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Abstract Much research has been concerned with the con-
tribution of the low-level features of a visual scene to the
deployment of visual attention. Bottom-up saliency models
have been developed to predict the location of gaze accord-
ing to these features. So far, color besides intensity, contrast
and motion is considered as one of the primary features in
computing bottom-up saliency. However, its contribution in
guiding eye movements when viewing natural scenes has
been debated. We investigated the contribution of color infor-
mation in a bottom-up visual saliency model. The model
efficiency was tested using the experimental data obtained
on 45 observers who were eye-tracked while freely explor-
ing a large dataset of color and grayscale videos. The two
datasets of recorded eye positions, for grayscale and color
videos, were compared with a luminance-based saliency
model (Marat et al. Int J Comput Vis 82:231–243, 2009). We
incorporated chrominance information to the model. Results
show that color information improves the performance of the
saliency model in predicting eye positions.
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1 Introduction

The mechanism of visual attention allows selecting the
relevant parts of a visual scene at the very beginning of explo-
ration. The selection is driven by the properties of the visual
stimulus through bottom-up processes, as well as by the goal
of observer through top-down processes [6,15]. Visual atten-
tion models tend to predict the parts of the scene that are likely
to deploy the attention [11,14,20,21]. Most of the models
are bottom-up models based on the feature integration and
guided search theories [30,32]. These theories stipulate that
some elementary salient visual features such as intensity,
color, depth and motion are processed in parallel at a pre-
attentive stage, subsequently combined to drive the focus of
attention. This approach is in accordance with the physiol-
ogy of the visual system. Hence, in almost all the models
of visual attention, low-level features such as intensity, color
and spatial frequency are considered to determine the visual
saliency of regions in static images, whereas motion and
flicker are also considered in the case of dynamic scenes
[14,20,21]. More recently, the contribution of different fea-
tures like color in guiding eye movements when viewing
natural scenes has been debated. Some studies suggested that
color has little effect on fixation locations [2,10,13], which
brings to question the necessity of the inclusion of color fea-
tures in the saliency models [8]. In this study, we investigated
the contribution of color information in predictive power of
saliency model by incorporating color to a luminance-based
model of saliency [21]. We also identified and compared the
salient regions of a dataset of color videos and same videos
in grayscale, through an eye-tracking experiment.
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2 Method

2.1 Saliency model

The saliency model of Marat et al. [21] is a biologically
plausible model that imitates the human visual system from
retina to cortex. The model is only based on the luminance
visual information. As shown in Fig. 1, in a preprocess-
ing step, the luminance visual information is elaborated by
retina-like filters and then is decomposed using cortical-like
filters. The luminance model is consisted of two pathways:
one processes the luminance-static information that pro-
vides luminance-static saliency map (Mls), and one processes
the luminance motion information that provides luminance-
dynamic saliency map (Mld). For luminance-static and
luminance-dynamic processing steps, the input grayscale
image is obtained from Eq. 9 that is detailed in Sect. 2.2. We
incorporated the color information to the model by adding a
chrominance-static pathway that provides the chrominance-
static saliency map (Mcs).

The input image is decomposed to a luminance and two
chromatic opponent images. There are several color spaces
proposing different combination of cone responses to define
the principal components of luminance and opponent col-
ors, red–green (RG) as well as blue–yellow (BY) [31]. The
color space proposed by Krauskopf et al. [18] is one of

Fig. 1 The spatiotemporal saliency model. Mld is luminance-dynamic
map, and Mls and Mcs are luminance-static and chrominance-static
maps, respectively

the validated representations to encode visual information
where the orthogonal directions, A, Cr1 and Cr2, represent
luminance, chromatic opponent red–green and chromatic
opponent yellow–blue, respectively. Equation 1 is used to
compute A, Cr1 and Cr2. In our model, we used Cr1 and Cr2
to compute the chrominance-static saliency map.
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where L, M and S correspond to the response of the three
types of cones of the human eye; their name was chosen
because of their sensitivity at long, medium and short wave-
lengths of the light. L, M and S values are calculated from
tristimulus values of 1931C I E XY Z color space as follows:
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The different steps of the saliency model that follow the
input image decomposition are presented bellow.

2.1.1 Retina-like filters

The retina, which has been described in detail in [21], roughly
simulates the functioning of retinal cells without taking
into account the spatially variant resolution of the retina
photoreceptors. The retina-like filters decompose the input
signals into two main outputs: a parvocellular-like output
that enforces the high spatial frequencies to enhance the con-
trasts, and a magnocellular-like output that conveys lower
spatial frequencies. The first output is used to compute the
luminance-static saliency maps and the latter to compute the
luminance-dynamic saliency maps.

As for the chrominance information, the retina is modeled
by low-pass filters that the transformation functions repro-
duce the contrast sensitivity functions of retina for red–green
and blue–yellow opponents as shown in Fig. 2, and also a
Gaussian low-pass filter.

