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Abstract In this paper, a comprehensive method using
symmetric normal inverse Gaussian (NIG) parameters of the
sub-bands of EEG signals calculated in the dual-tree complex
wavelet transformation domain is proposed for classifying
EEG data. The suitability of the NIG probability distribution
function is illustrated using statistical measures. A support
vector machine is employed as the classifier of the EEG sig-
nals, wherein the NIG parameters are used as features. The
performance of the proposed method is studied using a pub-
licly available benchmark EEG database for various classi-
fication cases that include healthy, inter-ictal (seizure-free
interval) and ictal (seizure), non-seizure and seizure, healthy
and seizure, and inter-ictal and ictal, and compared with that
of several recent methods. It is shown that in almost all the
cases, the proposedmethod can provide 100% accuracy with
100% sensitivity and 100% specificity while being faster as
compared to the time–frequency analysis-based and EMD
techniques.
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1 Introduction

Among the various neurological disorders, epilepsy is per-
haps the most important, considering its prevalence among
a large population of the world. Epilepsy is characterized
by unprovoked recurring seizures that arises out of exces-
sive and hyper-synchronous activities of neurons in the
brain. Seizure may be accompanied by the loss of con-
sciousness/convulsions, decline in cognitive ability and may
lead to injury, sometimes to death. Electroencephalogram
(EEG) signals represent electrical activities in the neurons
of the brain and are obtained from electrodes inserted intra-
cranially or on the scalp. EEG signals are widely used as
convenient and relatively inexpensive means for epilepsy
diagnosis and management [1] . Highly trained neurologists
monitor long-term EEG signals for seizure detection, and
epilepsy diagnosis, in general. However, this is a tedious,
time-consuming and expensive task. An automated method
of seizure detection can assist the neurologist since he will
then have to monitor the sections of EEG records around
the detected portion only. In addition, automated seizure
detection may be used for implantable and closed-loop
neuro-stimulation devices for seizure suppression such as the
responsive neurostimulators (RNS) [2], as well as to localize
the epileptogenic regions of the brain in order to avoid any
undue morbidity and ensure effective epilepsy surgery.

Various algorithms have been proposed in the literature
for automatic detection of seizures [3–20]. The indispensable
part of a detection algorithm is the extraction of the appropri-
ate features to discriminate the EEG signals. The detection
process is carried out by extracting the features from an EEG
signal and classify them into the appropriate categories such
as seizure (ictal) and non-seizure (non-ictal). A widely used
approach to process nonlinear signals such as the EEG is to
decompose them into time–frequency sub-bands and subse-
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quently perform the process using features extracted from the
sub-bands [3,21]. Among various methods, those using fea-
tures obtained in time–frequency domains have been shown
to be highly promising in the detection of seizures. One of the
reasons for this is that the diverse processes of brain dynamics
and associated neuronal activities are more properly repre-
sented in time–frequency sub-bands as compared to the orig-
inal EEG [6]. Another reason may be that the seizure events
often evolve as increased spike or poly-spike-like activities
that are expected to be better visualized in the time–frequency
domain. Recently, the dual-tree complex wavelet transform
(DT-CWT) has been introduced by Selesnick and Kingsbury
et al. [22] as a better time–frequency representation of sig-
nals as compared to the traditionally used discrete wavelet
transform (DWT), widely used in the EEG literature for their
analysis of epileptoform activities. The DT-CWT has also
been extensively used for the processing of images and video
signals [18–30]. However, research reports on the use of DT-
CWTfor the processing of biological signals, especiallyEEG
signals is rather limited [18,19,29]. In [18], ANN- and SVM-
based classifiers are proposed using the variance of the DT-
CWT sub-bands as features. While the variance represents
a statistical average of a signal, the underlying statistics of
a signal is more properly described by using an appropriate
prior. It is relevant to mention that, in general, utilizing the
statistics of the DT-CWT coefficients of image and video
signals employing suitable priors has been shown to provide
an improved performance in the processing of these signals
[23–27]. Thus, it would be interesting to develop classifiers
for discriminating EEG signals using the parameters of a
prior that can suitably describe the statistics of these sig-
nals in DT-CWT domain. The objective of this paper is to
develop SVM-based classifiers for the diagnosis of epilepsy
and detection of seizure using the parameters of a symmetric
normal inverse Gaussian prior extracted from DT-CWT sub-
bands as features. Initial results of the present paper about
the ability of the NIG parameters in discriminating the EEG
signals are presented in [19]; it is shown that on average,
the values of the NIG parameters for healthy, inter-ictal and
ictal EEG segments are quite distinguishable. It should be
mentioned that no classification of EEG signals is carried
out in [19]. In the present paper, the appropriateness of the
NIG prior in modeling the DT-CWT coefficients of various
types of EEGsignals is demonstrated, and the distinguishable
nature of the NIG parameters is illustrated. The effectiveness
of the proposed method is comprehensively studied using a
publicly available EEG database for a number of clinically
relevant classification cases and compared to those of the
state-of-the-art techniques.

