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Abstract Gait recognition is an emerging biometric tech-
nology aiming to identify people purely through the analysis
of the way they walk. The technology has attracted interest
as a method of identification because it is noncontact and
does not require the subject’s cooperation. Clothing, carry-
ing conditions and other intra-class variations, also referred
to as “covariates,” affect the performance of gait recognition
systems. This paper proposes a supervised feature extrac-
tion method, which is able to select relevant discriminative
features for human recognition to mitigate the impact of
covariates and hence improve the recognition performances.
The proposedmethod is evaluated using theCASIAgait data-
base (dataset B), and the experimental results suggest that
our method yields 81.40% of correct classification when
compared against similar techniques which do not exceed
77.96%.
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1 Introduction

Technology has invaded our lives as never before, and
the effectiveness of current security systems has become
increasingly important. The development of automatic per-
sonal identification systems has increased in recent years,
and worldwide effort has been devoted to broaden and
enhance personal identification systems. In particular, bio-
metric recognition has become an area of particular interest
and is used in numerous applications. Biometric recognition
aims to identify individuals using unique, reliable and stable
physiological and/or behavioral characteristics such as fin-
gerprint, palmprint, face and gait. Gait recognition consists
on discriminating among people by the way or manner they
walk. Gait as a biometric trait can be seen as advantageous
over other forms of biometric identification techniques for
the following reasons:

• The gait of a personwalking can be extracted and analyzed
from distance without any contact with the sensor.

• The images used in gait recognition can be easily provided
by low-resolution, video-surveillance cameras.

Gait recognition techniques can be classified into two
main categories: model-based and model-free approaches. A
model-based approach [1,2] models the person body struc-
ture and uses the estimation over time of static body parame-
ters for the recognition task (i.e., trajectory, limb lengths, etc).
This process is usually computationally intensive since one
needs tomodel and track the subjects body.On the other hand,
a model-free approach does not recover a structural model of
the human motion, and instead, it uses the features extracted
from the motion or shape for the recognition. Compared to
a model-based approach, the model-free approach is less
computationally intensive while the use of dynamic infor-
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mation results in much improved recognition performance
than a static counterpart [3]. These reasons have motivated
the researchers to introduce new feature representations to
the model-free approach context. The major challenges of
methods belonging to the model-free gait recognition are
due to the effect of various covariates, which are the results
of the presence of shadows, clothing variations and carrying
conditions (backpack, briefcase, handbag, etc). From a tech-
nical point of view, the segmentation process and the viewing
dependency are further causes of gait recognition errors. This
has motivated the work presented in this paper, which aims
to mitigate the effect of the covariates and hence to improve
the recognition performance. In the present work, we intro-
duce a wrapper feature selection algorithm combined with a
modified phase-only correlation (MPOC) matching method.
It is an improved version of the phase-only correlation (POC)
matching algorithm using a band-pass-type spectral weight-
ing function in order to achieve superior performances. It is
an effective and efficient method to match images with low
texture feature, which has been successfully applied to partial
shoeprints classification [4] and image registration [5].

The rest of this paper is organized as follows: Sect. 2 sum-
marizes the previous works. Section 3 gives the theoretical
description of the proposed method. Section 4 presents the
experimental results. Section 5 offers our conclusion.

2 Related works

There exists a considerable amount of work in the context of
model-free approaches for gait recognition. BenAbdelkader
et al. [6] introduced a self-similarity representation to mea-
sure the similarity between pairs of silhouettes. Collins et al.
[7] proposed a template-based silhouette matching in some
key frames. Recent trends seem to favor gait energy image
(GEI) representation suggested by Han and Bhanu [8]. GEI
is a spatio-temporal representation of the gait obtained by
averaging the silhouettes over a gait cycle. This representa-
tion has already been used in several state-of-the-art works
[9–12].

