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Abstract Clustering gene expression data are an impor-
tant problem in bioinformatics because understanding which
genes behave similarly can lead to the discovery of important
biological information. Many clustering methods have been
used in the field of gene clustering. This paper proposed a
new method for gene expression data clustering based on an
improved expectation maximization(EM) method of multi-
variate Gaussian mixture models. To solve the problem of
over-reliance on the initialization, we propose a remove and
add initialization for the classical EM, and make a random
perturbation on the solution before continuing EM iterations.
The number of clusters is estimated with the Quasi Akaike’s
information criterion in this paper. The improvedEMmethod
is tested and compared with some other clustering methods;
the performance of our clustering algorithm has been exten-
sively compared over several simulated and real gene expres-
sion data sets. Our results indicated that improved EM clus-
tering method is superior than other clustering algorithms
and can be widely used for gene clustering.
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1 Introduction

Microarray technology has been widely applied in study
of measuring gene expression levels for thousand of genes
simultaneously. In this technology, cluster analysis is the
most important method for gene expression data analysis [1–
5]. By comparing the expression pattern of unknown genes
to those known functions, one can predict the functions of
unknown genes. This is the primary objective of the unsu-
pervised cluster analysis of gene expression data.

Many clustering algorithms have been proposed for gene
expression data analysis. The hierarchical clustering is one
of the earlier methods applied to cluster the gene expres-
sion data [6,7].K-means clusteringmethods are used in gene
expression data analysis due to its high computational perfor-
mances [8,9]. As one kind of neural network, self-organizing
map (SOM) which presents high-dimensional data by the
low-dimensional data has also been used for gene expres-
sion data clustering [10]. Other common clustering meth-
ods include CAST algorithm [11] , SVM clustering [12] and
model-based clustering [13,14]. Gene expression data have a
lot of noise, and large amounts of data behindmany variables
cannot be observed. The model-based clustering algorithm
assumes that the data comply with the internal framework
for probabilistic model, according to the different parame-
ters, the observed data can be divided into different clusters.
Successful application of the model-based clustering to gene
expression data has been reported; themost well-knownmix-
ture models clustering is the MCLUST [15,16]. Yeung et al.
[17] applied finite Gaussian mixture model to fit the yeast
cell cycle data and showed good fitness of the model. Yi et
al. [18] used themodel-based algorithm in supervised cluster-
ing of gene expression data. Gaussian mixture models have
received the bulk of the attention in the mixture modeling
literature due to their mathematical tractability [19,20].
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The model-based clustering algorithm is used to estimate
the parameters using EM algorithm. EM algorithm is a popu-
lar way to estimate the parameters of mixture models. Unfor-
tunately, its performance highly depends on the initializa-
tion. In order to solve this problem, we propose to utilize an
improved EM algorithm to estimate themodel parameters. In
our proposed method, we use random swap K-means algo-
rithm to initialize the multivariate Gaussian mixture mod-
els. The EM algorithm starts with some initial values of all
unknowns and iteratively updates each parameter conditional
on the parameter values in the previous round of the iteration.
Without any prior knowledge, each gene may be assigned to
each cluster with equal probability.

This paper is structured as follows. Sect. 2 reviews the
multivariate Gaussian mixture models and EM algorithm.
The improved EM algorithm based on multivariate Gaussian
mixture models is given in Sect. 3. Section 4 provides experi-
mental results and analysis using the simulated and real gene
expression data sets. We then conclude the paper in Sect. 5.

2 Multivariate Gaussian mixture models and EM
algorithm

2.1 Multivariate Gaussian mixture models

The gene expression data are arranged in an m*n matrix
denoted by X, where n is the number of genes and m is the
level of treatment. Suppose X = {x1, x2, . . . , xn} is a random
observation gene expression data set. All xi (1 ≤ i ≤ n) are
mutually independent. Let xi = [xi1, xi2, . . . , xim]T be the
i-th column of matrix XT , where xi j be the expression level
of the i-th gene in the j-th treatment, for i = 1, . . . , n and
j = 1, . . . ,m. f (xi )is the corresponding probability den-
sity function, in which x ∈ Rd is a d-dimensional random
variable value of xi and θi is the parameter. With the finite
multivariate mixture model, each xi is assumed to follow an
m-dimensional mixture of normal distributions. So the mix-
ture distribution probability density f (xi ) is

f (xi ) =
C∑

k=1

αk fk(xi |θi ) (1)

with
∑C

k=1 αk = 1, 0 ≤ α ≤ 1, here C is the number of com-
ponents of the mixture models. α1 is the proportion of mix-
ture or weighing, and θ = (α1, . . . , αC , θ1, . . . , θC )is the
parameter space of models.

