sun et al. defined the gradient profile prior as a
1D profile of gradient magnitudes perpendicular to image
structures, and studied its behavior with respect to scale.
They reported that the edge sharpness of natural images has
a statistical distribution which is independent of scale. The
invariance of SM is shown to be stronger for image patches
that contain strong edges, corners and texture. In this work,
we employ three SM clusters C1, C2 and C3 defined, respec-
tively, for SM intervals of [0, 10], [10, 20] and [20, 255]. The
lower bound of the third interval is set in such a way that
it contains very sharp patches. The bounds of the other two
cluster intervals are set to uniformly divide the remaining
SM range. In this setting, patches are classified as unsharp,
moderately sharp and very sharp. Finer classification can be
obtained by defining more clusters. However, this will dete-
riorate the ability of SM in correctly estimating which cluster
a given patch belongs to.

It is well acknowledged that the phase of a quantity is
generally more informative than its magnitude. Accordingly,
it seems advantageous to think about exploiting information
in the phase of the gradient operator [20]. It has been shown
that the histogram of gradient phase angles has an acceptable
degree of scale invariance in [10]. One can define the phase
matrix of the gradient operator based on the horizontal and
vertical gradients [20] as follows

Fig. 1 The proposed 2-level clustering scheme

Φi, j = arctan

(
Gv

i, j

Gh
i, j

)
. (5)

The phase matrix Φ can be used to determine the orien-
tation of a given patch. This can be done by inspecting the
histogram of the angles inΦ after quantizing them to a set of
values. If the histogram significantly peaks at a certain value,
onemay assume that this value describes the dominant direc-
tional nature of the patch. However, if the histogram is flat,
this means that the patch is either smooth or is composed of
several directions. In both cases, it can be assumed to be non-
directional. In this work, we quantize the angles in Φ into
values of 0◦, 45◦, 90◦ and 135◦. Then, if a certain angle in
Φ is repeated more than 50 %, we assume that this angle is a
dominant angle. Otherwise, we assume that the patch is non-
directional. Figure 1 shows the two-stage clustering based
on SM and DPA. In total, 15 sub-clusters are defined. These
are denoted by C0

1 through C
nd
3 , where the subscript denotes

the SM cluster and the superscript represents the DPA cluster
(nd stands for non-directional).

The proposed algorithm is composed of two stages. The
first one is the training stage, where a set of dictionary pairs
is trained. The second one is the reconstruction stage where
the best dictionary pair is selected to sparsely reconstruct HR
patches from their LR counterparts.

The training stage requires a set of HR images along with
the corresponding LR images. A LR image is obtained by
blurring and downsampling the HR one. Each LR image is
then interpolatedby a scale factor of 2 to the dimensions of the
corresponding HR image. This is referred to as the middle-
resolution (MR) image. Then, feature extraction filters are
applied to the MR images to extract features as done in [1].
Dictionary learning and sparse coding of the LR patches is
done with these features. This is shown to be more advanta-
geous than dealing with LR patches directly [1,3].

LR and HR patches corresponding to the same spatial
location are handled as pairs. Each MR patch is then classi-
fied into a specific cluster based on its SM and DPA values.
The HR patch in the pair is placed into the same cluster. The
mean value of each HR patch is subtracted to allow for better
dictionary learning. LR and HR patches of each cluster are
used to train for a pair of coupled LR and HR cluster dictio-
naries, respectively. For this purpose, the method proposed
in [1] is used. Algorithm 1 outlines the main steps of the
training stage.
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Algorithm 1 The Proposed Cluster DL Algorithm.
1: INPUT: HR Training Image Set.
2: OUTPUT:A Set of Directional Cluster Dictionary Pairs with Vary-

ing Sharpness.
3: Divide each HR image into patches and subtract the mean value of

each patch.
4: Reshape patches into vectors and combine them column-wise to

form a HR training array.
5: Blur (bicubic kernel) and downsample each HR image to generate

a LR image.
6: Divide each LR image into patches.
7: Upsample each LR image to the MR level.
8: Apply feature extraction filters on each MR image.
9: Divide the extractedMR features into patches and reshape them into

column vectors.
10: Combine the MR features column-wise to form the LR training

array.
11: for Each patch in the LR training array, do
12: Calculate SM and DPA of the MR patch, and identify the corre-

sponding cluster.
13: Add the MR patch to the cluster LR training set.
14: Add the corresponding HR patch to the HR training set of this

cluster.
15: end for
16: For each cluster, learn a pair of coupled dictionaries.