It has been found that the different clothing and carrying
conditions between the gallery and probe sequences influ-
ence the recognition performances [8,13]. To overcome the
limitations of the GEI representation, several works have
been proposed. Bashir et al. [14] introduced a novel gait
feature selection method referred to as gait entropy image
(GEnI). It consists of computing Shannon entropy for each
pixel over a gait cycle; in other terms, it aims to distinguish
static and dynamic pixels of the GEI. In this case, GEnI
represents a measure of feature significance (pixels with
high entropy, which correspond to dynamic parts, are robust
against appearance changes). In the same context, Bashir et
al. [15] suggested a new gait representation called flow field

Fig. 1 Scheme representing modules of our method

in order to represent a weighted sum of the optical flow corre-
sponding to each coordinate direction of the human motion.
This representation showed good performances in the pres-
enceof covariates.Dupuis et al. [16] introduced an interesting
feature selection method based on Random Forest rank fea-
tures algorithm.

3 Methodology

Feature representation model-free approaches for gait recog-
nition imply a high-dimensional feature space, thus requiring
some dimensionality reduction techniques. Han and Bhanu
[8] suggested a canonical discriminant analysis. This method
consists of applying principal component analysis (PCA)
followed by a multiple discriminant analysis (MDA). This
technique has become popular in gait recognition applica-
tions and has already been used in some works [14,15]. The
disadvantage of this method is due to the drawbacks of the
dimensionality reduction performed using linear techniques
such as PCA, which makes it unsuitable in some situations.
The returned bases of PCA have to be orthogonal, as conse-
quence it has a limited ability to model nonlinear structures
[17,18].

In this paper among all available feature representations,
we have chosen GEI since it is an easy and simple represen-
tation to compute, thus making it an effective compromise
between the computational cost and the recognition perfor-
mance. As shown in Fig. 1, our framework is divided into
twomain modules: The first one consists of selecting the fea-
ture subset using a wrapper feature selection algorithm (see
Sect. 3.5) including the parameter of the spectral weighting
function (see Sect. 3.3) on a feature selection set independent
from the training and testing set. The second module is used
to compute the performance of our method (correct classifi-
cation rate) using GEI features selected in the first module
and the MPOC algorithm of matching, which estimates its
spectralweighting functionparameter in thefirstmodule, too.

3.1 Gait energy image

The human walk is considered as a cyclic activity where the
motion repeats at a constant frequency. GEI image is a rep-
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(a) (b) (c)

Fig. 2 Gait energy image of an individual under different conditions

resentation of human walk using a single grayscale image
obtained by averaging the silhouettes extracted over a com-
plete gait cycle [8]. GEI is computed using the following
equation

G(x, y) = 1

N

N∑

t=1

B(x, y, t) (1)

where N is the number of the frames within a complete gait
cycle, B is a silhouette image, x and y are the spatial coordi-
nates of the image, while t being frame number in the cycle.
Pixels with low intensity correspond to the dynamic parts of
the body (lower part of the body), and this part of the GEI
is very useful for the recognition and is not affected by the
covariates as carrying and clothing conditions. Pixels with
high intensity correspond to the static parts of the body (top
part of the body), and this part contains the body shape infor-
mation, which can be useful for identification, but it can be
affected by the covariate conditions [14] (Fig. 2).

3.2 Phase-only correlation

Since in the Fourier domain, the phase information captures
(preserves)more features of the patterns than themagnitudes,
phase-based imagematching can be very attractive [19]. This
technique was already successfully used in biometric appli-
cations such as palmprint [20], fingerprint [21] and Iris [22].
This section shows the definition and concept of the phase-
only correlation function on GEI.

Let us consider two images f (n,m) and g(n,m) each
having a size of N1 × N2 where N1 = 2N + 1 and N2 =
2M + 1 so that the index range of n and m is −N · · · N and
−M · · · M , respectively. Let F(u, v) and G(u, v) denote 2D
DFTs of two images, which can be written as follows:

F(u, v) =
N∑

n=−N

M∑

m=−M

f (n,m)e
−2 junπ

N1 e
−2 jvmπ

N2

= AF (u, v)e jθF (u,v) (2)

G(u, v) =
N∑

n=−N

M∑

m=−M

g(n,m)e
−2 junπ

N1 e
−2 jvmπ

N2

= AG(u, v)e jθG (u,v) (3)

where AF (u, v), AG(u, v) and θF (u, v), θG(u, v) are the
amplitude and phase components, respectively. The cross-
phase spectrum is given by

