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Abstract In this paper, we explore an original way to com-
pute texture features for color images in a vector process.
Using a dedicated approach for color ordering, we produce
a complete framework for color mathematical morphol-
ogy adapted to human visual system characteristics. Then,
morphological multiscale texture features are defined. To
understand the texture feature behavior, we present the fea-
ture response to basic images variations. Finally, we compare
the texture feature performance in front of a classical classi-
fication task using Outex database.

Keywords Color image · Texture features · Vector
information · Perceptual distance

1 Introduction

Mathematical morphology owns to the nonlinear image
processing family and iswell suited for texture analysis using
the pattern spectrum descriptors. Inside these feature analy-
sis tools, the initial expressions allow to define three groups
of texture features: the pattern spectrum, the morphological
covariance and the fractal signature. The pattern spectrum
and the fractal signature characterize the distribution of an
object count depending on their size and their inter-distance.
Themorphological covariance characterizes the repetition of
a pattern based on a given distance and direction. One of the
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main interests of morphological spectra is to be easily under-
standable by the user.With this paper, our aim is to recall and
explain the behavior of these morphological texture features
and the generic adaptation to the color domain using color
distance functions.

As few texture features are used, we chose to start
explaining the expected spectra depending on the nature
of texture descriptors and on the variations of simple pat-
tern for grayscale images (Sect. 2). Then, we will describe
the mathematical construction of the morphological texture
descriptors, and we describe the processed responses to the
basic texture variations (Sects. 2.2–2.4). The second half of
the paper is dedicated to the color adaptation of these tex-
ture features. The distance-based color ordering scheme of
the morphological process is developed in Sect. 3. Exper-
iments based on fractal dimension assessment [1] having
shown the accuracy gain the distance-based ordering scheme
used in front of other ordering approaches [2,3]. Thanks
to this ordering construction and to the mathematical mor-
phology framework, the morphological texture features can
be processed for color images in a vector way. Results are
first detailed for three texture images. Finally, a classification
process is used to assess the performance of the texture fea-
tures comparing obtained results in grayscale or color domain
(Sect. 4).

2 Morphological spectrum

Morphological spectra come from the initial work of Math-
eron [4] for granulometric analysis of material samples. The
asked question is how to analyze the ratio between the parti-
cle count and the particle size taking into account the object
shape. Mathematical morphology offers an elegant way to
assess relationships between object size and their count in a
multi-iteration process. Initial work that was expressed for

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11760-015-0759-3&domain=pdf


432 SIViP (2016) 10:431–438

Fig. 1 Expected spectrum has twoDirac functions: first for the squares
(squares of 25 × 25 pixels) and second for background (distance of 15
pixels)

binary images allowed to define the first pattern spectra. Such
spectra can be interpreted as the concatenation of two distri-
butions: the first depending on the objects count at a given
size and the second depending on the count of non-object
(background), so the inter-object distance.

Figure 1b presents the expected pattern spectrum for the
binary image of Fig. 1a. The square image includes 16
squares of 25 × 25 pixels, separated by 15 pixels. Intu-
itively, the expected spectrum must be defined by two Dirac
functions, first one at a location corresponding to the square
size and second one at a location corresponding to the inter-
distance size. Then, the Dirac function magnitude must be
correlated to the object count.

Working only on the relationship between size distribution
of particle in both classes “background” and “objects” can be
done intuitively using binary images. Gray-level extension,
using lattice theory, includes naturally the ordering notion
and the maximum and minimum extraction in a given neigh-
borhood [5,6]. In addition, the object counting process is
transformed in a generic volume measurement, allowing to
embed the object and background variations. In this case, the
main interest of the morphological process is to be differ-
ential and then invariant to variations of gray-level intensity
average. Morphological texture features inherit this average
variation invariance, keeping only the contrast magnitude
between objects and background.

2.1 Expected theoretical spectra for grayscale images

Before to compare the morphological spectrum definition
and results, we propose to define the spectrum response of
morphological texture features to simple content variations.
The initial texture images are composed by a set of n squares
of size d, separated by e pixels, and with a contrast of h. The
image size is preserved (325 × 325 pixels) and selected to
avoid impact between objects and border inside the iterative
process. The image background is fixed to 0 (black).

