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Abstract Existing impulse noise reduction techniques per-
form well at low noise densities; however, their performance
drops sharply at higher noise densities. In this paper, we pro-
pose a two-stage scheme to surmount this problem. In the
proposed approach, first stage consists of impulse detection
unit followed by the filtering operation in the second stage.
We have employed a genetic expression programming-based
classifier for the detection of impulse noise-corrupted pixels.
To reduce the blurring effect caused due to filtering operation
on the noise-free pixels, we filter the detected noisy pixels
only by using a modified median filter. Better peak signal-
to-noise ratio, structural similarity index measure, and visual
output imply the efficacy of the proposed scheme for noise
reduction at higher noise densities.

Keywords Filtering · Genetic expression programming ·
Impulse detection · Impulse noise · Noise reduction

1 Introduction

Digital images are often corrupted by the impulse noise
during the acquisition or transmission stage. Therefore, it
is essential to reduce the noise before further processing
to extract any relevant information from the image, e.g.,
image segmentation, object detection etc. [1]. Depending
upon the intensity distribution, impulse noise can be clas-
sified into two categories, namely: (1) salt-and-pepper noise
and (2) random-valued impulse noise. Salt-and-pepper noise-
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corrupted pixels can take either 0 or 255 gray value in any
8-bit gray-scale image; however, random-valued impulse
noise-corrupted pixels can take any random value in the
allowed gray-scale range of the image. Various efficient
approaches have been proposed for the salt-and-pepper noise
reduction [2,3]. However, developing a robust approach for
random-valued impulse noise reduction still remains a chal-
lenge [4–6]. Therefore, in this paper, we will restrict our
discussion to the random-valued impulse noise-corrupted
images only.

Various methods have been proposed for the impulse
noise reduction among which standard median filter (SMF)
holds a prominent place due to its mathematical sim-
plicity in operation. However, when the noise density
is high, SMF fails to preserve the image details dur-
ing the filtering operation [3]. To overcome the draw-
backs of SMF, another class of impulse noise filters, i.e.,
switching median filters were proposed. Such filters con-
sist of two stages in which the first stage deals with
the detection of noisy pixels with a follow-up filtering
stage. In such methods, filtering operation is applied only
to the detected noisy pixels. Adaptive center-weighted
median filter (ACWMF) [7], alpha-trimmed mean-based
method (ATMBM) [1], differential rank-order impulse detec-
tor (DRID) [8], nonlinear adaptive lower-upper-middle-
based filter (NALUMBF) [9], decision-tree-based denoising
method (DTBDM) [10] are some of the efficient methods
belonging to this class. These schemes perform efficiently
at low noise density, but their performance degrades sharply
at high noise densities. In this paper, we discuss an exper-
iment in which we investigated the performance of genetic
expression programming (GEP)-based impulse detector, fol-
lowed by a modified median filtering operation in the
second stage. The proposed method has been found to
be robust in performance, especially at high noise densi-
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ties. As per our knowledge, no such GEP-based impulse
reduction scheme exists in the published or online litera-
ture.

The organization of the paper is as follows: A brief intro-
duction to GEP has been presented in Sect. 2. Section 3
describes the feature vectors considered in the present study
to train the GEP-based classifier. In Sect. 4, we present
the proposed impulse noise reduction scheme, followed by
results and discussion in Sect. 5. Finally, conclusions are
drawn in Sect. 6.

2 Genetic expression programming

GEP is a variant of genetic programming in which tree-based
structures evolve that models the relationship between the
input and output. GEP consists of linear chromosomes of
fixed length similar to genetic algorithms and complex struc-
tures of different sizes and shape similar to parse trees in
genetic programming. In GEP, computer program evolves
to find the solution of the candidate problem based on Dar-
win’ s theory of reproduction, crossover, andmutation. These
processes form the basis to evolve a genetic expression tree
from the GEP. In order to reach to the optimal solution, trees
with worst fitness are ‘killed.’ After killing the trees with
worst fitness, remaining population comprises of surviving
trees based on accepted selection mechanism.

