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Abstract Due to the high dimensionality of hyperspec-
tral image (HSI), dimension reduction or feature extraction
is usually needed before the HSI classification. Traditional
linear discriminant analysis (LDA)method for feature extrac-
tion usually encounters difficulty because the available
training samples in HSI classification are limited, which
causes the singularity of data scatter matrix. In this paper, we
propose a sparse matrix transform-based LDA (SMT-LDA)
algorithm for the HSI classification. By using SMT, the total
scatter matrix used in LDA can be constrained to have an
eigen-decomposition where the eigenvectors can be sparsely
parametrized by a limited number of Givens rotations. In
this way, the estimated scatter matrix is always positive defi-
nite and well conditioned even in the case of limited training
samples. The proposed SMT-LDAmethod is compared with
regularized LDA and PCA-LDAmethods on two benchmark
hyperspectral data sets. Experimental results indicate that the
performance of the proposed method is overall superior to
these methods, especially for small-sample-size classifica-
tion.
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1 Introduction

Hyperspectral remote sensors capture digital images in
hundreds of narrow spectral bands spanning the visible-
to-infrared spectrum [1]. It can be used to capture high-
resolution hyperspectral images (HSIs) for environmental
mapping, geological research, plant and mineral identifica-
tion, crop analysis, and so on. In all of these applications,
it usually requires to classify the pixels in the scene, where
a pixel (or sample) is represented as a vector whose entries
correspond to the reflection or absorption value in differ-
ent spectral bands. In HSI classification, we usually have
few training samples (small samples) coupled with a large
number of spectral channels (high dimensionality) [2]. Large
number of bands provide rich information for classifying dif-
ferent materials in the scene. However, with few training
samples, beyond a certain limit, the classification accu-
racy decreases as the number of features increases (Hughes
phenomenon [3]). In order to obtain good classification per-
formance, it needs more training samples which are rarely
feasible in hyperspectral remote sensing applications. There-
fore, for high-dimensional small-sample hyperspectral data,
the classification is relatively difficult. Moreover, the large
amount of features involved inHSIwill dramatically increase
processing complexity. An HSI data generally consist of
thousands of pixels over hundreds of spectral bands. Classifi-
cation of this tremendous amount of data is time-consuming
and requires significant computational effort, which may not
be possible inmany applications. Therefore, for classification
ofHSI data, it is common to performadimension reduction or
feature extraction procedure followed by classification algo-
rithms [4–6].

A basic and commonly used method for feature extraction
is the Fisher linear discriminant analysis (LDA) [7,8]. The
objective of LDA is to find the most discriminant projection
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that maps high-dimensional samples into a low-dimensional
space, which maximizes the ratio of between-class scatter
against within-class scatter. However, for high-dimensional
data such as faces and hyperspectral images, the traditional
LDA algorithm encounters several difficulties [9]. First, it
is computationally challenging for the eigen-decomposition
of dense matrices in high-dimensional space. Second, the
scatter matrices are always singular due to the small-sample-
size problem. In particular, for hyperspectral data, the scatter
matrix is extremely unstable because of the small ratio
between the number of available training samples and the
number of spectral bands.Manymethods have been proposed
to solve the ill-posed problem. Shrinkage and regularized
covariance estimators are examples of such techniques [10–
12]. Regularized LDA (RLDA) regularizes the scatter matrix
by shrinking it toward somepositive definite target structures,
such as the identitymatrix or the diagonal of the scattermatrix
[10,13]. Another kind of methods to solve the small-sample-
size problem are subspace methods. The Fisherface (also
called PCA-LDA)method uses principal component analysis
(PCA) as a pre-processing step for dimensionality reduction
so as to discard the null space of the within-class scatter
matrix and then performs LDA in the lower-dimensional
PCA subspace [14]. A potential problem is that PCA step
may discard important discriminative information [15].