2.1.2 Cortical-like filters

The frequency and orientation selectivity of visual cortex are
modeled by a bank of Gabor filters. Gabor filters are oriented
band-pass filters that are characterized by their frequency
selectivity and orientation. Each Gabor filter Gi j (Eq. 3) is
defined by its central radial frequency f j and its standard

deviations σθ
i j and σ

f
i j in orientation θj and its orthogonal

orientation, respectively, i = 1, . . . , Nθ , j = 1, . . . , N f ,
f j

f j−1
= 2 and fN f = 0.25.
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Fig. 2 The normalized contrast sensibility functions of the color com-
ponents Cr1 and Cr2, from [19]

Gi j (u, v) = exp
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(3)

where, u′ = u cosθ + v sinθ and v′ = v cosθ − u sinθ .
For luminance information, the initial model, proposed

by Marat and colleagues [21], uses six orientations and four
frequencies. Hence, Nθ = 6 and N f = 4. Since the ampli-
tude spectra of the two color-opponent Cr1 and Cr2 images
do not have as many specific orientations as the amplitude
spectra of the luminance image [3], for both chrominance
information, Cr1 and Cr2, only Gabor filters with four ori-
entations are used (0◦, 45◦, 90◦ and 135◦). Because human
visual system is less sensitive to the high spatial frequencies
of chrominance information [12], only two lowest frequen-
cies are chosen (0.25 and 0.125 cycle per degree).

2.1.3 Static saliency maps

Two operations are carried out to create one luminance-static
saliency map from the output of cortical-like filters, Mu,v

intermediate maps: the interactions and the normalization.
The interactions between neighboring pixels of the interme-
diate maps models the lateral neural connections of visual
cortex. They are modeled as linear combination of neighbor-
ing pixels. The interactions, depending on the orientation or
the frequency, may be excitatory when in the same direction,
or inhibitory otherwise.

Mu,v = Mu,v.w (4)

where,

w =
⎡
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Then the intermediate maps are normalized using the
method proposed by Itti et al. [14]. First, each intermedi-
ate map is normalized to [0 1], then it is multiplied by
(max(Mu,v) − Mu,v)

2. Then all values lower than 0.2 are
set to zero. The normalization enforces the saliency of the
regions that are different from their surrounding, by uni-
fying the dynamic range of the intermediate maps. Then a
luminance-static saliency map, Mls, is obtained by summing
up all the normalized maps.

To compute the chrominance-static saliency map, first the
red–green and blue–yellow intermediate maps are normal-
ized to [0 1] and then are summed up to obtain a chrominance
saliency Mcs.

2.1.4 Dynamic saliency map

The dynamic saliency is related to the moving objects of
the scene. The magnocellular output is used to detect the
objects that are moving against the background. A differential
approach is used for motion estimation by solving a system of
optical flow equations [5]. For every frame, a motion vector
is defined per pixel. Only the modulus of the vector is used
to define the dynamic saliency of a region, assuming that
the motion saliency map of a region is proportional to its
speed against the background. Then a temporal median filter
is applied to five successive frames to remove the possible
noisy detected motions. The output of temporal filtering is
considered as luminance-dynamic saliency map, Mld (Fig.
1).

Chrominance-static saliency map Mcs, luminance-static
saliency map Mls and luminance-dynamic saliency map, Mld,
after normalizing to [0 1], are combined, according to Eq. 6,
to obtain a master spatiotemporal saliency map per video
frame. This map predicts the salient regions i.e., the regions
that stand out in a visual scene.

Saliency map = αMls + βMld + Mcs + αβ(Mls · Mld)

(6)

where α and β are the max of Mls and skewness of Mld,
respectively, and Mls · Mld is a pixel to pixel multiplication.

The weights of maps in Eq. 6 were found to result a good
fusion regarding the fact that the saliency maps from both
the static and dynamic pathways exhibit different charac-
teristics, i.e., static saliency map has larger salient regions
based on textures, whereas dynamic saliency map has smaller
salient regions depending on the moving objects [21,24]. Sta-
tic and dynamic maps are modulated using maximum and
skewness, respectively. The reinforcement parameter αβ is
used to include the regions that have low motion, but include
large salient regions in static saliency map. Figure 3 shows
an example frame and its intermediate and final saliency
maps.
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Fig. 3 Saliency maps: a An
example frame, b
luminance-based static map Mls,
c luminance-based dynamic
map Mld, d chrominance-based
static map Mcs, e fusion of Mls
and Mld, f fusion of Mls, Mcs
and Mld

The performance of the model is also compared with
one of the reference saliency models, Itti and Koch saliency
model [14,17].