If the distribution of the component density function
fi (x |θi )can be determined, the model will become the mix-
ture models of this component, and Eq. (1) can be called as
mixture density function. Although m in Eq. (1) is usually
treated as a fixed value, its real value is unknown in most

applications. A common method of estimating the parame-
ters of finite mixture models is the EM algorithm [21], which
can be used to estimate maximum likelihood model parame-
ters in incomplete data.

Multivariate Gaussian mixture model is a common mix-
ture density model, which is used to describe the distribution
of spatial data. Gaussian hypotheses are generally made (i.e.,
θ = (α1, μ1,

∑
1, α2, μ2,

∑
2, . . . , αk, μk,

∑
k), where

μk(am × 1vector) is the mean of model k,
∑

k(anm ×
m matrix) is the covariance of model k. The multivariate
Gaussian mixture probability density is expressed as

f (xi |μk, �k ) =
C∑

k=1

αk fk(xi |μk, �k ) (2)

2.2 EM algorithm

The EM algorithm [22–24] is an iterative technique for find-
ing maximum likelihood estimates when there are, or are
assumed to be, missing data. Without any prior knowledge,
each gene may be assigned to each cluster with equal proba-
bility. The EM algorithm iterates between an expectation(E)
step and a maximization(M) step. In the E step, we com-
pute the expectation of the log likelihood of complete data
with respect to latent variables given the current parame-
ter estimates. In the M step, we maximize the expected
log likelihood of complete data. Therefore, the EM algo-
rithm transfers the problem of maximizing the original log
likelihood to the problem of maximizing the expected log
likelihood of complete data, which usually much easier to
deal with. The EM iteration is described in the following
steps:

(1) Initialization: The parameters needed for the next step
are initialized in the following way:

P0
ik = 1/C ∀i = 1, . . . , n; k = 1, . . . ,C (3)

α0
k = 1/C ∀ k = 1, . . . ,C (4)

(2) StepE: this step consists of the estimation of the posterior
probability, i.e., Pt

ik(xi )for the gene expression data k
belonging to the class k at the t-th iteration:

Pt
ik(xi ) = αt

k f (xi
∣∣θ tk )

∑C
k=1 αt

k f (xi
∣∣θ tk )

(5)

(3) Step M: the parameters needed for the next step are esti-
mated in the following way:
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αt+1
k = 1

n

n∑

i=1

Pt
ik(xi ) (6)

μt+1
k =

∑n
i=1 xi P

t
ik(xi )∑n

i=1 P
t
ik(xi )

(7)

�t+1
k =

∑n
i=1 P

t
ik(xi )(xi − μt+1

k )(xi − μt+1)T
∑n

i=1 P
t
ik(xi )

(8)

(4) Turn back to step 2 or stop until convergence.

3 The improved EM algorithm based on multivariate
Gaussian mixture models

The idea of the improved EM algorithm is to alternate
between simple perturbation to the solution by remove–add
and convergence toward nearest optimum by the EM algo-
rithm. The initialization is performed as in the K-means
method, after the solution has been initialized, we perform
remove and add operations.