In this paper, we propose a sparse matrix transform-based
LDA (SMT-LDA) algorithm for dimension reduction and
classification of high-dimensional hyperspectral data. In the
proposed SMT-LDA, the total scatter matrix is constrained
to have an eigen-decomposition which can be represented as
a sparse matrix transform (SMT) [16]. The SMT is formed
by a product of pairwise coordinate Givens rotations. Under
this framework, the total scatter matrix can be efficiently
estimated using greedyminimization of the negative log like-
lihood function [16]. The estimated scatter matrix is always
positive definite and well conditioned even with limited sam-
ples.

2 The algorithm

2.1 Linear discriminant analysis

Consider a set of N samples {x1, x2, . . . , xN } taking val-
ues in an n-dimensional space, and assume that each sample
belongs to one of c classes {X1, X2, . . . , Xc}. The between-
class scatter matrix is defined as

Sb =
c∑

i=1

Ni (µi − µ)(µi − µ)T (1)

and the within-class scatter matrix is defined as

Sw =
c∑

i=1

∑

xk∈Xi

(xk − µi )(xk − µi )
T (2)

where µ is the total sample mean vector, µi is the mean
sample of class Xi , and Ni is the number of samples in class
Xi .

LDA seeks directions on which data points of different
classes are far from each other while requiring data points of
the same class to be close to each other. That is, LDA pro-
jection maximizes the ratio of between-class scatter against
within-class scatter as follows:

W ∗ = argmax
W

J (W ) =
∣∣WTSbW

∣∣
∣∣WTSwW

∣∣ (3)

If Sw is nonsingular, the optimal projection is computed
by applying an eigen-decomposition on the scatter matrices
of the given training data.

2.2 Sparse matrix transform

SMT is originally designed to estimate the covariance
matrix [16–19]. Given a set of training samples X =
[x1, x2, . . . , xN ], and assume xk has zero mean. The sam-
ple covariance is computed by S = 1

N X XT, and S is an
unbiased estimate of the true covariance matrix R. The
eigen-decomposition of R is: R = EΛET, where E is the
orthogonal eigenvector matrix and Λ is the diagonal matrix
of eigenvalues.

Assume the columns of X are independent and identi-
cally distributed Gaussian random vectors with mean zero
and covariance R. Jointly maximizing the likelihood of X
with respect to E and Λ results in [16]

Ê = arg min
E∈Ω

{∣∣diag(ETSE)
∣∣
}

(4)

Λ̂ = diag(ÊTSÊ) (5)

where Ω is the set of allowed orthogonal transforms. Then,
R̂ = ÊΛ̂ÊT is the maximum-likelihood estimate of the
covariance.

Based on the idea that the maximum-likelihood estimate
of E can be improved by constraining the feasible set of
eigenvectors Ω to a smaller set, Cao et al. [17,18] proposed
to restrict Ω to be the set of all orthonormal transforms that
can be represented as the product of K Givens rotations.

In particular, E is approximated by a series of K Givens
rotations: E = E1E2 . . . EK , each of which is a simple rota-
tion of angle θk about two axes ik and jk . Each rotation is
given by a matrix of the form Ek = I + Θ(ik, jk, θk) where

Θ(ik, jk , θk)rs =

⎧
⎪⎪⎨

⎪⎪⎩

cos(θk) − 1, if r = s = ik or r = s = jk
sin(θk), if r = ik and s = jk
− sin(θk), if r = jk and s = ik
0, otherwise.
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Fig. 1 Flowchart of SMT-LDA
algorithm

The aim is to produce an estimate of the eigenvectormatrix
that is sparsely parametrized by a limited number of rotations.

A greedy minimization method is used to solve the prob-
lem. At each iteration, two coordinates ik and jk are first
determined by minimizing the cost of (4), which results in

(ik, jk) ← argmin
(i, j)

(
1 − S2i j

Sii S j j

)

Once ik and jk are determined, the Givens rotation E∗
k is

given by

E∗
k = I + Θ(ik, jk, θk)

where θk = 1
2 atan(−2Sik jk , Sik ik − S jk jk ).

2.3 Sparse matrix transform for LDA

Denote: X̄ = [x̄1, x̄2, . . . , x̄N ], where x̄i = xi − µ. The
sample covariance (total scatter matrix) can be computed
by St = X̄ X̄T if we ignore the constant factor 1/N , and
St = Sw + Sb.