In GEP, chromosomes are made up of multiple genes
where each gene comprises of a head and a tail part. Head
part contains the detailing symbols specific to the functions
and terminal operators, e.g.,+,−, / etc., and tail contains the
symbols specific to terminal operators only. Mathematical
relation exhibiting the relationship between the head length
and tail length can be written as:

tc = (n − 1) hc + 1 (1)

where hc is the head length, tc is the tail length of the chromo-
some, and n is the number of argument within the function.
The flowchart illustrating the architectural flow has been
depicted in Fig. 1 along with its optimization flow diagram
in Fig. 2. Various functional steps from Fig. 1 have been
explained as follows.

2.1 Define the initial population

Similar to other evolutionary algorithms, GEP starts with an
initial population of randomly generated chromosomes; all
future succeeding populations evolve from this initially gen-
erated population. This initial random population is also the
first solution to the candidate problem at hand. As these ini-
tial populations are randomly generated, therefore they are
not still the best solution (adapted according to the problem
environment). In the evolution of new generations, genetic
operators evolve each of the individual by ‘mating’ them
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Fig. 1 Flowchart of the GEP

with other individual in the population. These genetic oper-
ators are selected before running the problem, and it largely
depends upon the complexity of the problem. For instance,
genetic operators for mathematical model may include ‘+,’
‘−,’ ‘×,’ etc., and ‘AND,’ ‘OR,’ ‘NOT,’ etc., for Boolean
logical expressions.

2.2 Express chromosome

In this stage, chromosomes are expressed in terms of expres-
sion trees. The structure of each expression tree is designed
in a way that first node corresponds to the beginning of a new
gene. The evolved offspring from the first node is dependent
upon the number of arguments. In this process, functions can
have many arguments, however, the terminal takes 0 argu-
ments.

2.3 Fitness evaluation

It is crucial to choose the proper fitness function according
to the desired objectives of the problem set. To evaluate the
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Fig. 2 GEP optimization scheme

fitness of any chromosome population, we have resorted to
maximizing the sensitivity and specificity because they are
widely used metric to determine the performance of two-
class classifiers. To explain the sensitivity and specificity, let
us assume any two-class classification problem with class-
label {L1, L2}. For any input instance, candidate classifier
can have four following possible types of output.

1. If any object from class L1 has been assigned label L1.
This input instance is called as true positive, Tp.

2. If any object from class L2 has been assigned label L2.
This input instance is called as true negative, Tn.

3. If any object from class L1 has been assigned label L2.
This input instance is called as false positive, Fp.

4. If any object from class L2 has been assigned label L1.
This input instance is called as false negative, Fn.

Therefore, depending upon the correct classification, sensi-
tivity and specificity can be defined as:
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Fig. 3 Illustration of chromosome recombination

Specificity = Tn
Tn + Fp

(2)

Sensitivity = Tp
Tp + Fn

(3)

Therefore, initial populations evolve with a target to max-
imize the sensitivity and specificity. During the evolution,
generation yielding the maximum sensitivity and specificity
is considered as the optimal generations. Expression tree cor-
responding to the optimal generations is carried forward for
remaining calculations.

2.4 Storing the best generation

In GEP, the fundamental process of evolution is the gener-
ation of offsprings from the two superior parent individuals
to achieve ‘etilism.’1 The best individuals from the par-
ent generation produce offsprings in future generations
with most desirable features; however, the individuals with
less desirable features are removed. On the basis of this
fact, our model maximizes the sensitivity and specificity
of the classifier and yields superior classification capabili-
ties.

2.5 Selection

This step assures that the best individuals are used to pro-
duce the offsprings for the future generations. The selection
of chromosomes for their fitness is carried out during the
‘tournament’ selection for reproduction and mutation. The
competition between the chromosomes depends upon the
tournament size that is adjusted and defined by the user. Sum-
marily, greater tournament size results in more competitive
selection procedure, as a result weak chromosomes are less
likely to compete for the survival.

1 ‘Etilism’ is the cloning of best chromosomes to next population or
generation.
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2.6 Reproduction

In the reproduction phase, new offsprings are born from the
parent chromosome. Here, we have to consider the genetic
operators that are responsible for evolution. In particular, we
apply the genetic operators known as mutation and recombi-
nation explained as follows:

2.6.1 Mutation

It is the process of creating new model that is mutated
randomly from an existing model. For mutation, a parent
chromosome is selected with a probability defined by its fit-
ness. After the selection of parent chromosome, mutation
point is defined on the parent chromosome which alters one
or more gene representing the new mutated individual that is
added to the population.