Our method is outlined as follows:

(1) Initialization step: the number of class C is assumed to
be known. An initial solution of the parameters (μ0

k, �
0
k )

of the multivariate mixture models is extracted by the
K-means. The parameter (α0

k ) of mixture weight can be
initialized as following:

α0
k = N 0

k

N
∀ k = 1, . . . ,C (9)

(2) Remove and Add step: the remove operation is done by
selecting a component randomly and adds a component.
The location of the new component is decided by select-
ing one data point, and setting it as themean vector of the
new component. The new component is therefore more
likely to be placed in areas of high point density, such
as cluster centers. At the s-th iteration when remove and
add operation, the parameters of the new component are
as follows:

μs
r = xp r = random(1,C) (10)

αs
r =

C∑

l=1,l �=r

(
N∑

i=1

Ps−1
il

)
αs−1
r (11)

�s
r =

C∑

l=1,l �=r

(
N∑

i=1

Ps−1
il

)
�s−1
r (12)

(3) Step E: this step consists of the estimation of the poste-
rior probability, i.e., Pt

ik(xi )for the gene expression data
xi belonging to the class k at the t th iteration:

Pt
ik(xi ) = αt

k f (xi
∣∣θ tk )

∑C
k=1 αt

k f (xi
∣∣θ tk )

(13)

(4) Step M: the parameters needed for the next step are esti-
mated in the following way:

μt+1
k =

∑n
i=1 xi P

t
ik(xi )∑n

i=1 P
t
ik(xi )

(14)

αt+1
k = 1

n

∑n

i=1
Pt
ik(xi ) (15)

�t+1
k =

∑n
i=1 P

t
ik(xi )(xi − μt+1

k )(xi − μt+1)T
∑n

i=1 P
t
ik(xi )

(16)

(5) Turn back to step 2 or stop until convergence.
(6) Turn back to step 2 or stop when the number of remove

and add operation is large enough.

This improved EM algorithm iteration scheme is robust and
well behaved. The convergence speed is also reasonably fast.

4 Result and analysis

In this section, in order to evaluate the gene expression data
clustering algorithm based on multivariate Gaussian mix-
ture models, both synthetic and real data sets used in the
clustering experiments are introduced and analyzed. All the
experiments were programmed by C++. Lenovo PC with
CPU—Intel (2) nl (TM), speed—1.5GHz, memory—1Gb,
hard disk—120Gb is used in this experiment.

4.1 Evaluation measures

The adjusted rand index (ARI) evaluates the degree of agree-
ment between two partitions of the same set of objects [25].
Suppose C is the true clustering of a gene expression data set
based on domain knowledge, andC′ is clustering result given
by some clustering algorithm. Let a represent the number of
pairs that are members of the same cluster in both C and C′,
b represent the number of pairs belonging to the same cluster
in C but to different clusters in C′, c represent the number
of pairs belonging to different cluster in C but to the same
clusters in C′ and d represent the number of pairs belonging
to different clusters in both C and C′. The ARI (C, C′) is
defined by

ARI(C,C) = 2(ad − bc)

(a + b)(b + d) + (a + c)(c + d)
(17)

The higher the value of ARI indicates that when C is more
similar to C′, the better the clustering performance.

The quantities, Precision (P) and Recall (R), are methods
of performance evaluation. Precision is a measure of how
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much noise there is in the output of the detector, while recall
is a measure of how much of the ground truth is detected.
Precision is the fraction of detections that are true positives
rather than false positives, and Recall is the fraction of true
positives that are detected rather than missed. F-measure that
combines precision (precision) and recall (recall) evaluate the
clustering results

F = 2PR

P + R
(18)

The higher the value of F , the better the clustering perfor-
mance.

4.2 The number of clusters

Agood estimation of the number of the clusters is very impor-
tant for clustering. The number of clusters may be treated as
another parameter and inferred from the data. The Akaike’s
information criterion (AIC) or Bayesian inference criterion
(BIC) is used to estimate the optimal number of clusters
[26,27]. The AIC is

AIC(G) = −2InL(θ(G)) + 2P(G) (19)

Where P is the number of parameters to be estimated in the
model, L(θ(G)) is the likelihood value evaluated at θ(G),the
vector of maximum likelihood estimate of the parameters,
and G is the Gaussian density function. The number of clus-
ters(C) that has the minimum AIC value is the estimated
C.