Based on the SMT technique, we can obtain the eigen-
decomposition of St as: St = ÊΛ̂ÊT, where Ê is an SMT
of order K and Λ̂ is a diagonal matrix which are obtained as
follows:

Ê = arg min
E∈Ω

{∣∣diag(ETSt E)
∣∣
}

Λ̂ = diag(ÊTSt Ê)

SMT representation brings the eigenvalues Λ̂ and eigen-
vectors Ê by using a small number of Givens rotations which
avoids eigen-decomposition of dense scatter matrix St .

Recall that the conventional Fisher LDAcriterion function
in (3) can be modified as follows [20]:

J (W ) =
∣∣WTSbW

∣∣
∣∣WTStW

∣∣ (6)

where the within-class scatter matrix Sw in (3) is replaced by
the total scatter matrix St . Defining a mapping W = HU ,
the criterion (6) is changed to

J (W ) =
∣∣UTHTSbHU

∣∣
∣∣UTHTSt HU

∣∣ =
∣∣UT S̃bU

∣∣
∣∣UT S̃tU

∣∣ (7)

if the transform matrix H can whiten St , that is S̃t =
HTSt H = I , then all we need to do is to find the eigen-
vectors of S̃b = HTSbH , which is just the matrix U .

Figure 1 provides a flowchart of the proposed SMT-LDA
algorithm. For the purpose of discriminant analysis, we aim
to find a matrix that simultaneously diagonalizes both St and
Sb. This can be achieved by diagonalizing St using SMT
first and then diagonalizing Sb. The detailed procedures are
outlined below.

(1) Diagonalize St

Based on SMT, St can be formulated as St = ÊΛ̂ÊT.
Denote H = ÊΛ̂− 1

2 , then HTSt H = I .

(2) Diagonalize Sb

Now we compute orthogonal matrix U and diagonal
matrix Σ such that HTSbH = UΣUT. DefiningW = HU ,
then W diagonalizes Sb.

(3) Projection matrix: W = HU = ÊΛ̂− 1
2U

W diagonalizes St and Sb at the same time, that is,
WTStW = I and WTSbW = Σ . Moreover,

S−1
t Sb = (ÊΛ̂ÊT)−1((W−1)TΣW−1)

= ÊΛ̂−1 ÊT ÊΛ̂
1
2UΣUTΛ̂

1
2 ÊT

= (ÊΛ̂− 1
2U )Σ(UTΛ̂

1
2 ÊT) = WΣW−1

That is,W andΣ are the eigenvector and eigenvaluematrices
of S−1

t Sb, respectively, and the transformed matrix W is the
desired discriminant projection matrix.

The SMT-LDA algorithm is shown in Algorithm 1.

2.4 Analysis of SMT-LDA

We provide an analysis of SMT-LDA from the viewpoint of
eigenvalues of the scatter matrices. In general, the distance
between samples in different classes is bigger than the related
distance between samples in the same class [21], so for most
of the eigenvalues of Sb and Sw, one can have the inequality
λb,i > λw,i . As St = Sb + Sw, we can get λb,i < λt,i
< 2λb,i .

According to the maximum Rayleigh quotient criterion
of LDA in (6), an eigenvector with eigenvalues satisfying
0.5 <

λb,i
λt,i

< 1 means that samples in different classes are
well separated (on average) in the direction of this eigenvec-
tor. In contrast, samples from different classes overlap in the
direction of the eigenvectors with λb,i

λt,i
< 0.5. For SMT-LDA,
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Algorithm 1 SMT-LDA
1: Compute St = X̄ X̄T, and perform the SMT:

1) Determine the coordinate set, for 1 ≤ i ≤ n,
[MaxJ(i),MaxC(i)] ←[
argmax

i< j

|X̄(i,:)X̄( j,:)T |
‖X̄(i,:)‖‖X̄( j,:)‖ , max

i< j

|X̄(i,:)X̄( j,:)T |
‖X̄(i,:)‖‖X̄( j,:)‖

]