In this study, in summary, the NIG parameters calculated
from the DT-CWT sub-bands of EEG signals are used to
develop SVM-based classifiers. The ability of these classi-
fiers in discriminating EEG signals into several clinically

relevant cases is investigated. The performance is measured
in terms of accuracy, sensitivity, specificity, and compared
with that of several recent methods.

2 Methodology

In this section, the modeling of the EEG signals in DT-CWT
domain using an NIG probability density function (pdf) and
the ability of the NIG parameters calculated from the DT-
CWT coefficients of these signals in discriminating them is
briefly discussed.

2.1 The EEG database

The EEG signals are obtained from a widely used database,
publicly available in theWeb site of BonnUniversity [31,32].
The database consists of 500 single-channel EEG segments
of 23.6-s duration each. There are five sets of grouped data,
namely A, B, C, D, and E each containing 100 EEG seg-
ments. Sets A and B consist of surface EEG segments col-
lected from five healthy volunteers, using the international
standard 10–20 electrode placement scheme, in awake and
relaxed state, with their eyes open and closed, respectively.
Recordings in Sets C and D are obtained from the electrodes
placed hippocampal formation of the opposite hemisphere
and in the epileptogenic zone, respectively. Data in Set E
are collected intra-cranially from these electrodes as well as
those implanted in temporal and basal regions of the neocor-
tex. The EEG data in Sets C and D correspond to seizure-free
epochs,whereas the recordings in Set E correspond to seizure
attacks. All the EEG signals are recorded using the same 128-
channel amplifier system and digitized at 173.61Hz with a
12-bit resolution. Thus, the sample length of each segment
is 173.61× 23.6 ≈ 4,097, and the corresponding bandwidth
is 86.8Hz. However, the frequency range of an EEG sig-
nal usually spans over 0–60Hz. The frequencies greater than
60Hz may be considered as noise [6]. On the other hand,
the highest frequency component of an EEG segment of the
database is 86.8Hz since the sampling frequency is 173.61
Hz. The frequencies beyond 60Hz are thus removed by using
a sixth-order Butterworth filter.

2.2 Dual-tree complex wavelet transform (DT-CWT)

It is reported in the literature that the DWT is useful for
feature extraction in time–frequency domain and analysis of
EEG signals to detect epileptoform activities [4,6,10]. This
ismainly due to its ability to provide an efficient sparse repre-
sentation of non-stationary signals through time–frequency
localization. However, the DWT has a number of draw-
backs that include oscillatory nature of wavelets (limiting its
performance around singularities), lack of shift invariance,
aliasing, and limited directional information [22]. The DT-
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Fig. 1 1D dual-tree complex wavelet transformation

Fig. 2 Sample EEG signals from Sets D and E and the corresponding
DT-CWT coefficients; plots on the left column correspond to the sample
EEG signals from Set D and its DT-CWT sub-bands, whereas those in
the right column to that of Set E

CWT offers a better time–frequency representation of non-
stationary signals by ameliorating these problems of DWT
through the implementation of a discrete complex wavelet
transform using separable filter banks as in the DWT. Basi-
cally, it employs two realDWT trees,where the tree on the top
(See Fig. 1) represents the real part of the complex wavelet
coefficient, whereas the bottom one the imaginary part. The
DT-CWT coefficients are non-oscillating with a nearly shift-
invariant magnitude and significantly reduced aliasing with
more directionalities as compared to the DWT and UDWT,
while being only 2d times redundant for signals with dimen-
siond. Thenon-oscillatingmagnitude and lowcomputational
complexity (due to amodest redundancy)make theDT-CWT
a better and attractive choice for the analysis of nonlinear sig-
nals such as EEG. Figure2 shows the plots of sample EEG
segments of 10 s from the datasets D (top left) and E (top
right) in the first row. The plots of the corresponding first
level DT-CWT real and imaginary coefficients are shown in
the second and third rows, respectively.