Bozdgoan proposed the modified AIC called AIC3 and
AIC4, and their expression as follows:

AIC3(G) = −2InL(θ(G)) + 3P(G) (20)

AIC4(G) = −2InL(θ(G)) + 4P(G) (21)

In order to adapt to the over-dispersed data, Lebreton [28]
proposed the modified AIC criteria as QAIC and the expres-
sion is:

QAIC(G) = −2∗lnL(θ(G))/c + 2P(G) (22)

where c is a single variance inflation factor, which can be
estimated from the goodness-of-fit Chi-square statistic χ2 of
the global model and its degrees of freedom,

c = χ2/d f (23)

We compare and analyze the experiment results based
on the simulated datasets, consisting of 81 data, each data
has coordinate attributes (x, y), as we can depict in Fig. 1.
Figure 2 illustrate the results of density function and the
Gaussian mixture density estimation when the clustering

Fig. 1 Simulated dataset D1

number C = 2, 3, 4, 5, singular covariance is existed when
set C = 6, so the maximum value of the clustering num-
ber C = 5. From Fig. 2, the result of the mixture density
function is smoothest when C = 3. How can the number C
of mixture models be quantitative analyzed? We have done
a lot of experiments by using the methods of the AIC, AIC3,
AIC4, BIC and QAIC, the results illustrated in Figs. 3 and
4.

But the log-likelihood function values ofAIC,AIC3,AIC4

are larger than those of P(G), so the trend of decline is shown
in Fig. 3a–c. If wewant to obtain theminimum function value
and the best fitting graphics, the value of G is always large
and can result in over-fitting. The method of BIC increased
the value of the penalty function, with more obvious trend
of increasing first and decreasing later. When the value of
G is 3, we obtain the minimum function value and the best
fitting.
For the method of QAIC, the value of C is set to 2–9 corre-
sponding to Fig. 4a–h, 11. From the trend of the figure: when
c = 2, the function values of the QAIC method decrease
from large to small; when c = 3, 4, 5, the values decrease
first and increase gradually, and the monotonous decreasing
amplitude is large while the monotonous increasing ampli-
tude is small; when c = 6, 7, 8, the values of QAIC func-
tion subject to monotonous decrease first and monotonous
increase later, and the increase changes from small to large,
at this time the monotonous decreasing amplitude is small
while the monotonous increasing amplitude is large, and the
line of symmetrymoves from right to left, onlywhenC = 5,
the minimum value of function is the closest to the axis of
symmetry, so C = 5 and G = 3 is the most reasonable
fitting.

From the analysis above, considering G values which is
based on information criterion, we need to consider the rela-
tionship between the value of likelihood function and penalty
function value, which means specific data set is needed to be
modified constantly.
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Fig. 2 Results of the different density function and the Gaussian mix-
ture estimation of the dataset D1 a The density function of dataset D1
G = 2) bTheGaussianmixture estimation of the dataset D1 (G = 2).
c The density function of dataset D1 (G = 3). d The Gaussian mix-

ture estimation of the dataset D1 (G = 3). e The density function of
dataset D1 (G = 4). f The Gaussian mixture estimation of the dataset
D1 (G = 4). g The density function of dataset D1 (G = 5). h Esti-
mation of the dataset D1 (G = 5)

When the functionAIC(G) obtains theminimumvalue,G
is most reasonable number of the mixture density model. But
to search the minimum value for AIC function, we need to
be set up a larger M in advance, and find a minimum value of
function AIC in the interval of 1 toM . ButM should bemore
than the minimum parameters G at least, but it is difficult
to determine; at the same time, it is difficult to guarantee
efficiency when M is larger and computational time is too
much.

According to the analysis of the above experiments, we
used this QAIC method for determining the number of com-
ponents, the criterion function expression:

QAIC(G) = −2∗InL(θ(G))/c + 2P(G) (24)

where c = 5. We can determine the number of components
from this expression.
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Fig. 2 continued

4.3 Synthetic data experiment

We tested the algorithms using synthetic data sets on different
simulated multivariate Gaussian mixture distributions. We
demonstrate the Gaussian models estimated from EM, and
our improved EMmethod on synthetic data sets in Fig. 5. The
data sets contain more than 10,000 points, and the models
are displayed as ellipses. The experiment is conducted by 20
repetitions.