Variations in image content are obtained changing differ-
ent parameter: object count, size, contrast or distance. The
size d of squares varies from 5× 5 (Fig. 2a) to 25× 25 pix-
els (Fig. 2e). The inter-object distance e varies from 5 × 5

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 2 Squares undergoing different spatial and grayscale modifica-
tions. The grayscale value of background is fixed

(Fig. 2f) to 25× 25 pixels (Fig. 2j). The contrast1 h between
grayscale value of background and grayscale value of objects
is modified with almost identical steps. To modify the con-
trast,we evolve thegrayscale valueof object from20 (Fig. 2k)
to 100 (Fig. 2o). The number of squares per line2 varies from
2 (Fig. 2p) to 6 (Fig. 2t). Caption color in Fig. 2 corresponds
to curve color in Figs. 3 and 5.

Under a binary approximation, pattern spectra character-
ize pattern distribution among their size and distance,without
constraint on the spatial texture regularity. The gray-level
extension transforms the counting problem into a volume
measurement among the scales (i.e., iterations) combining
in the same integral the area and the contrast measurements.
Mathematical covariance is similar to an autocorrelation
function, analyzing the pattern repetition at a certain distance
and direction. Fractal signatures assess the volume measure
evolution using a morphological dilation/erosion to remove
small object parts at each scale. So fractal signature and pat-
tern spectrum have similar behavior. Then, we reduce our
explanationofmorphological texture features to pattern spec-
trum and morphological covariance.

Figure 3 presents the different expected pattern spectrum
responses to texture variations. To simplify the following
explanation, we call the Dirac function characterizing the
objects Dobj and Dback for the background. When the object

1 The contrast is the distance/difference between two values.
2 The number of patterns per line is equal to the number of patterns per
column.
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Fig. 3 Expected spectra depending on different variations of images of Fig. 2 for spectra characterizing the pattern size and distance in images
(pattern spectrum and fractal signature)

Fig. 4 Expected spectra depending on different variations of images of Fig. 2, for spectra characterizing the pattern repetition in an image

size “d” is modified (Fig. 3a): Dobj is shifted on the abscissa
axis depending on the size value; Dobj magnitude remains
unchanged; Dback is not shifted; Dback magnitude decreases
as the objects size increases and consequently the background
area decreases. When the inter-object distance “e” is modi-
fied (Fig. 3b): Dobj is not shifted; Dobj magnitude remains
unchanged; Dback is shifted on the abscissa axis depending
on the distance value; Dback increases when the inter-object
distance e grow up, due to the increasing background area
between objects.When the contrast “h” is modified (Fig. 3c):
Dobj is not shifted; Dobj magnitude increases as the grayscale
contrast increases; Dback is not shifted; Dback magnitude
remains unchanged (samebackground area).When theobject
count “n” ismodified (Fig. 3d): Dobj is not shifted; Dobj mag-
nitude increases as the object count increases; Dback is not
shifted; Dback magnitude decreases as object count increases
(decreasing background area).

For the morphological covariance, we need to take into
account the pattern repetition at a certain distance and orien-
tation. Soille, then Aptoula proposed to analyze the texture

using four orientations: 0◦, 45◦, 90◦ and 135◦ [3]. As the
proposed texture is constructed with aligned squares among
rows and columns, themorphological covariance for the rota-
tion equal to 0◦ and 90◦ is identical as well as the results for
the rotations equal to 45◦ and 135◦. As previously defined,
to simplify the following explanation, we characterize the
maximum obtained for the spectra by a Dirac function, and
we call them D0◦&90◦ and D45◦&135◦ .

When the object size “d” is modified (Fig. 4a): The Dirac
D0◦&90◦ is shifted on the abscissa axis depending on the
size value (as the distance between the edges of squares
remains unchanged, the distance between the square centers
varies depending on the square size); D0◦&90◦ magnitude
increases as the object size increases; D45◦&135◦ is shifted
on the abscissa axis depending on the size value; D45◦&135◦
magnitude increases as the object size increases. When the
inter-object distance “e” is modified (Fig. 4b): D0◦&90◦
is shifted on the abscissa axis depending on the distance
value; D0◦&90◦ magnitude remains unchanged; D45◦&135◦ is
shifted on the abscissa axis depending on the distance value;
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Fig. 5 Morphological spectra obtained for figures of squares (Fig. 2)

D45◦&135◦ magnitude remains unchanged.When the contrast
“h” is modified (Fig. 4c): D0◦&90◦ is not shifted; D0◦&90◦
magnitude increases as the contrast increases; D45◦&135◦ is
not shifted; D45◦&135◦ magnitude increases as the contrast.
When the object count “n” is modified (Fig. 4d): D0◦&90◦ is
not shifted; D0◦&90◦ magnitude increases as the object count
increases; D45◦&135◦ is not shifted; D45◦&135◦ magnitude
increases as the object count increases. In each previ-
ous cases, magnitude of D45◦&135◦ is lowest than D0◦&90◦
because the count of object pixels of same values is less
important after a spatial shift along the diagonal axis than
after a spatial shift along the horizontal/vertical axis.