In this paper, the parameters of an NIG pdf are estimated
from the various sub-bands of a four-level DT-CWT decom-
position of the filtered EEG signals. After the first level
of decomposition, the EEG signal, X (0–60Hz), is decom-
posed into its higher resolution components y1 (30–60Hz)
and lower resolution components, z1 (0–30Hz). In the sec-

ond level, the z1 component is then decomposed into higher
resolution components, y2 (15–30Hz) and lower resolution
components, z2 (0–15Hz). Thus, the components obtained
after four levels of decomposition include the sub-bands z4
(0–4Hz), y4 (4–8Hz), y3 (8–15Hz), y2 (15–30Hz), and
y1 (30–60Hz). Reconstructions of these five components
using the inverse DT-CWT approximately correspond to the
five physiological EEG sub-bands delta, theta, alpha, beta,
and gamma, respectively [6]. Although, the sub-bands might
overlap, it is insignificant considering their physiologically
approximate nature. Since, each DT-CWT coefficient has
two parts, real and imaginary, the four-level decomposition
yields ten sub-bands in total (five for real and five for imag-
inary). In the present paper, the real and imaginary parts of
the DT-CWT sub-bands are represented by (y1,1), (y1,2),
(y2,1),(y2,2), (y3,1), (y3,2), (y4,1), (y4,2), (z4,1), and (z4,2).
For example, (y1,1) and (y1,2) represent the real and imagi-
nary parts of the y1 sub-band.

2.3 Modeling of the EEG signals using an NIG pdf

It is assumed that the symmetric NIG pdf can appropriately
model the statistics of EEG signals in DT-CWT domain. The
motivation for using the NIG pdf arises from its success in
modeling the statistics of nonlinear signals with heavy-tailed
statistics, for example, financial data, hydrophone data, eco-
nomics data, images, and video signals, among others [24–
26,33–36]. The symmetric NIG pdf is a variance mean mix-
ture density where the inverse Gaussian density is the mixing
distribution and expressed as

Pα,δ(x) =
A(δ, α)K1

(
α
√

δ2 + x2
)

√
(δ2 + x2)

(1)

where K1 is the first-order modified Bessel function of the
second kind, A(δ, α) = δα

π
exp(δα), and X represents the

DT-CWT coefficients of an EEG signal. The steepness of the
pdf is controlled by α in that, as it is increased, it becomes
steeper. The other parameter δ is a scale factor that controls
its dispersion. Figure3 shows the plots of the pdf for vari-
ous values of α and δ. Figure4 shows the empirical pdfs of
DT-CWT sub-band (y1,1) of EEG recordings from Sets A,
C, and E. It is seen that the pdfs are of different shapes in
terms of peakedness and dispersion and demonstrate heavy-
tailedness, especially for SetE. Figure5provides the variance
stabilized p− p plots of the empirical pdfs (shown in Fig. 4),
and the NIG and zero-mean Gaussian pdfs used to model the
corresponding EEG sub-bands. The p − p plot is obtained
by plotting Fa(x)t against Fe(x)t where

Fa(x)
t = 2

π
arcsin

{√
Fa(x)

}
(2)

Fe(x)
t = 2

π
arcsin

{√
Fe(x)

}
(3)
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Fig. 3 Plots of NIG pdf for various values of α and δ

Fig. 4 Plots of the empirical pdfs for real part of the sub-band y1 (y1,1)
of three samples of EEG signals from the Sets A, C, and E

Fig. 5 p − p plots of the empirical, NIG, and Gaussian pdfs for the
real parts of sub-band y1 (y1,1) for three sample EEG signals

Fa(x) and Fe(x) denote the cumulative density function(cdf)
of a prior pdf and the empirical cdf, respectively [33]. In order
to obtain the plots, the NIG parameters are estimated from
the corresponding DT-CWT sub-bands as [25]

α =
√
3K 2

x

K 4
x

(4)

δ = αK 2
x (5)

where The second- and fourth-order cumulants of an NIG
pdf are denoted as K 2

x and K 4
x , respectively.