RFG(u, v) = F(u, v)G(u, v)∣∣∣F(u, v)G(u, v)

∣∣∣
= e jθ(u,v) (4)

where G(u, v) is the complex conjugate of G(u, v) and
θ(u, v) denotes the phase difference θF (u, v)−θG(u, v). The
POC function r f g(n,m) is the 2D inverse DFT (2D IDFT)
of RFG(u, v) given by

r f g(n,m) = 1

N1N2

N∑

u=−N

M∑

v=−M

RFG(u, v)e
2 junπ
N1 e

2 jvmπ
N2

(5)

If the matched images f (n,m) and g(n,m) are similar, the
POC function gives a distinct sharp peak like Kroneckers
delta function δ(n,m). The hight of the peak gives the sim-
ilarity measure for image matching. If the images are not
similar, the peak drops significantly (see Fig. 3).

3.3 Spectral weighting function

Since the high-frequency components have a low reliability
( SN ), a spectral weighting function has been used to empha-
size these frequencies in order to improve the registration.
Gueham et al. [4] proposed a band-pass-type spectral weight-
ing function W to enhance the recognition rate of shoeprints
by eliminating high frequencies without affecting the peak
sharpness as follows:

W (u, v) =
(
u2 + v2

α

)
e
− u2+v2

2β2 (6)

where β is parameter for controlling the function width and
α = 4πβ4 for normalizing the peak between 0 and 1. It has a
shape of a Laplacian ofGaussian (LoG). Theweighting func-
tion is applied to the cross-phase spectrum, and the resulting
modified cross-phase spectrum is given by

R̃FG(u, v) = F(u, v)G(u, v)∣∣∣F(u, v)G(u, v)

∣∣∣
× W (u, v)

= e jθ(u,v) × W (u, v) (7)

The modified phase-only correlation (MPOC) is given by

r̃ f g(n,m)= 1

N1N2

∑

u,v

RFG(u, v)e
2 junπ
N1 e

2 jvmπ
N2 ×W (u, v) (8)

where
∑

u,v = ∑N
u=−N

∑M
v=−M
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Fig. 3 Example of Phase-Only
Correlation matching. a same
class, b different class

3.4 Proposed recognition Algorithm

Let us consider an unknown GEI sample from the probe
{ fi }Ni=1, where N is the size of the probe. The algorithm com-
pares this sample to the entire gallery {g j }Mi=1 where M is the
size of the gallery anddetermines thematching score between
each couple ( fi , g j ). The matching score corresponds to the
maximum value of the inverse Fourier transform of the cross-
phase spectrum. After matching an input image from the
gallery to all probes, the results are sorted from the high-
est match to the lowest. The result image is identified as the
image having the highest score from the gallery. The cor-
rect classification rate (CCR) is the ratio of the number of
well-classified samples over the total number of samples (see
Algorithm 1).

Algorithm 1: Correct Classification Rate (CCR) Using
Phase-Only Correlation (POC)
Data: fi (n,m) the probes GEI/ i = 1 · · · N

g j (n,m) the gallery GEI/ j = 1 · · · M
Result: correct classification rate
well classified =0;
correct classification rate=0;
for i = 1 to N do

for j = 1 to M do
Calculate the Fourier Transform of fi and g j , to obtain Fi
and Gi ;
Extract the phase of Fi and G j , θi and θ j ;
Calculate the cross-phase spectrum RFiG j = e jθ , where
θ = θi − θ j

1;
Calculate the Invert Fourier Transform to obtain the
Phase-Only Correlation r fi g j ;
Determine the maximum of r fi g j which corresponds to
the matching score between fi and g j ;

fi is identified as the g j which has biggest matching score;
if fi is well classified then

well classified ← well classified +1;

correct classification rate ← well classified / N;

3.5 Supervised feature selection

The feature selection process aims to select a subset of rel-
evant features from the initial set. The main goal of feature
selection is to enhance the classification accuracy. There
exist two families of supervised feature selection: filters
and wrappers. The filter approach is independent of the
learning algorithm and precedes the classification process
(entropy). On the other hand, in a wrapper approach the
classification is used itself to measure the importance of
the features, and hence, this approach achieves better per-
formances since it has a direct interaction with the specific
classification method. Due to the large number of pos-
sible feature subsets 2s (where s = w × h, w is the
width and h is the high of initial GEI) which are usually
computationally intensive, a wrapper approach requires a
strategy of search to explore efficiently the feature sub-
sets.