Algorithm 2 The Proposed Single-Image SR Algorithm.
1: INPUT: A LR Test Image, Cluster Dictionary Pairs.
2: OUTPUT: A HR Image Estimate
3: Divide the LR image into overlapping patches.
4: Upsample the LR image to MR level.
5: Extract features from the MR image.
6: Divide the extracted MR features into overlapping patches and

reshape them into vectors.
7: for Each MR patch do
8: Calculate SM and DPA of the MR patch.
9: Determine the cluster this patch belongs to.
10: Sparsely code the features of the MR patch over the cluster LR

dictionary.
11: Reconstruct the correspondingHRpatch by right-multiplying the

HR dictionary of the same cluster with the sparse codes of theMR
features.

12: end for
13: Reshape and merge overlapping patches to obtain a HR image esti-

mate.

In the reconstruction stage, a LR image is first upsam-
pled using bicubic interpolation to the MR level. Features
are extracted by applying feature extraction filters [1] and
then reshaped into the vector form. A certain patch overlap
is allowed to assure local consistency between the recon-
structed patches [1]. The SM and DPA values of each MR
patch are calculated and the cluster that theMRpatch belongs
to is identified. Using the dictionary pair of the identified
cluster, first the sparse representation coefficient vector of
the corresponding MR feature vector over the cluster LR
dictionary is calculated. Then the HR patch is reconstructed
by right-multiplying the cluster HR dictionary with the cal-
culated sparse representation coefficient vector. Finally, aHR
image is obtained by reshaping the reconstructed HR patches

into the two-dimensional form and merging them. The pro-
posed reconstruction algorithm is detailed in Algorithm 2.

As compared to the standard SR algorithm of Yang et
al. [1] in terms of computational complexity, the proposed
algorithm has two overheads. First, it uses multiple dic-
tionary pairs instead of one. Second, it calculates the SM
and DPA values of every patch for the purpose of cluster-
ing and model selection. However, the proposed algorithm
can be implemented while significantly reducing the com-
putational complexity without degrading the performance
quality. The fact that a cluster corresponds to a specific sig-
nal class makes it possible to learn more compact cluster
dictionaries. Since the computational complexity of sparse
coding depends on the dictionary dimensions, using more
compact dictionaries will substantially reduce this complex-
ity. Moreover, it is noted that many patches are located in
C1. This cluster contains patches with insignificant high-
frequency components. Accordingly, one may afford to use
bicubic interpolation to reconstruct patches in C1 without
degrading the reconstruction quality. This means that a large
percentage of patches (located in C1) require only calculat-
ing SMvalues and applying bicubic interpolation. Therefore,
the computational complexity of the proposed algorithm is
comparable to that of Yang et al.’s algorithm in [1].

4 Experimental validation

In this section, the performance of the proposed algorithm
is examined and compared to several SR algorithms. These
include the basic sparse representation-based SR algorithm
of Yang et al. [1] which employs one dictionary pair as well
as the SR algorithms of Peleg et al. [22] and He et al. [23]
as state-of-the-art techniques. These algorithms are different
in nature. For comparisons, care has been taken to ensure
that the parameters used in the training and testing stages
of these algorithms are as close to each other as possible.
If a parameter is unique to a specific algorithm, the value
suggested by the authors is used. Image SR results for a scale
factor of 2 are presented. However, the proposed algorithm
can easily be modified for other scale factors.

Test images include some well-known benchmark images
which were used in [22–24]. Several other images have also
been selected fromdifferent datasets [25–27] because of their
rich high-frequency contents. All test images are shown in
Fig. 2.