Fig. 6 Box plots of a α and b δ for (y1,1)

From Fig. 5, it is seen that for Set A and Set C, the NIG
and Gaussian pdfs provide a close fit to the empirical ones.
However, for Set E, the NIG pdf provides a superior fit as
compared to that of the Gaussian pdf. Note that an NIG pdf
tends to a Gaussian one with variance δ

α
as α → ∞ [33].

Thus, the Gaussian pdf is a special case of the NIG pdf.
Considering this fact and our observations from the p − p
plots, the NIG pdf is more appropriate for modeling various
types of EEG data in DT-CWT domain as compared to a
Gaussian pdf.

Finally, in Fig. 6, the box plots are shown for the five sets
using the values of α and δ, respectively, estimated from the
real parts of the y1 sub-bands that is (y1,1). From the box
plots, it is clear that the NIG parameters can discriminate the
EEG data quite well. Overall, the discussion in this section
indicates that (i) anNIGpdf is a highly suitable prior formod-
eling the statistics ofEEGsignals in theDT-CWTdomain and
(ii) the NIG parameters can distinguish EEG signals effec-
tively. Based on these observations and the results of [19]
about the discriminating ability of the NIG parameters, sup-
port vector machine (SVM)-based classifiers are developed
in the next section where the NIG parameters are utilized as
features.

3 Proposed SVM-based classification of EEG signals

3.1 Support vector machine (SVM)

A support vector machine (SVM) is a binary classifier, which
projects the nonlinear but separable data onto a higher dimen-
sional space by using as appropriate kernel function and sub-
sequently determining the best hyperplane to separate the
data in the projected space. One of the advantages of using
an SVM is its automatic complexity control to avoid over-
fitting [37]. The reason for choosing the SVM is its wide use

123



SIViP (2016) 10:259–266 263

in pattern classification, regression, and density estimation.
A proper kernel function for a certain problem is dependent
on the specific data. In this paper, radial-basis function (RBF)
kernel is used as it yields a better performance as compared to
the other kernel functions.Although theSVMis a binary clas-
sifier, it may be used to solve multi-class problems by com-
bining several of its kind. In this paper, the error-correcting
output coding (ECOC) approach obtained from digital com-
munication [38] is employed for that purpose. A maximum
of 2n−1 − 1 SVMs are trained for separating n classes. For
example, to separate three classes (X, Y, and Z), three clas-
sifiers are used: the first SVM classifies X from Y and Z, the
second Y from X and Z, and the third Z from X and Y. The
classifier-output code for a pattern is a combination of targets
of all the separate SVMs. In the previous example, vectors
from classes X, Y, and Z have codes (1,−1,−1), (−1,1,−1),
and (−1,−1,1), respectively. If each of the separate SVMs
classifies a pattern correctly, the classifier-target code is met
and the ECOC approach reports no error for that pattern.
Notice that for the binary (two way) classification purposes,
a single SVM is sufficient.

3.2 The proposed classification method

For the SVM-based classification, first the features of classi-
fication are extracted. Due to the non-stationary nature of the
EEG data, prior to feature extraction, an EEG record is first
divided into 16 non-overlapping segments where each of the
segments is assumed to be stationary. As there are 100 EEG
datasets from each of the Sets A, B, C, D, and E, in total,
500× 16 = 8,000 segments are generated. Next, each of the
segments is subjected to a four-level DT-CWT decomposi-
tion, giving 10 sub-bands for each. Subsequently, the NIG
parameters α and δ are estimated from each sub-band using
(6) and (7). For example, Set A has 100 × 16 = 1,600 seg-
ments and 1,600 × 10 = 16,000 sub-bands, thus 16,000
values of α and δ each are obtained for Set A. Next, train-
ing and testing are carried out using the extracted features.
For a particular set, half of the segments, chosen randomly,
are used for training and the rest half for testing in an SVM
classifier. For example, if the target is to discriminate the seg-
ments of Set A from those of Set E, then among the 1,600
segments of Set A, 800 segments are used for training and
the rest 800 for testing. The distribution is same for the Set E.