2) For k = 1 : K
(a) ik ← argmaxi MaxC(i), jk ← MaxJ(ik)
(b) θk ← 1

2 atan(−2Sik jk , Sik ik − S jk jk )

(c) Ek ← I + Θ(ik , jk , θk)
(d) X̄ ← ET

k X̄
(e) Update the coordinate set

End For
2: SMT estimation of the total scatter matrix: St = EΛET, where

Λ = diag(X̄ X̄T), E = �K
k=1Ek

3: Transform for the between-class scatter matrix:
1) Compute Φb = [√N1(µ1 − µ), . . . ,

√
Nc(µc − µ)],

such that Sb = ΦbΦ
T
b

2) Denote H = EΛ− 1
2 , Φ̃b = HTΦb, then

S̃b = Φ̃bΦ̃
T
b = HTSbH

3) Eigen-decomposition: Φ̃T
b Φ̃b = VΣ

1
2 V T

4) U = Φ̃bV is the eigenvector of S̃b, that is
UT S̃bU = (HU )TSbHU = Σ

4: The optimal discriminant projection is:
W = HU = EΛ−1EΦbV

based on the criterion (7) and Algorithm 1, an eigenvector
with eigenvalue satisfying 0.5 < σi < 1 means that samples
in different classes are well separated in the direction of this
eigenvector, where σi is the diagonal element of Σ .

Taking Salinas data set (see in next Section) as an exam-
ple, we compare the ratio of eigenvalues of Sb and St in
LDA and SMT-LDA methods. To evaluate the performance
of the algorithms in small-sized training samples situation,
the number of training samples for each class is set to 5.
We compute the between-class scatter matrix Sb, total scat-
ter matrix St , and SMT transformed between-class scatter
matrix S̃b. Then, we find the corresponding eigenvalues and
show the ratio of eigenvalues in Fig. 2, where the number
of eigenvalues is 15, which equals to the number of classes
minus one. From the figure, we can see only four eigenvec-
tors with eigenvalues satisfying 0.5 <

λb,i
λt,i

< 1 in traditional
LDA, while eight eigenvectors with eigenvalues satisfying
0.5 < σi < 1 in SMT-LDA. Moreover, the ratio of eigen-
values is relatively small for LDA. By using the SMT, the
eigenvalues σi s are larger than the corresponding parts in
LDA. Based on the maximum Rayleigh quotient criterion,
SMT-LDA is more discriminative than LDA, especially in
this small-sample-size case.

In the following, we show the eigenvalues of St before
and after SMT in Fig. 3, where St has only 71 eigenvalues
in this case. To better display the results, the first several
eigenvalues are truncated. The last 50 eigenvalues of St in
LDA are close to 0, while the corresponding eigenvalues in
SMT-LDA are much larger. As the null space of St contains
discriminative information, SMT-LDA is much effective in
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keeping the intrinsic information and more discriminative
than the original LDA.

3 Experimental results and discussion

In this section, we demonstrate the effectiveness of the
proposed SMT-LDA algorithm for classification of two
hyperspectral data sets. The 1-nearest neighbor (NN) and
SVM classifiers are used. The results for classification are
compared to those obtained by the RLDA [10] and PCA-
LDA [14]. The results on the original data are also included.
All data used in this paper are normalized to have a range of
[0, 1].

3.1 Hyperspectral data

(1) Salinas: The data were acquired by the 224-band AVIRIS
sensor over Salinas Valley in Southern California, USA, at
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Fig. 4 Effect of the SMT model order K

low altitudes, resulting in an improved pixel resolution of
3.7meter per pixel. The area covered comprises 512 lines
by 217 samples. Twenty spectral bands are removed due to
water absorption and noise, resulting in a corrected image
containing 204 spectral bands over the range of 0.4 to 2.5m.
The Salinas scene consists of the 16 ground-truth classes and
54,129 samples.

(2) Indian Pines: The data were acquired by the AVIRIS
sensor in 1992. The image contains 145 × 145 pixels and
220 bands, where 20 channels were discarded because of
atmospheric affection. Sixteen different land-cover classes
are available in the original ground truth. The number
of samples is 10,249 ranging from 20 to 2455 in each
class.