Dictionaries of the proposed algorithmare learned as spec-
ified in Algorithm 1. Dictionary training for the proposed
algorithm is done over the 1000-image Flickr dataset [28],
along with some typical text images. These text images are
added to the training set to be sure about the availability of
enough patches with relatively high SM values. The cluster-
ing of LR and HR training patches is carried out in terms of
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Fig. 2 Test images from left to right and top to bottom: Barbara, BSDS
198054, building image 1, build poster, butterfly, fence, house, Kodak
08, Lena, ppt3, text image 3 and texture

C0
1 C45

1 C90
1 C135

1 Cnd
1

C0
2 C45

2 C90
2 C135

2 Cnd
2

C0
3 C45

3 C90
3 C135

3 Cnd
3

Fig. 3 Reshaped example atoms of the 15 HR cluster dictionaries

the SM and DPA of each LR patch, as described in Sect. 3.1.
We then randomly selected 40,000 pairs of LR and HR train-
ing patches for each cluster; 600-atom dictionary pairs are
designed for the proposed algorithm.

Example reshaped atoms of HR cluster dictionaries
designed by the proposed algorithm are shown in Fig. 3. It
can be clearly observed that the designed dictionaries inherit
the sharpness nature and directionality of their respective
clusters. It is notable that the dictionaries inC1 are not sharp,
whereas these inC2 aremoderately sharp and the dictionaries
in C3 are sharper.

For the algorithm of Yang et al. [1], a single dictionary
pair with 1000 atoms is learned. For the learning, 40,000
LR and HR patch pairs are randomly selected from the same
training set used by the proposed algorithm. We used the
default design parameters and training image datasets for the
algorithms of Peleg et al. [22] and He et al. [23] as specified
by the authors.

It is noted that in case of color images, SR is applied only
to the luminance color channel, whereas the chrominance
color channels are reconstructed with bicubic interpolation,
as customarily done in most SR algorithms. The three com-
ponents are used to obtain a full-color HR image. In these
experiments, we employ PSNR [29] as a quantitative mea-
sure of quality. For color images, PSNR is calculated with
the luminance color components of the original image and
the reconstructed image, in accordance with the common
practice in the literature.

Also, SSIM [29] is used as a perceptual quality metric,
which is believed to be more compatible with human percep-
tion than PSNR. Similar to most SR algorithms, we calculate
SSIM for color images as the average SSIMvalue of the lumi-
nance and two chrominance components of the image.

Before presenting the simulation results, we establish the
discrimination power of the designed dictionaries. In other
words, we establish that data in a given cluster is best repre-
sented with the dictionary pair designed for that cluster. For
this purpose, we use the training patch pairs of each cluster as
testing signals. Thenwe reconstruct HR patches in each clus-
ter using all of the fifteen dictionary pairs. For comparison,
the HR patch in each cluster is also reconstructed with the
single dictionary pair of Yang et. al’s algorithm [1] and bicu-
bic interpolation. The mean squared error (MSE) between
the ground-truth and reconstructed HR patches is recorded,
and results are presented in Table 1. It is clearly observed that
data in each cluster are best reconstructed with the dictionary
pair designed specifically for that cluster. One exception is
the clusterCnd

1 where bicubic interpolationmethod produces
slightly lower MSE. It is observed that the error level in the
first SM cluster C1 is not significantly different for all meth-
ods. This is because data in this cluster are unsharp. Thus,
patches in sub-clusters of C1 (C0

1 through Cnd
1 ) can be satis-

factorily reconstructed with bicubic interpolation. Due to the
fact that the majority of patch pairs belong to cluster C1, the
employment of bicubic interpolation also serves to reduce
the computational complexity of the SR without degrading
the reconstruction quality. However, error levels for sharper
clusters C2 and C3 are significantly higher. The difference in
MSE of different methods is also significantly higher.

Since the proposed algorithm uses multiple dictionary
pairs, there is an inherent trade-off between model selection
and reconstruction quality. Model selection relies on the SM
and DPA values of the LR patch which are approximately
scale invariance. It is then assumed that the HR patch has
similar SM and DPA values in view of this invariance. The
validity of this assumption still needs more investigation.