Figure 5a shows the initialization effect of the data sets.
Figure 5b is the result of EM clustering and classification

compared to the initial solution, while the clustering result
of our improved EM method in Fig. 5c is clearly better
in parameter estimation than initial solution and EM. For
the standard EM has the shortcoming of getting stuck in a
local maximum and our proposed improved EM algorithm
overcome it well.

The number of add and remove operations is a key parame-
ter in our improved EM method .To ensure a good solution,
the number of iterations for remove and add has been set large
enough. We observed that the effect of a bad initialization is
diminished when remove–add operation is used. We there-
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Fig. 3 The values of AIC(G), AIC(G)3, AIC(G)4 and BIC

Fig. 4 The values of QAIC(G) when c = 2, c = 3, c = 4, c = 5, c = 6, c = 7, c = 8, c = 9

fore expect remove and add operation to yield good results
with Gaussian mixture models. For a good remove and add
to occur, a badly placed component must be chosen and a
location from the area where the component needs to move
must also be chosen.

To compare the random swap EM algorithmwith the stan-
dard EM algorithm, we calculated the quantitative accuracy
of the results are shown in Table 1.

From Table 1, we can observe that RSEM got higher pre-
cision (P) and recall (R) value compared with EM. Accord-
ing to column (3), our improved EM method undoubtedly
reached a higher value of F, which means the boundary rep-
resentation is relatively better. The higher value ofARI of our
improved EM method indicates that C is more similar to C′,
so the clustering performance of our improved EMmethod is
better. With the random perturbation on the solution before

continuing EM iterations and the simple parameter-setting of
the number of add and remove operation, the random swap
EM is shown to bemuch simpler andmore efficient than EM.

4.4 Real data sets experiment

In this section,we compare performance of our improvedEM
algorithmwith the classical EM,EMalgorithmbased onmul-
tivariate distributions [29], two standard clustering algorithm
[30], and K-means [31] on the four real gene expression data
sets.

The rat CNS data set was obtained by reversing transcrip-
tion-coupled PCR to study the expression levels of 112 genes
during rat central nervous systemdevelopment over nine time
points. These 112 genes were selected from four gene fam-
ilies according to prior knowledge of biology by Wen et al.
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Fig. 5 Gaussian models estimated from initial solution, EM and Our method. a Initialization. b EM. c Our improved EM method

Table 1 P’s, R’s, and F’s for the EM algorithm and RSEM algorithm

Methods P R F ARI

EM 0.8423 0.9274 0.8828 0.9248

Our method 0.9318 0.9853 0.9578 0.9892

[32] we used this 112 × 9 microarray as one of our experi-
mental data sets and took these four functional categories as
external standard categories.

The human fibroblasts serum data set contains the expres-
sion levels of 8613 human genes [33]. The data set has 13
dimensions corresponding to 12 time points (0,0.25,0.5,1,2,
4,6,8,12,16,20, and 24h) and one unsynchronized sample. A
subset of 517 genes used in our experiments whose expres-
sion levels changed substantially across the time points have
been chosen [34].

The yeast cell cycle data set is from http://cellcycle-www.
stanford.edu. In the study by Yeung et al. [17], a subset
of 384 genes was used (n=84). These genes had expred-
dion levels peaking at different times corresponding to the
five (C =5) phases of the cell cycle, including Early G1,
Late G1, S, G2 and M. This subset of the data is avail-
able at http://www.cs.washington.edu/homes/kayee/model.

For preprocessing, we removed the data corresponding to
the 90- and 100-min time points, because the two time point,
points were reported to be unreliable [35]. After the deletion,
the total number of treatment became 15. We then standard-
ized each gene expression profile by subtracting the mean
expression from the original value and dividing the differ-
ence by the SD so that the transformed expression level has
a 0 mean and variance of 1. All the 384 genes were assigned
to one of the five clusters by the original investigators
[17].

The HAHrma data consist of time course responses of
human bronchial cell line A549 to Interleukin 13(IL13), a
protein coded by the IL13 gene. Il13 is known to up-regulate
CD23 andMHCclass II expression, promote switching of the
IgE isotype in a special kind of white blood cells known as B
cells, and down-regulate the production of pro-inflammatory
cytokines and chemokines that aid in the defense mechanism
for white blood cells [36]. The human bronchial cells were
exposed to IL13, and measurements on the expression levels
of the 22,283 genes were taken at 0, 4, 12 and 24 hours after
exposure by hybirdization with Affymetrix U133a chips.