Thanks to this generic knowledge, we can develop the
mathematical expressions and analyze their responses facing
the expected spectra.

2.2 Pattern spectrum

Pattern spectrum is a shape-size descriptor developed by
Matheron [4]. Texture analysis is processed using succes-
sive morphological opening (γ ) for the granulometric part of
the spectrum and closing (ϕ) for the anti-granulometric part.
These iterativemorphological transforms delete objects from
smallest to largest ones and the equivalent for the background
parts (if we kept the initial ways to explain the mathemati-
cal construction, even if these concepts are little bit more
complex for gray-level images). Consequently, the pattern
spectrum PS (Eq. 1) of image f is the object distribution
depending on g the structuring element of size n:

PSg( f, g)(n) = VGg ( f, g)(n + 1) − VGg ( f, g)(n) (1)

with VGg ( f, g) = [Gg( f, ng)n=∞..1, AGg( f, ng)n=0..∞];
Gg( f, ng) = Vol(γg( f, ng))

Vol( f )
; Vol( f ) =

∑

x

( f (x))

AGg( f, ng) = Vol(ϕg( f, ng))

Vol( f )
;

The structuring element g can be considered as a mea-
sure unit. Choosing a small structuring element allows to
obtain a fine resolution in the texture description. Neverthe-
less, when information is required for larger object/distance,
a small structuring element induces the requirement of a great
iteration count and consequently a great computational cost.

Results present in Fig. 5 were obtained using a square
structuring element of size 3 × 3. Some differences appear
between the processed results and the expected ones. First
difference comes from the volume normalization by the
volume of the original image. This normalization prevents
the magnitude variation of Dirac function depending on the
contrast variation or the object count variation. Another dif-
ference appears for object count variation, the Dirac function
in the object side presents the same magnitude in all the five
cases. The volume normalization explain this behavior. Then,
the last difference appears for the inter-distance variation, and
in this case, the Dirac function magnitude increases with the
inter-distance. Such behavior is due to the iteration scheme,
more important is the number of iterations to fill the gap
between object, more important are the obtained volume and
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consequently the Dirac magnitude. In this case, these two
variations are linked.

2.3 Morphological covariance

Morphological covariance [7] characterizes the texture by
analyzing the object appearance frequency in the image.Mor-
phological covariance is computed from a function ξ and a

pair of points P2 separated by a vector
→
v (Eq. 2). The func-

tion ξ commonly used is an erosion, but the opening was also
used [8]. Themainwriting form is the normalized one (Eq. 3):

Kg( f, P2,v) = Vol(ξg( f, P2,v)) (2)

Kn
g( f, P2,v) = Vol(ξg( f, P2,v))

Vol( f )
(3)

The vector
→
v can take different directions and different

lengths, and then, K ( f, P2,v) is the concatenation of the dif-

ferent response among
→
v . For our example (Fig. 5),

→
v has a

length of 50 pixels and takes four directions: 0◦, 45◦, 90◦ and
135◦. The morphological covariance responses to images of
squares (Fig. 2) are similar to the expected spectra (Fig. 4).
These spectra show the symmetrical texture behavior for the
horizontal, vertical and diagonal axes, and the pattern fre-
quency.

2.4 Fractal signature

Fractal signature expression is derived from the fractal
dimension calculation introduced byMandelbrot [9]. It char-
acterizes the complexity of the objects whose structure is
invariant under scaling. The expression comes from the
Minkowski–Bouligand dimension estimation.

The extension to image of the Minkowski–Bouligand
dimension induces to estimate the volume evolution between
two surfaces covering the image at different scales i . Both
surfaces are called upperU and lower L and are numerically
obtained by an erosion and a dilation (Eq. 5) using a non-
flat structuring element g. Peleg proposed to use as non-flat
structuring element a diamond shape g� of size 3 × 3 [10].