2.6.2 Recombination

In the recombination, parent chromosomes are matched and
split up at identical points in order to determine the recombi-
nation points, shown in Fig. 3. The spliced parts of each genes
are exchanged between the two preselected parent chromo-
somes on the basis of probability. This process results in the
birth of two new offsprings.

2.7 Prepare new expressions of next generation

In this step, tournament losers are replaced with the new
individuals by the reproduction in population.

2.8 Termination criteria

Defining a termination criteria for evolutionary algorithm is
essential in order to stop the evolution. In the present study,
we terminate our program when there is no change in the
either sensitivity or specificity over 1000 generations.

3 Feature vectors

Selection of appropriate training feature vectors plays an
important role in determining the ultimate performance of

any classifier. For training purpose, we have extracted the
below-mentioned feature vectors from the scaled Lena image
of dimension (128 × 128) shown in Fig. 4a, corrupted with
50% noise density, shown in Fig. 4b. Corrupting the image
with 50% noise density makes number of noisy pixels equal
to the noise-free pixels in the input dataset, thereby avoiding
any bias that is likely to arise during the training of the clas-
sifier. The target image for the GEP-based classifier has been
shown in Fig. 4c.

3.1 Difference of the median and central pixel

Median value is a good estimator of the pixel distribution in
any local window of dimension 3 × 3. If the central pixel is
noise free, then its intensity value will lie close to the median
value (of the pixels contained in the local window) or the
difference between them will be less. On the other hand, if
the central pixel is noisy, then there will be a large difference
in between the median of the local window and the central
pixel value. As a result, this difference can play an important
role in determining the pixel’ s nature for any local window
W3, and the difference between the central pixel X (i, j) and
the median of the pixels Median(W3(i, j)) can be calculated
as:

D (W3 (i, j)) = abs (Median (W3 (i, j)) − X (i, j)) (4)

where X is the noisy version of original image I and W3

represents any arbitrary local window of dimension 3 × 3.

3.2 Rank-ordered information

Position of the central pixel within a local window in any
sorted series (i.e., arranging the pixel values in row major
form followed by the sorting operation) carries vital infor-
mation regrading its nature [8]. If the central pixel is noise
free, then its location, R, will lie close to themedian position.
However, if the pixel is noisy or an edge pixel, then it will
lie at the extreme locations (or close to extreme location) in
the sorted series. Therefore for a 3 × 3 window, 1 ≤ R ≤ 9.

Fig. 4 Training dataset for
GEP-based classifier. a Original
noise-free Lena image, b Lena
image corrupted with 50%
random-valued impulse noise,
and c target image
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3.3 Robust outlyingness ratio, ROR

Local statistical information within the window can yield
important information regarding the pixel distribution. Robu-
st outlyingness ratio proposed by Bo and Zhouping provides
a robust estimation of the pixel’ s nature [11]. ROR value is
high for the noisy pixels, compared to noise-free pixels. To
calculate ROR, we have considered a window of dimension
(5 × 5), W5. ROR can be calculated as:

ROR (W5 (i, j)) =
∣
∣
∣
∣

W5 (i, j) − Median (W5 (i, j))

MADN (W5 (i, j))

∣
∣
∣
∣

(5)

where MADN represents normalized median absolute devi-
ation and can be calculated by:

MADN (W5 (i, j)) = Median (|W5 − Median (W5 (i, j))|)
0.6457

(6)

4 Proposed approach

GEP is a class of evolutionary algorithm based on the princi-
ple of natural selection. GEP works by evolving population
of fixed length of chromosomes through genetic operators,
i.e., selection, crossover, and mutation. For detailed expla-
nation of GEP, we refer to the work of Ferreira [12], Zhou
et al. [13] and Sermpinis et al. [14]. The fitness function used
for the GEP classifier was to maximize the sensitivity and
specificity of the classifier, discussed in Sect. 2.3 [15].

A classification problem can be seen as F : ru → sv ,
where u-dimensional signal is fed to GEP framework and
v-dimensional vector is obtained as the output. Input feature
vectors can be written as r = (D,R,ROR)16384×3 where
D, R and ROR represent the difference in between the cen-
tral pixel intensity value and median of the local window,
rank-ordered information and ROR, respectively. Target vec-
tor can be expressed as s = (s)16384×1 | s ∈ {0, 1}.