For all the competitor algorithms, we used this QAIC
method for determining the number of components based
on four real data sets. We analyzed and compared these clus-
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Table 2 Comparison of the clustering results of various classification
methods on the rat CNS data

Methods P R F ARI

EM 0.8194 0.8296 0.8244 0.8261

EM based on
multivariate
t-distributions

0.7349 0.8017 0.7716 0.8170

FCM 0.7089 0.7802 0.7429 0.7728

K -means 0.6213 0.6913 0.6544 0.6781

Improved EM 0.9031 0.9425 0.9224 0.9713

Table 3 Comparison of the clustering results of various classification
methods on the human fibroblasts serum data

Methods P R F ARI

EM 0.8865 0.8912 0.8888 0.8749

EM based on
multivariate
t-distributions

0.8727 0.8619 0.8672 0.8678

FCM 0.8023 0.8502 0.8255 0.8418

K -means 0.6914 0.7029 0.6971 0.7920

Improved EM 0.9325 0.9536 0.9382 0.9430

Table 4 Comparison of the clustering results of various classification
methods on the yeast cell cycle microarray data

Methods P R F ARI

EM 0.7895 0.8976 0.8401 0.8496

EM based on
multivariate
t-distributions

0.7743 0.8812 0.8386 0.8370

FCM 0.7121 0.8200 0.7529 0.7498

K -means 0.6510 0.7219 0.6438

Improved EM 0.9125 0.9654 0.9382 0.9875

tering algorithms on the quantities Precision (P), Recall (R),
F-measure and ARI for algorithms.

Table 2 shows the comparative results of the six clustering
algorithms implemented in this experiment on the rat CNS
data set T. The values of the quantities Precision (P) , Recall
(R) and F-measure are listed in Table 2 as the criteria to
evaluate the respective clustering algorithm. The values of
ARIwere also considered in our comparison of the clustering
algorithms. The best solution in each case has been shown in
bold.

Tables 3, 4 and 5 compare the quality of the six clustering
algorithms on human fibroblasts serum, yeast cell cycle and
HAHrma data sets. The values of the quantities Precision (P),
Recall (R),F-measure and ARI were also as the criterion to
evaluate the performance of the clustering algorithms.

Table 5 Comparison of the clustering results of various classification
methods on the HAHrma data

Methods P R F ARI

EM 0.8096 0.8471 0.8279 0.8586

EM based on
multivariate
t-distributions

0.7613 0.7819 0.7186 0.8374

FCM 0.7497 0.8302 0.7879 0.7791

K -means 0.6715 0.7117 0.6910 0.6983

Improved EM 0.9227 0.9579 0.9141 0.9843

From Tables 2, 3, 4 and 5, it can be seen that our method
of improved EM had overall better performance than the
other four competitive clustering algorithms, from the pre-
cision and recall. For the ARI of the algorithms, the value
of our method is higher than other clustering algorithms. It
is because that our method can solve the problem of over-
reliance on the initialization better.

5 Conclusions

An improved EM method based on multivariate Gaussian
mixture models of gene expression data clustering was pre-
sented in this paper. The proposed method is used to estimate
the coefficients of the multivariate Gaussian mixture models
and the weight of the model. In order to find the number of
clusters that fits the data best, we have compared and ana-
lyzed the results of the experiments by the methods of the
AIC,AIC3,AIC4 BIC and QAIC, the QAIC method is used
in the paper. To estimate the performance of the improved
EM method, we compared our new method with other clus-
tering algorithm based on gene expression data analysis. One
artificial and real gene expression data set was selected to
implement the experiments. Experimental results show that
the improved EMmethodwas better than the other clustering
algorithm.
Finally, data normalization is the prerequisite of gene expres-
sion data analysis. The model-based method developed here
based on the normal assumption but have the problem of
modelmismatch between the real distribution of gene expres-
sion data and the assumption. Therefore, the method may
be more sensitive to any departure from normality. Future
research should focus on overcoming the model mismatch.
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