2.1.5 GPU implentation

The saliency model presented above with static (luminance-
based), dynamic (luminance-based) and chrominance path-
ways is compute-intensive. Rahman et al. [25] have proposed
a parallel adaptation of luminance-based pathways onto
GPU. They applied several optimizations subtending to a
real-time solution on multi-GPU. We included the parallel
adaptation of chrominance pathway to this GPU implemen-
tation maintaining the real-time solution.

The NVIDIA CUDA fast Fourier transform library
(cuFFT ) was used to perform the complex Fourier trans-
formations. The reductions were carried out using Thrust
library, an interface to many GPU algorithms and data struc-
tures. Such as the implementation of luminance-static and
luminance-dynamic pathways, chrominance pathway was
tested on a 2.67 GHz quad-core system with 10 GB of main
memory and Windows 7 running on it. CUDA v3.0 program-
ming environment on NVIDIA Geforce GTX 480 was used.

2.1.6 NSS metric

A common metric to compare experimental data to compu-
tational saliency maps is the normalized scanpath saliency
(NSS) [15]. We used this metric to compare C and GS eye
positions to their equivalent saliency maps. To compute this,
first the saliency maps were normalized to zero mean and unit
standard deviation. The NSS value of frame k corresponds
to averaged saliency values at the locations of eye positions
on the normalized saliency map M as shown in Eq. 7:

NSS(k) = 1

N

N∑
i=1

1

σk
(M(Xi ) − μk) (7)

where N is the number of the eye positions, M(Xi ) is the
saliency value of the eye position (Xi ), and μk and σk are the
mean and standard deviation of the initial saliency map of
frame k. A high positive value of NSS indicates that the eye
positions are located on the salient regions of the computa-
tional saliency map. A NSS value close to zero represents no
relation between eye position and the computational saliency
map, while a high negative value of NSS means that eye posi-
tions were not located on the salient regions of computational
saliency map.

2.2 Eye-tracking experiment

This research focused on the contribution of color informa-
tion in human visual attention. We studied from one side the
contribution of color information in a computational model
of attention, and from the other side, we analyzed its influ-
ence on the eye movements. To study the influence of color
on the visual attention, we carried out an eye-tracking exper-
iments. We collected and compared the eye movements data
of people who observed the video stimuli in two conditions:
color and grayscale.

An Eyelink 1000 from SR research was used to record the
eye positions in a pupil tracking mode. The stimuli consisted
of 65 short video extracts of 3–5 sec, called video snippets.
Video snippets were extracted from various open source color
videos. The stimuli measured 640×480 pixels, subtending a
visual angle of 25◦×19◦ at a fixed viewing distance of 57 cm.
The temporal resolution of video snippets was 25 frames per
sec. The chosen snippets contain two different types of stim-
uli: person-present scenes (45 snippets) and person-absent

123



SIViP (2016) 10:423–429 427

scenes (20 snippets). Person-present scenes include video
snippets containing one, two or more persons. The stimuli
were observed by 45 volunteers (25 women and 20 men,
aged from 25 to 39 years, M = 26, SD = 4, 9) that took
part in the experiment. All reported normal or corrected to
normal visual acuity, while their normal color vision was
tested using the Ishihara test on the experimental display.
Each experiment session consisted of two parts. During the
first part, the participants watched one half of the video clips
in one stimulus condition (color/grayscale), and during the
second part, the participants watched the other half of videos
in the other condition (grayscale/color).

The two conditions of the video stimuli used in this exper-
iment had to be controlled to achieve the reliable results. In
fact, the grayscale version of the video stimuli must preserve
the most the features of the original color video. But, color
to grayscale conversion is a lossy operation that modifies the
luminosity features of the video stimuli. The goal of differ-
ent grayscale conversion methods is to save the most possible
information from the original image.

According to [4], the grayscale conversions could be
divided in two main categories: functional and optimizing.
Functional methods are pixel-wise methods that process an
image locally and compute, for each pixel, a grayscale value
from the chromatic values using a given function. The opti-
mizing methods are more advanced models that consider the
whole image properties and global characteristics to com-
pute the grayscale image that preserve the most the features
of the original image.

We used a simple functional method based on the weighted
sum of color channels (Eq. 8). To ensure the luminance
matching between color and grayscale stimuli, the right side
of relation 8 was fitted to the standard observer luminosity
function, V (λ).

Y = wr × R + wg × G + wb × B (8)

where wr , wg and wb were computed according to the radi-
ance of color channels, as the weighted sum in Eq. 8 be equal
to the luminosity function of the standard observe.

Figure 4 shows the relative power/radiance of each chan-
nel maximum output measured for the LCD display as well
as the luminosity function, V (λ), of standard observer. How-
ever, the V (λ) corresponds to the average standard observer,
while the response of photocells varies from one observer
to another and the random cone mosaic of human eye might
affect equiluminance thresholds [1].