In the first stage, feature vectors are fed to GEP-based
classifier which determines the nature of the central pixel
depending upon the input values. In the second stage, if the
pixel is found out to be noisy, then the detection map and
noisy image are fed to the filtering unit in order to apply
the filtering operation on the detected noisy pixels, shown in
Fig. 5. If the pixel is found to be noise free, then it is left
intact. Performance of the noise reduction algorithm largely
depends upon the efficiency of the detection unit. If the detec-
tion unit performs poorly in the detection of noisy pixels, i.e.,
low correct classification rate, then the restored image will
contain noisy pixels, even after the filtering operation. On the
other hand, if impulse detection stage yields high false classi-
fication rate, then the restored image will be blurred in nature

GEP based Impulse 
Noise Detector

Noise
Filter

+

Out(i,j)=1

O
ut

(i,
j)=

0

Fig. 5 Flowchart of the proposed impulse noise reduction scheme

due to filtering operation on the noise-free pixels. Standard
median filter is a widely used approach for the reduction in
impulse noise. But it performs poorly at high noise densi-
ties (i.e., P > 30%, where P is the noise density) because
of the following reasons. (1) Generally, SMF is employed
across the whole image without considering the nature of
the central pixel. As a result, this approach performs filtering
operation on the noise-free pixels as well which leads to the
blurring of the image details; (2) SMF considers all of the
elements of the local window to estimate the noise-free value
for the noisy central pixel. This approach can again yield a
noisy estimate in the case if the number of noisy pixels in the
window is more than 4 (for a 3 × 3 window).

In the present study, we have employed a variant of SMF
on the lines of [16] in which we consider noise-free pix-
els only in order to estimate a value for the noisy central
pixel. To perform this operation, we need noise-free pixels
which can be obtained by the element by element matrix
multiplication of the local image window with the corre-
sponding detection map window. Detection map is binary in
our case, i.e., a location can have a value of either 0 or 1.
If we assign 0 values to the noisy pixels, then in the mul-
tiplied output we will obtain noise-free pixel values along
with some zero values. This operation can be written as:

OutMult = ((X (W3)) × Map (W3)) ∩ X (W3) (7)

Finally, estimate for noisy central pixel can be made by
using:

X̂ (i, j) = Median (OutMult) (8)

5 Results and discussion

5.1 Performance of the GEP-based impulse classifier

Various GEP simulation parameters considered during the
study have been listed in Table 1. The final expression tree
(ET) obtained from the GEP has been shown in Fig. 6.
In Fig. 6, D0, D1, and D2 represent D, R, and ROR,
respectively. The net expression to detect an impulse noise-
corrupted pixel can be written as:

MAPGEP = (ET)1 + (ET)2 + (ET)3 (9)

Values of various constants used in Fig. 6 are as follows: (1)
For ET1 : C3 = 2.97, C8 = 6.45, (2) For ET2 : C5 =
−9.85, C9 = 9.56, (3) For ET3 : C5 = 9.46, C9 = 8.57.
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Table 1 GEP simulation parameters

Parameters Value

Function set +, −, /, ×, ≤ , <, ≥ , >,
= =, ! = , atan

Terminal set D, R, ROR

Head length 7

Gene length 10

Number of genes 3

Chromosome length 30

Mutation rate 0.0051

Gene recombination rate 0.1

GOE3J

GOE3I LOE4L

LT4E

GOE3D

D0

D2D1C3D2
D0 D0

1D1D D0C8

ADD3
ET4A NET2D

D1 D2 D2 D0
C5 C9

LT4I

ET2A
LOE4E

D1 D0 D0 D0

D1 D2

LT4E

GOE2CD2 C9

C5 D1

D1

D0 D0 D0 C9

(Expression Tree)3

(Expression Tree)2

(Expression Tree)1

Fig. 6 Expression tree for the GEP-based impulse classifier

Floating point numerical constants are crucial in design-
ing the evolutionary technique-based mathematical model
for any problem [17]. We have also used the numerical con-
stants to model the GEP-based classifier for automated noisy
pixel classification. These random numeric constants (RNC)
are randomly generated by the GEP during the run and are
fine-tuned with the progressing population. Before starting
the simulation, a range of values is required to be provided
to the GEP for RNC generation and RNCs are generated
randomly and are fine-tuned during the run [18]. There is
no strict rule for determining the optimal range of the RNC
values [18]; however, experimentally we have determined

to set the range to adequately produce positive and negative
random numbers. For the present work, we set the range to
[−10, 10]. For a detailed information onRNCgeneration and
fine-tuning, we refer to chapter 5 of the Ferreira’ s work [18].