To make the strategy of search efficient, we have reduced
the number of features by considering each row as a feature
unit. In addition, the gait of an individual is characterized
much more by the horizontal than the vertical motion [23],
which makes our new feature representation unit suitable
to the problem at hand. We have divided the GEI into two
equal parts (top and bottom part). We have removed the
rows from the top of the bottom part sequentially (lower
part of GEI contains dynamic information, which is impor-
tant for the recognition process [14]). Once we have found
the best feature subset of the bottom part, we have also
investigated the top part of the GEIs, which may contain
some informative features (head shape, neck) by adding
sequentially rows from top of the top part (see Algo-
rithm 2).

1 In the case of MPOC is multiplied by the spectral weighting
function.
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Table 1 Data partition of carried out experiments under 90◦ view

Feature selection Gallery Normal walk probe Carrying-bag probe Wearing-coat probe

# Subjects # GEIs # Subjects # GEIs # Subjects # GEIs # Subjects # GEIs # Subjects # GEIs

24 72 124 472 124 248 124 224 124 224

24 NL, 24 C-B, 24 W-C 472 NL 248 NL 224 C-B 224 W-C

Algorithm 2: ProposedAlgorithmOf Feature Selection.
Data: GEI templates h × w

Result: Feature selected from GEI
CCRmax = 0;
hs1 = h

2 + 1;
for x = h

2 + 1 to h do
Use the bottom rows of x as features;
Calculate the correct classification rate CCRx ;
if CCRx > CCRmax then

CCRmax ← CCRx ;
hs1 ← x ;

x = x + 1;
The bottom rows of hs1 are the selected features in the bottom
part;
hs2 = 0;
for y = 1 to h

2 do
Use the top rows of y as features;
Concatenate this rows with the rows selected in the bottom
part;
Calculate the correct classification rate CCRxy ;
if CCRxy > CCRmax then

CCRmax ← CCRxy ;
hs2 ← y

y = y + 1;
The top rows of hs2 are the selected features in the top part;

4 Experiments and results

4.1 Dataset

We have used CASIA database (dataset B) [13] to evaluate
our method. It is a multiview gait database containing 124
subjects captured from 11 different angles starting from 0◦
to 180◦. Each subject has six normal walking sequences, two
carrying-bag sequences and two wearing-coat sequences.
The selection method should not be specific for a particular
training set, and hence, we have applied our feature selection
algorithm on a small feature selection set independent from
gallery and probe sets [16,24]. To create our feature selec-
tion set, we have randomly selected without replacement of
24 subjects, and for each subject, three sequences are ran-
domly chosen corresponding to the three variants (normal,
carrying-bag and wearing-coat) as consequence our feature
selection set contains 72 GEIs (all selected sequences from
the feature selection set were removed from the gallery and
probe sets). The data partition of the carried out experiments
and the content of CASIA database related 90◦ view angle
are summarized in Tables 1 and 2, respectively.

Table 2 CASIA database content under 90◦ view

Normal Carrying-bag Wearing-coat

# Subjects # GEIs # Subjects # GEIs # Subjects # GEIs

124 744 124 248 124 248

4.2 Feature selection

The feature selection algorithm is applied to the feature
selection set, the evaluation is performed with a threefold
cross-validation scheme (normal, carrying-bag, wearing-
coat), two variants were used for training and the left-out
variant for test using 64*64 GEIs. From Fig. 4, it can be seen
that rows 44–64 in the bottom part, rows 1–15 in the top part
and the width 31 of the spectral weighting function give the
best CCR. This allows us to conclude that both the bottom
and top parts of theGEI contribute in the recognition process.
It has been already proven that the dynamic part of the legs
is the most informative part [14], which is confirmed by our
experiments. From our work, we can also show that the top
part of GEIs is also discriminative and contains parts, which
help to improve CCR such as the head shape and neck as is
shown in Fig. 5.