We now carry out another experiment to determine the
average reconstruction quality when the correct model selec-
tion is made with the designed dictionaries. Four scenarios
are described, and the average PSNR and SSIM results are
recorded in Table 2. In the first scenario (S1), SM is used
alone for both clustering in the training stage and model
selection in the reconstruction stage. Threemain clusterswith
SM intervals of [0, 10], [10, 20] and [20, 255] are consid-
ered. A 1000-atom dictionary pair is learned for each cluster.
The second scenario (S2) is exactly the same as S1, but with
employing perfect model selection. In this context, perfect
model selection is carried out by super-resolving each LR
patch with each of the three cluster dictionary pairs. Then
the super-resolved patch that is closest to the ground-truth
HR patch in the MSE sense is selected. In the third scenario
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Table 2 Average PSNR (dB) and SSIM values for the scenarios S1, S2,
S3, S4

Performance S1 S2 S3 S4

Average PSNR 27.85 28.64 28.06 29.38

Average SSIM 0.8828 0.8975 0.8860 0.9084

(S3), SM and DPA are together used to design 15 cluster dic-
tionary pairs. Each cluster dictionary has 600 atoms. SM
and DPA are then used together as a model selection crite-
rion according to the proposed algorithm. The same process
is repeated in the fourth scenario (S4) but with perfect model
selection. Average PSNR and SSIMvalues for the four afore-
mentioned scenarios are listed in Table 2 and denoted by S1,
S2, S3 and S4, respectively.

In view of Table 2, it can be concluded that using 15 clus-
ter dictionaries each of 600 atoms defined by SM and DPA
is better than using 3 SM cluster dictionaries of 1000 atoms.
Perfect model selection results of scenario four (S4) indi-
cate that there is a significant room for improvement if good

model selection is employed. We now turn to investigating
the performance of the proposed algorithm. PSNR and SSIM
values of SR outcomes of the aforementioned algorithms are
provided in Table 3. It is noted that we have conducted the
simulations with source codes provided by the authors of
[1], [22] and [23]. Two cases are presented for the proposed
algorithm. In the first case, all the cluster dictionary pairs
are used. This is denoted by (Prop. 600). In the second case,
any LR patch that is classified into C1 is super-resolved with
bicubic interpolation. The second case is denoted by (Prop.
600+Bic.). The proposed algorithm in both cases performs
better than the algorithm of Yang et al. [1]. The proposed
algorithm has an average PSNR improvements of 0.42 and
0.35 dB over the algorithm of Yang et al. for the first and the
second cases, respectively.

In view of Table 3, one notices that the success of the
proposed algorithm is particularly valid for imageswith sharp
features such as Text image 3, butterfly and ppt3 images.

It can be seen in Table 3 that the proposed algorithm is
competitivewith the state-of-the-art algorithms of Peleg et al.

Table 3 PSNR (dB) and SSIM
comparisons of bicubic
interpolation, the algorithms of
Peleg et al. [22], Yang et al. [1]
and He et al. [23] and the
proposed algorithm, respectively

Image Bicubic Yang et al. [1] Peleg et al. [22] He et al. [23] Prop. 600 Prop. 600+Bic.