A matrix operation is performed to compute the weights.
Solving the equation for the measured data, we obtained the
following grayscale conversion (Eq. 9):

Y = 0.5010 × R + 0.4911 × G + 0.0079 × B (9)

Fig. 4 The relative power/radiance of each channel maximum output
measured for the LCD display as well as the luminosity function, V (λ),
of standard observer

In Eq. 9, the weights are normalized to sum to one. There-
fore, when R, G and B values are equal to one, the Y value is
equal to one as well.

2.2.1 Eye position analysis metrics

Dispersion To evaluate variability of eye positions between
observers, we used a metric called dispersion [21,28]. Dis-
persion was calculated separately for each frame for color
eye positions (C positions) (DC) and grayscale eye positions
(GS positions) (DGS). Lower values of dispersion correspond
to subjects’ eye positions located close to one another, inter-
preted as high inter-subject consistency.

Clustering Salient regions of a visual scene can be identi-
fied as the locations fixated by a group of subjects at the
same moment of observation. These regions can be estimated
by clustering the eye positions of different subjects on each
frame [7,9,29]. Here, we clustered the eye positions to com-
pare the experimental salient regions in color and grayscale
conditions using mean-shift clustering method [29]. This
method requires a distance parameter to be adjusted. Because
the size of video clips was constant, we empirically set this
distance to 75 pixels, equal to nearly 3 degrees of visual angle.

3 Results

3.1 Saliency model

First, we studied whether luminance-based saliency model
[21] predicts the eye positions in both conditions with equal
efficiency. Then we performed NSS analysis, but using the
model of saliency with chrominance. As shown in Table 1,
color information improves significantly the performance of

123



428 SIViP (2016) 10:423–429

Table 1 NSS results for Marat
et al. model and Itti and Koch
saliency model with and without
color features

Marat Itti

Luminance Luminance+
chrominance

Luminance Luminance+
chrominance

NSS

C positions 0.59 1.18 0.91 0.95

GS positions 0.60 1.17 0.93 0.97

Table 2 Timings of sequential (C and Matlab) and parallel (GPU)
implementations in ms

Msl Mcl Mdl

MATLAB 34.01 22.67 237.03

C 10.73 7.15 31.24

CUDA 0.04 0.03 0.12

presented model for both C and GS positions (GS : t (63) =
4.5, p < 0.01,C : t (63) = 4.86, p < 0.01), while it
improves slightly the performance of the model of Itti and
Koch [14].

In addition, as presented in Table 2, GPU implementation
of chrominance-static pathway, similar to luminance-static
pathway, results in a significant speedup over Matlab and C
implementations.

3.2 Eye positions

The dispersion of color eye positions is significantly higher
than grayscale (5.1 vs. 4.8, t (63) = 2, 5804, p < 0.01). This

raw result shows that there is more variability between the
eye positions of observers when viewing color videos. Yet, a
large dispersion might be observed in two different situations:
(1) when all observers look at different areas or (2) when
there are several distant clusters of eye positions. The mean
number of clusters on color snippets was significantly higher
than grayscale (5.1 vs. 4.8, t (63) = 2.6, p < 0.01). The
result indicates that the high dispersion value of C positions
is not due to the high variability of the eye positions, but
related to the higher number of regions of interest in color
stimuli. However, main clusters were superimposed between
C and GS positions. Figure 5 shows the subject regions of
interest on an example frame identified by clustering the C
positions and GS positions.

3.3 Conclusion

In the present manuscript, we have used eye-tracking data;
these data allow us to validate the proposed saliency model
and more specifically to quantify the contribution of color
in the saliency model to predict eye fixations. During the

Fig. 5 Example of the regions
of interest identified by
clustering the eye positions.
From left to right, first row an
example frame in color and
grayscale. Second row the
corresponding regions of
interest of C positions and GS
positions (color figure online)
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experiment, observers were asked to freely explore video
clips in color and in grayscale conditions.

Using a clustering method, we identified the regions of
interest that are fixated the most by observers. We found
that faces and moving objects correspond to very attractive
regions. This result was already described in previous papers
[22,26,27] for faces and [16,21,23] for moving objects. We
obtained similar results for both color and grayscale eye posi-
tions. However, we found more regions of interest for color
stimuli. Due to these results, we have integrated color infor-
mation into a bio-inspired saliency model proposed by Marat
et al. [21].

Results show that indeed color information improves sig-
nificantly the performance of the model in predicting eye
positions for both grayscale and color stimuli, while a better
prediction power was expected for color stimuli. This might
be due to the fact that the major regions of interest are com-
mon in both stimulus conditions, but are better enhanced
when employing color information. Yet, the incorporation of
color information into the model is not optimized. Because
the regions of interest are not always located on colored
zones, but their neighboring [20]. Whether reinforcement
of luminance saliency according to the color information
of neighboring zones can improve the predictive power of
saliency model remains to be determined.
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