4.3 Impact of covariates

In this section we focus on the impact of clothing, carrying
conditions and the experiments were carried out using the
selected features returned by our selection algorithm from
GEIs (see Fig. 5). Table 3 compares the results obtained by
our method against the results reported by four other exist-
ing methods.We have carried out the same experiments done
by the authors of the cited works (90◦ view angle, gallery vs
normal, gallery vs carrying-bag and gallery vswearing-coat).
Our experiments demonstrate that our feature selection algo-
rithm improves the recognition performance. It can also be
seen that the CCR performance of our method marginally
decreases in the normal and carrying-bag walks and consid-
erably increases in the wearing-coat walk when compared
against the other existingmethods. This clearly demonstrates
that our method is able to eliminate the features from the
bottom part of the GEI, which, in turn, improves the recog-
nition performance in the case of normal and carrying-bag
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Fig. 4 Correct classification rates using various feature subsets and
spectral weighting function size a bottom part, b top part, c weighting
function

(a) (b)

Fig. 5 Feature subset selected in our method a top part, b bottom part

Table 3 Comparison of CCRs (In percent) from several different algo-
rithms on CASIA database using 90◦ view

Method Normal Carrying-
bag

Wearing-
coat

Mean

Bashir et al. [14] 100.00 78.30 44.0 74.10

Bashir et al. [15] 97.50 83.60 48.80 76.60

Yu et al. [13] 97.60 32.70 52.00 60.80

Dupuis et al. [16] 97.60 73.80 62.50 77.96

Our method 93.60 81.70 68.80 81.40
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Fig. 6 Final CCR using different view angles (gallery vs probe)

walks, while these features are considerably affected in the
presence of wearing-coat covariates. It can also be seen that
ourmethodmakes a good compromise between different gait
walk conditions recognition performance, all that can be seen
in themean of ourmethod that outperforms themean of other
existing methods.

4.4 Impact of viewing angle

In this part, we focus on the impact of the viewing angle on
the recognition performance. To achieve this, we have used
the features selected by our method (see Fig. 5) and have
calculated the performance using different combinations of
viewing angles (gallery vs probe). Figure 6 illustrates thefinal
CCR performance, which is calculated by taking the mean of
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Table 4 Correct classification performance (%) in normal walking conditions (gallery vs probe)

Gallery angle (◦) Probe angle (◦)

0 18 36 54 72 90 108 126 144 162 180

0 100 14.92 5.24 5.24 1.61 2.42 1.21 2.42 2.42 6.05 20.56

18 13.01 98.79 25.00 9.68 2.42 1.21 0.40 1.61 6.05 11.69 4.84

36 4.47 24.19 95.56 24.19 9.86 6.45 6.85 11.29 9.68 6.45 0.81

54 4.88 12.50 21.77 94.35 8.06 13.31 8.47 13.31 7.25 3.23 1.61

72 1.63 3.63 7.66 9.68 93.15 52.02 30.24 15.32 2.82 3.23 0.81

90 1.63 1.61 3.63 6.45 60.48 93.60 61.69 6.05 2.42 0 4.03

108 3.25 1.61 4.03 8.47 31.05 62.50 93.55 13.31 4.03 1.61 2.42

126 2.85 3.23 12.90 12.50 25.40 11.69 20.56 95.56 36.29 8.06 2.02

144 1.22 5.65 10.08 12.10 2.42 2.82 6.45 42.74 94.76 0.40 6.05

162 7.32 14.11 8.06 4.03 1.61 0.40 1.21 7.26 4.44 97.18 19.76

180 19.51 2.82 2.02 0.81 0.81 1.61 2.02 4.44 6.05 21.37 98.79

The bold values represent the best recognition performance when the gallery angle is the same of the probe angle

Table 5 Correct classification performance (%) in carrying-bag conditions (gallery vs probe)

Gallery angle (◦) Probe angle (◦)