Barbara 25.35 25.86 25.76 25.84 25.86 25.87

0.7930 0.8357 0.8359 0.8372 0.8353 0.8350

BDS 198054 24.75 26.85 26.76 26.98 27.19 27.16

0.8267 0.8816 0.8760 0.8839 0.8835 0.8810

Building image 1 26.41 28.81 29.22 29.21 29.45 29.31

0.8639 0.9162 0.9219 0.9207 0.9240 0.9196

Build poster 29.95 32.40 32.07 32.77 33.03 32.83

0.9239 0.9526 0.9478 0.9572 0.9577 0.9532

Butterfly 27.46 31.26 30.96 31.44 32.07 31.93

0.8985 0.9457 0.9227 0.9463 0.9511 0.9478

Fence 25.05 26.34 26.17 26.22 26.46 26.41

0.7449 0.8037 0.7967 0.8045 0.8069 0.8031

House 32.76 34.71 34.49 34.84 35.17 35.02

0.8928 0.9129 0.9136 0.9145 0.9154 0.9138

Kodak 08 24.26 25.51 25.58 25.65 25.78 25.74

0.7605 0.8198 0.8141 0.8230 0.8256 0.8224

Lena 34.71 36.36 36.59 36.58 36.44 36.39

0.8507 0.8631 0.8387 0.8647 0.8633 0.8630

ppt3 26.85 29.68 29.71 29.79 30.51 30.44

0.9372 0.9604 0.9494 0.9621 0.9646 0.9629

Text image 3 17.17 18.43 18.64 18.42 18.81 18.79

0.7437 0.8143 0.8309 0.8117 0.8297 0.8275

Texture 20.64 22.55 22.97 22.78 23.05 23.05

0.8272 0.8939 0.9032 0.8997 0.9040 0.9039

Average 26.28 28.23 28.24 28.38 28.65 28.58

0.8386 0.8833 0.8792 0.8855 0.8884 0.8861

The best PSNR and SSIM are in bold
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 Results showing a portion of the butterfly image: a original
image; reconstruction of b bicubic interpolation; c Peleg et al. [22];
d Yang et al. [1]; e He et al; [23]; and f the proposed algorithm. The
last row shows the difference between the original image and g Yang
et al.’s reconstruction, h He et al.’s reconstruction and i the proposed
algorithm’s reconstruction

[22] and He et al. [23]. The proposed algorithm has average
PSNR improvements of 0.41 and 0.27 dB over the algo-
rithms of Peleg et al. and He et al. respectively. For the case
of employing bicubic interpolation for cluster C1, the aver-
age improvements are 0.34 and 0.20 dB, respectively. SSIM
results validate the above observations.

Figure 4 compares a portion of the original butterfly image
to its reconstructions obtained with bicubic interpolation,
Peleg et al. [22],Yang et al. [1],He et al. [23] and the proposed
algorithm. Clearly, the proposed algorithm produces the best
reconstruction. This is particularly observed by comparing
the curvy line along the butterfly’s wing and the patterns
on the wing. Figure 4g–i shows, respectively, the differences
between the original scene and its reconstructions fromYang
et al. [1], He et al. [23] and proposed algorithm. Clearly, the
proposed algorithm has the least amount of artifacts.

5 Conclusion

In this paper, a new single-image super-resolution algorithm
based on sparse representation over multiple coupled dic-
tionary pairs is proposed. The proposed algorithm clusters
image patches based on the magnitude and phase of the gra-

dient operator of image patches. These quantities are used
to define sharpness measure and dominant phase angle mea-
sures, respectively. Clustering is done in two levels. In the
first level, patches are clustered into three clusters based on
their sharpness. The second level further clusters patches into
several directional sub-clusters based on the dominant phase
angle of the gradient operator. For each of the directional sub-
clusters, a pair of compact coupled dictionaries are deigned.
The same two-level clustering paradigm is applied on each
LR patch during the reconstruction stage to determine the
most appropriate cluster dictionary pair. Sparse coding coef-
ficients of the LR patch over the cluster LR dictionary are
calculated. Then, a HR patch estimate is obtained by impos-
ing the sparse coding of the LR patch on the HR dictionary of
the same cluster. In this setting, the sharpness and the direc-
tional structure of the patch are used together with sparsity as
priors to further regularize the super-resolution problem. The
designed cluster dictionaries are shown to inherit the sharp-
ness and directional natures of their respective clusters. Tests
conducted over natural images show that the proposed algo-
rithm is competitivewith the state-of-the-art super-resolution
algorithms. The usage of SM- and DPA-based cluster dic-
tionaries contributes to an average PSNR improvement of
0.42 dB over the case of using a single dictionary pair. The
average improvements over Peleg et al.’s [22] and He et
al.’s [23] algorithms are 0.41 and 0.27 dB, respectively. The
improvement in PSNR is particularly significant for images
with sharp directional features. SSIM and visual comparison
results come inline with the PSNR results.
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