3.2 Investigation on SMT model order

In this subsection, we investigate the effect of SMT model
order K (i.e., the number of Givens rotations) on the final
results. For this purpose,we select a small subsceneofSalinas
image, denoted Salinas-A, which comprises 86 × 83 pix-
els located within the scene at [samples, lines] = [591–676,
158–240] and includes six classes. We show the SMT-LDA
classification overall accuracy on different model orders K
in Fig. 4, where 30 samples in each of the six classes are
randomly chosen for training and the rest samples are used
for validating. The experiment is repeated ten times, and the
averaged overall accuracy is reported. It can be seen that
SMT-LDA algorithm is stable when K is not less than 500.
In the following, we set K to be 500.

3.3 Comparison results

To evaluate the performance of different algorithms in the
challenging situations with high dimensionality and small-
sized training samples, the number of training samples for

each class is set to 5, 10, 15, 20, 25, and 30, respectively.
The remaining samples form the testing set. In each case,
the experiment is repeated ten times with randomly chosen
training samples. Finally, the ten times results are aver-
aged. The proposed SMT-LDA method is compared with
other traditional LDA methods, including regularized LDA
(RLDA) and subspace LDA (PCA-LDA). In the case of lim-
ited training samples, LDAdoes notworkwell as the problem
of an unstable matrix inversion. RLDA alleviates the ill-
posed problem by shrinking the scatter matrix toward the
identity matrix or the diagonal of scatter matrix [10,13].
In the experiments, the regularization form in RLDA is:
Ŝ = S+η ·diag{S}, where η = 0.1. In order to overcome the
singularity of within-class scatter matrix Sw, PCA-LDA [14]
first employs PCA to discard the null space of Sw and then
applies LDA in the lower-dimensional PCA subspace. When
Sw is nonsingular, PCA step is not performed and PCA-LDA
reverts back to LDA. The classification results on the original
data without dimensionality reduction are also included for
comparison. The threefold cross-validation is used to select
the optimal penalty parameters C and RBF kernel parameter
γ in SVM.

The comparison results of the proposed method with the
traditional LDAmethods on the two HSI data sets are shown
in Figs. 5 and 6. These two figures show the overall accu-
racy versus the number of training samples in each class. As
expected, the classification accuracy increases as the training
samples increase except for PCA-LDA.When the number of
training samples N is smaller than the number of features d,
PCA-LDA first employs PCA to reduce the dimension of the
feature space to N − c such that Sw is no longer degenerate
and then applies the standard LDA to reduce the dimension
to c − 1, where c is the number of classes. Take Salinas data
set for example, the number of feature is d = 204 and the
number of class is c = 16. When the number of samples in
each class Nc is equal or greater than 15, then the number of
total training samples N is larger than the number of features
d (N = c×Nc ≥ 16×15 > d = 204), so Sw is nonsingular
and no PCA step is used in PCA-LDA. In this case, PCA-
LDA is the same as LDA. In the cases of five and ten training
samples per class, PCA-LDAfirst employs PCA to reduce the
dimension of original space to 64 (N−c = 16×5−16 = 64)
and 144 (N−c = 16×10−16 = 144), respectively, and then
applies the standard LDA to reduce the dimension of PCA
subspace to 15 (c − 1 = 15). The PCA step removes the
redundant information, but it discards discriminative infor-
mation at the same time. It is difficult to choose an optimal
reduced dimension in PCA step.