0 18 36 54 72 90 108 126 144 162 180

0 88.74 14.73 7.59 5.86 2.23 0.45 1.79 0.90 2.69 7.69 17.94

18 11.26 75.45 23.66 7.66 2.68 0.89 2.68 0.90 5.83 7.24 0.90

36 2.70 15.18 69.64 22.07 7.14 4.46 6.70 8.97 9.42 4.07 1.35

54 3.60 8.93 20.09 69.82 9.82 8.93 13.39 10.76 4.93 1.81 1.79

72 2.70 3.13 5.36 9.46 72.77 41.52 26.34 8.07 0.90 1.36 1.79

90 2.70 1.79 4.02 5.41 40.63 81.70 35.21 4.48 3.14 0.90 1.79

108 3.15 3.13 4.46 9.46 28.57 34.82 75.00 9.87 3.14 1.81 2.69

126 2.70 3.13 10.71 8.11 21.43 8.93 20.98 67.26 13.00 3.17 4.04

144 2.25 4.46 14.29 6.76 4.02 2.68 8.48 27.80 71.75 2.26 7.62

162 4.50 10.27 6.25 2.70 0.89 0.89 1.79 5.38 4.93 78.28 12.56

180 18.02 8.48 4.46 2.25 0.45 0.89 1.79 2.69 2.24 23.53 83.41

The bold values represent the best recognition performance when the gallery angle is the same of the probe angle

the recognition performance under different conditions: nor-
mal, carrying-bag and wearing-coat shown in the Tables 4,
5, 6, respectively. It can be noticed that the best recognition
performance is localized on the diagonal, which means that
our method gives better performances when the angle view
of the probe and gallery is similar. It can also be noticed that
the combination gallery vs probe close to 90◦ viewing angle
gives better performanceswhen compared against other com-
binations.

From the experiments carried out, it can be concluded
that the proposed method is robust against the covariates but
sensitive to the angle variations. An idea that can be exploited
in the future to make our method robust against the viewing
angle variations is to estimate the pose with a classifier to be
trained on data of 11 different classes corresponding to the
different viewing angles from 0◦ to 180◦. Once the viewing
angle of the probe sample to be classified is estimated, one

can then match it against the gallery samples with the same
viewing angle.

5 Conclusion

This paper has presented a supervised feature extraction
method for improved gait recognition. The key idea was
to deploy a wrapper feature selection algorithm combined
with a modified phase-only correlation matching method.
This was achieved by using a band-pass spectral weighting
function of the well-known phase-only correlation matching
technique to deal with the small texture features resulting
in improved performances. The proposed method achieved
81.40% of correct classification and demonstrated attractive
results, especially in the presence of covariates. The results
also show that our method is sensitive to the viewing angle
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Table 6 Correct classification performance (%) in wearing-coat conditions (gallery vs probe)

Gallery angle (◦) Probe angle (◦)

0 18 36 54 72 90 108 126 144 162 180

0 46.40 3.57 1.79 2.69 0.89 0.45 0.45 0.90 0.45 3.62 6.70

18 3.15 37.95 12.50 4.93 0.89 0.45 3.57 3.59 4.04 4.52 1.34

36 2.70 4.91 40.63 21.08 8.04 4.46 4.02 5.83 1.79 2.26 1.79

54 2.25 2.68 5.80 53.81 4.46 6.70 4.91 6.73 1.79 0.90 0.89

72 1.80 3.57 3.13 4.93 64.73 34.82 17.86 7.62 1.35 0.45 1.79

90 1.80 0.89 0.89 4.04 27.23 68.80 26.79 4.04 0 1.36 2.23

108 0.90 0.45 2.23 3.59 13.39 32.59 66.52 6.28 3.14 0.45 2.23

126 1.80 0.89 2.23 8.52 14.73 8.48 16.96 43.05 7.17 2.71 1.79

144 2.25 3.13 2.23 5.83 1.34 1.34 6.70 18.39 39.46 0 3.57

162 2.70 4.91 4.02 1.35 4.91 1.79 2.23 5.83 1.35 39.82 2.68

180 5.86 2.68 1.79 1.79 0 0.45 1.34 1.79 4.04 5.88 50.89

The bold values represent the best recognition performance when the gallery angle is the same of the probe angle

variations. Some improvements can be proposed in the future
to make it more robust against the viewing variation by intro-
ducing a pose estimation technique.
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