Signi = VarSi − VarSi−1 (4)

with VarSi = Si − Si−1;
Si = Voli − Voli−1

2
; Voli =

∑

x

(Ui (x) − Li (x));

and Li (x) = εg( f, ig�)(x); Ui (x) = δg( f, ig�)(x) (5)

To obtain a similar formulation to pattern spectrum signa-
ture, we use the inferior and superior signature as described
by Peleg [10]. These signatures are obtained in the same way
using the inferior volume Volinf (Eq. 6) and superior volume
Volsup (Eq. 7).

Volinf i =
∑

x

( f (x) − Li (x)) (6)

Volsupi =
∑

x

(Ui (x) − f (x)) (7)

Results of fractal signature for the test images (Fig. 2)
are close to the expected spectra. However, as for pattern
spectra, some differences exist. The first one is for the inter-
object variation and the object count variation. As for pattern
spectrum, the magnitude of fractal signature increases on the
background side due to the volume growth once the gaps
filled during the closing process. Larger the inter-object dis-
tance is, higher the volume once the gaps filled is.

3 Color operators based on distance function

Computation of pattern spectrum, morphological covariance
and fractal signature requires the definition of color erosion,
dilation, opening and closing. Consequently, color ordering
must be defined. In recent years, a lot of methods to define
minimum (

∨
) and maximum (

∧
) operations in color spaces

are developed [11,12]. As these approaches are not able to
work with non-flat structuring element, dilation and erosion
of an image f by the structuring element g, in n-dimensional
space, are then expressed as:

δc( f, g)(x) =
∨

x∈D f ,y∈Dg

{
f (x − y)

}
(8)

εc( f, g)(x) =
∧

x∈D f ,y∈Dg

{
f (x − y)

}
(9)

whereD f andDg are, respectively, the spatial support of the
image and the structuring element.

The aim of this paper is not to compare color mathe-
matical morphology methods but to explain the interest of
morphological tools. From conclusions of papers [1,13], we
select the “Convergent Color Mathematical Morphology”
(CCMM) method. This method is based on the construction
of an order according to the distance from reference color
coordinates (O−∞ and O+∞). So, minimum and maximum
between two colors, C1 and C2, could be define by:

∧
(C1,C2) ⇔ |−−−−−→

C1O
−∞| ≤ |−−−−−→

C2O
−∞| (10)

∨
(C1,C2) ⇔ |−−−−−→

C1O
+∞| ≤ |−−−−−→

C2O
+∞| (11)

where O−∞ and O+∞ are, respectively, the convergence
coordinates of the erosion and the dilation. In Eqs. (10) and
(11), the vector norm |.| uses the perceptual distance �E
computed in CIELAB [14]. The complete method writing is
in the thesis [15].
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4 Preliminary results

To assess the discriminatory aspect of the color morpho-
logical texture attributes, we use the Outex database. This
initial choice was made due to the classical use of this
texture database for texture classification purpose. As we
focus on texture discrimination, reduced to texture acquired
with the same acquisition conditions, we selected the contest
“Outex_TC_00013” [16]. This texture set contains 68 images
sorted into 12 categories. For the same reasons, we con-
structed our classification test using the protocol proposed
by Arvis [17]. Under this protocol and to take into account
the reduced image count in some categories, an image is
considered as a class and is divided into thumbnail of size
128 × 128 pixels.

Always with the aim of better understanding the texture
feature response to image content, we select three images
with different texture contents (Fig. 6). In Figs. 7, 8 and 9,
the feature signatures are provide for 20 thumbnails of the
three images.

First ascertainment lies in the reduced standard devia-
tion observed for pattern spectra and fractal signatures. This
stability characterizes a low sensitivity to clarity variations,
thanks to contrast-based processing, rather than on absolute
values. In addition, pattern spectra and fractal signatures are
clearly different for the three kinds of images.