Various operators of ETs, shown in Fig. 6, have been listed
as following2:

GOE2C(x, y) =
{

(x + y) if x ≥ y
(x − y) , otherwise

(10)

ET2A(x, y) =
{

(x) if x == y
(y) , otherwise

(11)

NET2D(x, y) =
{

(x × y) if x ! = y
(x/y) , otherwise

(12)

GOE3D(x, y, z) =
{

(x + y) if (x + y) ≥ z
(x − z) , otherwise

(13)

GOE3I(x, y, z) =
{

(x × y) if (x + y) ≥ z
(x × z) , otherwise

(14)

GOE3J(x, y, z) =
{

(x × y) if (x + y) ≥ z
(x/z) , otherwise

(15)

ET4A(a, b, c, d) =
{

(c) if (a == b)
(d) , otherwise

(16)

LT4E(a, b, c, d) =
{

(a + b) if ((a + b) < (c + d))

(c × d) , otherwise
(17)

LOE4E(a, b, c, d) =
{

(a + b) if ((a + b) ≤ (c + d))

(c × d) , otherwise
(18)

LT4I(a, b, c, d) =
{

(a × b) if ((a + b) < (c + d))

(c × d) , otherwise
(19)

LOE4L(a, b, c, d) =
{

atan (a × b) if ((a + b) ≤ (c+ d))

atan (c× d) , otherwise

(20)

The output obtained from the above expression is con-
tinuous and therefore to convert into binary logic output, a
two-state threshold operation can be employed on MAPGEP

Out (i, j) =
{

0, if 0 ≤ PMAPGEP < 0.5
1, if 0.5 ≤ MAPGEP ≤ 1

(21)

The proposed classifier has been found to be robust in perfor-
mance from its high area under the curve (AUC) of 0.8466
which implies the probability with the an instance of noisy
pixel will be classified as noisy. The specificity and sensi-
tivity of the proposed detector have been found to be 92.51
and 77.99%, respectively. The correct classification rate was
found to be 85.26%.

To evaluate the performance of the proposed algorithm,
various standard test images viz. Lena, Elaine, Goldhill,

2 For the simplicity of expressing the mathematical equations, we
have used arbitrary variables for 2, 3, and 4 variable operators by
(x, y), (x, y, z), and (a, b, c, d), respectively. We have considered a
post-order traversing scheme to represent the actual variables (repre-
sented by leaves in the ET) by the arbitrary variables mentioned above.
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Bridge, and Aerial were artificially corrupted with the
impulse noise, varying from 10 to 70% noise density with
the step increment of 20%. Performance of the various
approaches has been evaluated on the basis of quantita-
tive superiority (i.e., peak signal-to-noise ratio, PSNR and
structural similarity index measure, SSIM) and qualitative
superiority (i.e., visual output). PSNR between original
image, I , and restored image, K , of dimension (M × N )

can be calculated by using the following expression:

PSNR (I, K )

= 10log10

⎛

⎜
⎜
⎜
⎝

2552

1
MN

M∑

m=1

N∑

n=1
{I (m, n) − K (m, n)}2

⎞

⎟
⎟
⎟
⎠

(22)

SSIM between the original image and restored image can be
calculated as:

SSIM (I, K ) = (2μIμK ) (2σI K + C2)
(

μ2
I + μ2

K + C1
) (

σ 2
I + σ 2

K + C2
) (23)

where μ and σ represent mean intensity and standard devia-
tion from the peak intensity. C1 and C2 being the constants,
σI,K (i.e., standard deviation at any pixel) can be calculated
as:

σI K = 1

J − 1

J
∑

j=1

(

I j − μI
) (

K j − μK
)

(24)

Tables 2, 3, 4, and 5 list the qualitative results for various
images at 10, 30, 50, and 70% noise density, respectively.
It can be observed from Tables 2, 3, and 4 that the perfor-
mance of ACWM, ATMBM, and DRID drops sharply with
the increasing noise density. Therefore, these approaches
are inefficient for noise reduction at high noise densi-
ties. DTBDM involves decision-tree-based impulse detector