4 Results of the experiments

In this Section, the performances of the proposedSVM-based
classifiers are described and compared to those of the state-
of-the-art methods using well-known figures of merit, sen-
sitivity (sen), specificity (spec), and accuracy (acc) [5] for
various classification cases. For the five sets of EEG records

Table 1 Classes considered for classification

Cases Sets Description

I (A, B), (C, D) and E Healthy, inter-ictal and ictal

II (A, B, C, D) and E Non-seizure and seizure

III A and E Healthy and seizure

IV A, D and E Healthy, inter-ictal and ictal

V D and E Inter-ictal and ictal

VI C and E Inter-ictal and ictal

described earlier, six different cases of classification are con-
sidered.The cases are chosenbasedon their clinical relevance
and use in various papers in the literature to facilitate com-
parison and shown in Table1.

Here, the healthy class includes the signals acquired from
healthy people, whereas the inter-ictal class includes the
seizure-free epochs of the epilepsy patients, and ictal class
includes the seizure epochs. As for clinical relevance, Cases
I and IV are related to the discrimination of healthy persons
from the epilepsy patients as well as occurrence of seizures.
It may also be relevant to the fact that in some cases, inter-
ictal epileptoform discharges are observed for healthy per-
sons, whereas about 10% epilepsy patients never show such
discharges. Cases II and III correspond to the detection of
seizure and, in addition, may be related to the discrimination
of surface EEGs from the intra-cranial ones since Sets A, B
and C, D, E are acquired from surface and intra-cranial elec-
trodes, respectively. Case V corresponds to the detection of
the onset of seizure, since the signals in Set D are obtained
from epileptogenic zone and thus highly related to the early-
ictal activities. Similarly, Case VI is related to discrimi-
nating the ictal recordings from the inter-ictal ones. Over-
all, the cases are relevant to epilepsy diagnosis and seizure
detection.

The performance of the proposed method is first studied
using the features from a DT-CWT sub-band. Table2 shows
the corresponding values of sensitivity, specificity, and accu-
racy obtained by using the features from various sub-bands.
It is seen that features obtained from the high-frequency sub-
bands, such as y1, y2 or y3 sub-bands, provide better per-
formances than those of the low-frequency ones, for exam-
ple y4 and z4. Next, the performance is studied for vari-
ous cases using different combinations of features obtained
from y1, y2, and y3 sub-bands. The corresponding values
of the sensitivity (sen), specificity (spec), and accuracy (acc)
are provided in Table3. It is seen that the performance of
the proposed method improves significantly when features
from two or more sub-bands are used. The best performance
is achieved when features from the three sub-bands y1, y2,
and y3 are used, in conjunction, giving 100% accuracy with
100% sensitivity and 100% specificity with the exception of
Case I. However, in Case I, the accuracy is quite high, about
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Table 2 Classification performance for features from single-level sub-
bands