Fig. 6 Three used images of Outex database

Fig. 7 Superposition of 20 spectra of thumbnails for image

Fig. 8 Superposition of 20 spectra of thumbnails for image

Fig. 9 Superposition of 20 spectra of thumbnails for image

Table 1 Correct classification percentage for different color texture
features with the KNN method using 1 or 3 neighbors; using or not the
color average

Methods KNN
(k = 1)

KNN
(k = 3)

KNN (k = 1)+
color average

Pattern spectrum 72.35 73.08 83.38

Covariance 33.50 36.02 43.23

Fractal signature 49.55 50.58 53.08

For the first texture image (Fig. 6a), pattern spectrum and
fractal signature (Fig. 7a, c), the first peak after the origin
in the background zone characterizes the distance between
vertical lines (interline distance around 20 pixels). Due to the
symmetrical progression of the dilation, the gap between the
vertical lines is filled after d/2 iteration, with d the distance
between the lines. In the same way, for the third images, pat-
tern spectrum and fractal signature (Fig. 9a, c) highlight the
same manner the circle frequency (around 30 pixels). High
frequencies of Fig. 6b are characterized by a dominant peak
for very low values located around the spectra origin (Fig. 8a,
c).

Morphological covariance is adapted for oriented and
periodic texture analysis. For the first image, morphologi-
cal covariance allows to discriminate the texture orientation
and the periodicity (Fig. 7b). For this image, the line period-
icity is defined by the morphological covariance periodicity
for angles 0, 45 and 135◦. Horizontal periodicity is detected
for the first signature part (angle = 0◦) and confirmed in the
second and fourth ones. The third part (90◦), more perturbed,
highlights canvas fibers on the vertical line.

In the case of Fig. 6c, patterns are larger than those present
in the canvas images (Fig. 6a), then covariance spectra are
composed of a single peak for the four directions. For images
of fine texture random (Fig. 6b), the covariance presents low
variations. In addition, in this case morphological covariance
spectra have the disadvantageof important standarddeviation
due to the sensitivity to illumination change. This problem
increases with the saturation of images (Fig. 8b).

The second test is based on a classical classification
scheme, using the image set “Outex_TC_00013.” In order
to be more generic as possible, we used the classification
algorithm proposed by Arvis [17] using k-nearest neigh-
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bors. Improving the classification and learning steps are not
in the topic of this paper. In Table 1, we present the good
classification rates obtained by pattern spectrum,morpholog-
ical covariance and fractal signature. The two first columns
present the results using one and three nearest neighbors.
For this texture image set, pattern spectrum is most discrimi-
nant, before the fractal signature and then the morphological
covariance. As previously described for the pattern spectrum
and fractal signature, the contrast-based processing is robust
to lightning variations in the image. Consequently, results are
stable when more than one neighbor is used in the classifi-
cation.

In Sect. 2, we explained that as the pattern spectrum and
the fractal signature are based on contrast variations, they do
not embed the grayscale average and by extension the color
average. So the third column of Table 1 presents the classi-
fication results embedding the color average as proposed by
Arvis. As expected, good classification rate is improved by
this information addition; nevertheless, the pattern spectrum
grows up with more than 10% reaching 83%, proving the
potential of color multiscale texture features.

This classification highlights the importance of color
information in color texture discrimination. Nevertheless, for
OUTEX database results obtained are worse than those using
more classical grayscale features [17,18]. Recently, in [19],
it was shown that the spatio-chromaticity of OUTEX images
is weak, even if OUTEX database is presented as a color tex-
ture image database. Consequently, vector textures are not
optimal in this case, and they introduced bias in the texture
discrimination.

5 Conclusion

In this paper, we proposed a color and vector construction of
morphological spectra. Using a perceptual distance function,
the proposed texture features respected the actual knowledge
about the human visual system. The proposed construction
is fully generic due to the use of distance function and can be
easily extended to spectral domain. In such case, selecting
the right distance function opens the door to spectral texture
features.

We show the interest and readability of these spectra
for basic textures, and we investigated their discriminating
aspect in a preliminary classification task.As the existing tex-
ture image database presents a low level of spatio-chromatic
complexity, classical gray-level approaches are more effi-
cient than vector ones. Nevertheless, the good classification
rate obtained by pattern spectra is highest than 83%, close
to the results obtained by the gray-level approaches.

For the moment, no texture image database is really
adapted for color texture classification, due to their reduced

spatio-chromatic complexity. So it is not possible to assess
performances of vector texture features.Due to this important
requirements, an international work is in progress to specify
and construct such image database. The construction of new
texture features is processed in a vector way with the impor-
tant question of the spatio-chromatic complexity. Following
the construction of a new database most suitable, vector tex-
ture attributes can then be compared with other nonvector
texture attributes [20].
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