Table 2 PSNR and SSIM
values of various algorithms for
numerous standard test images
at 10% noise density

Approach Attribute Image

Lena Elaine Goldhill Bridge Aerial

ACWM PSNR (dB) 33.93 32.25 30.88 26.14 27.29

SSIM 0.9109 0.7781 0.8443 0.7771 0.8782

ATMBM PSNR (dB) 36.79 37.44 33.73 27.77 28.54

SSIM 0.9703 0.9503 0.9478 0.8841 0.9325

DRID PSNR (dB) 34.55 32.66 31.33 26.70 28.01

SSIM 0.9216 0.7954 0.8607 0.8104 0.8954

NALUMBF PSNR (dB) 30.81 31.49 28.65 23.97 23.94

SSIM 0.8569 0.7427 0.7434 0.6046 0.7172

DTBDM PSNR (dB) 37.05 36.65 34.21 27.70 29.01

SSIM 0.9713 0.9419 0.9522 0.8863 0.9393

Proposed PSNR (dB) 32.92 33.41 30.04 24.64 25.04

approach SSIM 0.9330 0.8446 0.8540 0.7356 0.8188

Table 3 PSNR and SSIM
values of various algorithms for
various standard test images at
30% noise density

Approach Attribute Image

Lena Elaine Goldhill Bridge Aerial

ACWM PSNR (dB) 23.93 23.58 26.82 23.84 23.49

SSIM 0.7663 0.7306 0.7191 0.6673 0.7283

ATMBM PSNR (dB) 28.53 29.05 27.60 23.88 23.96

SSIM 0.8273 0.7907 0.7928 0.7360 0.7663

DRID PSNR (dB) 27.56 27.32 26.34 23.42 23.44

SSIM 0.7760 0.6658 0.7107 0.6816 0.7206

NALUMBF PSNR (dB) 29.19 30.10 27.61 23.02 22.98

SSIM 0.8328 0.7222 0.7126 0.5648 0.6766

DTBDM PSNR (dB) 27.26 27.10 26.42 23.15 23.24

SSIM 0.7747 0.7264 0.7549 0.7086 0.7430

Proposed PSNR (dB) 31.25 32.05 29.24 23.64 24.02

approach SSIM 0.9132 0.8294 0.8401 0.7184 0.7978
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Table 4 PSNR and SSIM
values of various algorithms for
various standard test images at
50% noise density

Approach Attribute Image

Lena Elaine Goldhill Bridge Aerial

ACWM PSNR (dB) 21.63 21.68 20.79 19.13 18.51

SSIM 0.4881 0.4210 0.4506 0.4428 0.4327

ATMBM PSNR (dB) 21.66 21.72 20.94 19.17 18.55

SSIM 0.4989 0.4683 0.4795 0.4744 0.4513

DRID PSNR (dB) 20.94 21.08 20.27 18.78 18.10

SSIM 0.4484 0.3922 0.4268 0.4234 0.4132

NALUMBF PSNR (dB) 25.54 26.41 24.41 20.85 20.60

SSIM 0.7259 0.6276 0.5931 0.4679 0.5227

DTBDM PSNR (dB) 20.11 20.24 19.54 18.16 17.54

SSIM 0.3933 0.3654 0.3940 0.4124 0.3940

Proposed PSNR (dB) 28.69 29.70 27.76 21.98 21.89

approach SSIM 0.8574 0.7534 0.7564 0.5940 0.6740

Table 5 PSNR and SSIM
values of various algorithms for
various standard test images at
70% noise density