Compared with RLDA, SMT-LDA achieves better clas-
sification results on the Salinas data set, especially in the
small sample situations. On Indian Pines data set, SMT-LDA
outperforms traditional approaches significantly even with
limited training samples.
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Fig. 5 Classification overall accuracy on Salinas data set. a NN, b SVM
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Fig. 6 Classification overall accuracy on Indian Pines data set. a NN, b SVM

Fig. 7 Classification maps on Salinas data set. a Ground truth, b PCA-LDA, c RLDA, d SMT-LDA

The visual classification maps of PCA-LDA, RLDA, and
SMT-LDA on the Salinas and Indian Pines data sets with 30
training samples per class are shown in Figs. 7 and 8. It can

be seen that SMT-LDA results in a more accurate map than
traditional LDAmethods, seeing the circled areas in Figs. 7d
and 8d.
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Fig. 8 Classification maps on Indian Pines data set. a Ground truth, b PCA-LDA, c RLDA, d SMT-LDA

Table 1 McNemar’s test on the
Salinas data set to validate
whether the difference between
SMT-LDA and each of other
LDA methods is statistical
significant

Nc NN SVM

Ori PCA-LDA RLDA Ori PCA-LDA RLDA

5 −34.75 −31.22 −9.90 −19.91 −24.96 −3.65

10 −29.87 −46.70 −7.93 −22.77 −48.64 −6.51

15 −28.59 −63.52 0.81 −22.55 −67.13 −5.72

20 −29.97 −26.66 −4.56 −10.97 −26.48 −3.54

25 −27.75 −15.29 −2.10 −10.49 −17.50 −0.15

30 −26.12 −9.35 −2.83 −9.27 −14.83 −3.46

Table 2 McNemar’s test on the
Indian Pines data set to validate
whether the difference between
SMT-LDA and each of other
LDA methods is statistical
significant

Nc NN SVM

Ori PCA-LDA RLDA Ori PCA-LDA RLDA

5 −14.75 −22.83 −11.11 −10.96 −19.05 −6.23

10 −21.08 −31.82 −9.17 −6.93 −30.29 −6.47

15 −23.67 −40.94 −7.23 −6.89 −39.27 −5.70

20 −22.70 −26.42 −4.70 −6.66 −26.02 −7.79

25 −23.62 −20.18 −3.47 −7.46 −20.61 −7.47

30 −22.71 −18.34 −3.32 −5.81 −18.75 −5.63

In order to validate whether the differences in accuracy
between SMT-LDA and other LDA-based methods are sta-
tistically significant, we perform the McNemar’s test for
each algorithm. The McNemar’s test [22] computes the Z -
statistics as follows:

Z = f12 − f21√
f12 + f21

(8)

where f12 is the number of test samples that are erro-
neously classified by SMT-LDA and not by the comparison
method and f21 has a dual meaning [22]. Accepting the
common 5% level of significance, the difference between
the results of SMT-LDA and of each compared method is

statistically significant if |Z | > 1.96 [22]. When this con-
dition is met, a negative or positive value of Z indicates
that SMT-LDA or the compared method is more accurate,
respectively.

Tables 1 and 2 show the statistical test results using
McNemar’s test on the Salinas and Indian Pines data sets,
respectively. On Salinas, Z < −1.96 is obtained when com-
paring SMT-LDA with each previous LDA technique except
for the RLDA, where the difference in accuracy between
SMT-LDA and RLDA is not significant in the cases of 15
labeled samples per class for training with an NN classi-
fier and 25 labeled samples per class for training with an
SVM classifier. On Indian Pines, the differences between the
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accuracies of SMT-LDA and of other LDA methods are sta-
tistically significant (Z < −3) in all cases.

From the above results, it can be seen that SMT-LDA pro-
vides more accurate predictions and outperforms traditional
LDAmethods in terms of overall classification performance.
In fact, SMT-LDA can be also considered as a regularized
method for estimating the covariance or scatter matrix [16].
The improvement over LDA methods indicates the benefits
of using a sparse matrix transform technique for estimating
the scatter matrix in solving the optimal discriminant vector.

4 Conclusions

In this paper, we have proposed an SMT-LDA method
for dimension reduction and classification of hyperspectral
remote sensing image. Because the available training sam-
ples in HSI classification are usually very limited, traditional
LDAmethod is typically unstable. By representing the eigen-
decomposition of total scatter matrix as an SMT, the total
scatter matrix can be efficiently estimated and the estimator
is always positive definite, which overcomes the singularity
problem in traditional LDA algorithm. Experimental results
demonstrate that SMT-LDA is usually more accurate, espe-
cially in small-sample-size cases.
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