Approach Attribute Image

Lena Elaine Goldhill Bridge Aerial

ACWM PSNR (dB) 16.77 16.92 16.20 15.27 14.33

SSIM 0.2159 0.1982 0.2148 0.2219 0.2113

ATMBM PSNR (dB) 16.70 16.93 16.21 15.26 14.35

SSIM 0.2149 0.2092 0.2234 0.2363 0.2130

DRID PSNR (dB) 16.38 16.54 15.94 15.10 14.14

SSIM 0.1932 0.1781 0.1975 0.2185 0.1991

NALUMBF PSNR (dB) 19.71 19.78 18.87 17.20 16.20

SSIM 0.4602 0.4025 0.3760 0.2970 0.2742

DTBDM PSNR (dB) 15.43 15.60 15.03 14.20 13.48

SSIM 0.1470 0.1335 0.1560 0.1753 0.1736

Proposed PSNR (dB) 23.80 23.12 22.40 19.25 17.76

approach SSIM 0.7166 0.6121 0.5897 0.4246 0.4040

which performs efficiently at low noise density, yielding
high PSNR and SSIM values evident from Table2. However,
at higher noise densities, decision-tree-based approach falls
short due to the intricate detection environment evident from
low PSNR and SSIM values in Tables 3, 4 and 5. NALUMBF
performs satisfactorily over the wide range of noise but fails
to preserve the structural content of the image, evident from
the low SSIM values in Tables 4 and 5. Proposed approach
performs satisfactorily at lownoise densitywhichmay be due
to the fact that GEP classifier has been trained with the high
noise density data. Therefore, classifiermay be biased toward
the high noise density performance. At high noise densities
(i.e., P > 30%), proposed approach has been found to yield
higher PSNR and SSIM values, compared to existing state-
of-art noise reduction schemes.

Qualitative results in terms of the visual output for
cropped Elaine image have been shown in Fig. 7. It can be
observed from Fig. 7c–e that ACWM, ATMBM, and DRID,
respectively, fail to remove the noise present in the image
apparent from the noise patches present in the restored image.
NALUMBF suppresses the noise to a certain extent but also
blurs the image detail during the filtering operation, shown in
Fig. 7f. DTBDM also performs poorly at higher noise den-
sities as the restored image still contains the noisy pixels,
shown in Fig. 7g. Proposed approach performs well at high
noise densities, evident from the restored image, shown in
Fig. 7h. A similar observation has also been made with the
standard Lena image results, illustrated in Fig. 8. From the
fine image details present in the restored image (e.g., hairs
on the top right corner in Fig. 7), it can be inferred that the
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Fig. 7 Simulation results of various algorithms for cropped Elaine
image, corrupted with 50% random-valued impulse noise. a Original
noise-free Elaine image; b Noisy Elaine image; c Output of ACWM;

d Output of ATMBM; e Output of DRID; f Output of NALUMBF; g
Output of DTBDM; h Output of the proposed approach

Fig. 8 Simulation results of various algorithms for cropped Lena
image, corrupted with 50% random-valued impulse noise. a Original
noise-free Elaine imageb) Noisy Elaine image; c output of ACWM; d

output of ATMBM; e output of DRID; f output of NALUMBF; g output
of DTBDM; h output of the proposed approach

proposed algorithm is capable of preserving the image details
while reducing the noise.

During the experimentation, it has been found out that
at higher noise density (i.e., P > 30%), proposed method
requires more than one iteration in order to clean the noise
present in the image. At lower noise density, single pass of
the proposed scheme reduces the noise present in image.
Experimentally, we have observed that for higher noise den-
sity (i.e., P > 30%), PSNR and SSIM of the candidate
noisy image improve with the certain number of iterations
of the proposed scheme. PSNR and SSIM variation was
found to be purely depending upon the noise present in

the image and number of times we applied the filtering
operation on the candidate noisy image, shown in Fig. 9
for the Lena image. For 50% noise density, 2–3 iterations
were found to be optimal on variety of images; we have
also observed that performing more than three iterations
result in drop in the PSNR and SSIM values concluding
the blurring phenomena caused by the over-filtering oper-
ation. Similarly, for ≈70% noise-corrupted image, ≈4–5
iterations are sufficient to reduce the noise present in the
image. For the ease of readers, we have enlisted the optimal
number of iterations required for various noise densities in
Table 6.
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Fig. 9 Variation of PSNR (dB) and SSIM with the iterations for Lena
image corrupted with 50% random-valued impulse noise

Table 6 Optimal number of iterations for various noise densities

Noise density (%) No. of iterations

0 < P ≤ 30 1–2

30 < P ≤ 50 2–3

50 < P < 70 3–4

P ≥ 70 4–6

6 Conclusion

In this paper, a novel GEP-based classifier has been proposed
for the impulse noise detection. High sensitivity, specificity,
and AUC of 77.91, 92.51, and 0.8466%, respectively, imply
its robust behavior. To evaluate the performance of the
proposed method, we performed extensive simulations on
standard test images and compared the results with exist-
ing state-of-art methods. Experimental results indicate that
the proposed scheme performs better, compared to existing
approaches at the high noise densities.
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