Cases Per Names of the used feature vectors

y1 y2 y3 y4 z4

Case I (AB), (CD), Sen (AB) 86.34 93.84 84.38 87.28 83.59

and E Sen (CD) 82.59 89.59 91.75 77.88 77.34

Sen (E) 96.75 97.69 97.69 95.31 94.38

Acc 86.925 92.91 90.54 85.13 81.65

Case II ABCD Sen 97.13 98.06 97.75 94.13 92.5

and E Spec 94.41 95.52 96.19 92.22 88.3

Acc 94.95 96.03 96.5 92.6 89.13

Case III A, E Sen 97.5 98.63 99.38 97.13 94.94

Spec 94 98.75 98.5 94.88 93.94

Acc 95.75 98.69 98.94 96 94.44

Case IV A, D, E Sen (A) 83.25 93.19 95.5 88.69 85.38

Sen (D) 91.19 95.94 97.38 92.94 87.62

Sen (E) 95.69 97.94 99 96.75 92.75

Acc 90.04 95.69 97.29 92.79 88.58

Case V D, E Sen 95.38 98.25 98.25 95.31 93.88

Spec 96.63 97.5 95.63 94.88 92.44

Acc 96 97.88 96.94 95.09 93.16

Case VI C, E Sen 97.88 98.25 98.93 94.63 92.38

Spec 95.44 96.88 97.36 95.81 94.13

Acc 96.66 97.56 98.14 95.22 93.25

96%. Due to the mis-classification of classes A and B, and
the classes C and D, into the class E, 100% accuracy is not
achieved. It is also seen that 100% sensitivity is achieved for
Set E which indicates that the signals in Set E are accurately
discriminated from the signals in Sets A, B, C, and D. Thus,
the clinical effect of this classification error is much less as
compared to a mis-classification of the signals in Set E. It is
also observed that the sensitivity forClasses (A,B) and (C,D)
are 95.84 and 94.84%, respectively, which indicates that a
very small number of segments are mis-classified for these
classes. Note that the signals in Sets A and B are obtained
from healthy persons, whereas those in Set C and D are col-
lected during inter-ictal periods, thus the neurologists can
discard the related false alarms.

The performance of the proposed method is compared
with that of several state-of-the-art algorithms in Table4. For
Case I, the proposed method gives an accuracy, significantly
higher than that of [5], and also higher than that of in [17],
and almost the same as that of [7]. However, the number of
features used for [7] is 40, whereas for the proposed method,
it is 12 only. For the other cases, the proposed method pro-
vides 100%accuracywith 100%sensitivity and100%speci-
ficity. Note that the method of [18] uses variance, calculated
as sample variance, as features in an SVM for classifying
EEGsignals. The sample variance is themaximum likelihood

Table 3 Classification performance for features from multi-level sub-
bands

Cases Results Names of the used feature vectors

y1, y2 y1, y3 y2, y3 y1, y2, y3

Case I (AB), (CD) Sen (AB) 94.25 92.84 95.16 95.84

and E Sen (CD) 93.91 92.38 93.09 94.84

Sen (E) 98.69 98.5 99.88 100

Acc 95 93.79 95.28 96.28

Case II ABCD, E Sen 99 98.75 99.94 100

Spec 99.36 99.47 99.81 100

Acc 99.29 99.33 99.83 100

Case III A, E Sen 99.76 99.63 100 100

Spec 99.63 99.76 99.88 100

Acc 99.69 99.69 99.94 100

Case IV A, D, E Sen (A) 95.56 98.13 99 100

Sen (D) 97.38 98.38 99.06 100

Sen (E) 98.94 99.25 99.56 100

Acc 97.29 98.58 99.21 100

Case V D, E Sen 99.88 99.63 99.5 100

Spec 99.88 99.38 100 100

Acc 99.88 99.5 99.75 100

Case VI C, E Sen 99.06 100 99.88 100

Spec 98.44 99.94 98.94 100

Acc 98.75 99.97 99.41 100

(ML) estimate of a zero-mean Gaussian pdf. In this respect,
the results of [18] can be regarded as that obtained from an
SVM classifier using Gaussian parameters. It is noted from
Table4 that for classification schemes other than binary (two
way) ones, the use of NIG parameters, as compared to that
of employing Gaussian parameters, yields better accuracy.

The proposed method is also computationally fast. It is
implemented in MATLAB [39] on a desktop computer with
an Intel core to duo 2.66 GHz processor and 2GBRAM. The
time required to extract the necessary 12 features from a seg-
ment of 23.6/16 ≈ 1.475s, is 0.003–0.005s. In [7,9], time–
frequency features are extracted from a recording of 23.6 s
and the feature extraction time varies from 3.8–4.09 s. In [5],
features are extracted from a recording of 1.475s, but the fea-
ture extraction time is 0.2–0.6 s. For testing, the SVM-based
classifiers require typically 0.05 and 0.02 s, respectively, for
Cases I, IV and Cases II, III, V, VI (to identify the appropri-
ate class of an EEG segment). Thus, for example, for a 24-h
continuous EEG recordings of epilepsy patients (consisting
Sets D and E type segments), the processing time of the pro-
posed method for seizure detection can be expected to be
around 24min. The computational performance can be fur-
ther improved by developing a standalone C/C++ program
for the proposed method and implementing it on multiple
cores in parallel fashion.
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Table 4 Comparison of classification performance obtained for various
algorithms

Cases Methods Acc (%)

I (AB), (CD) and E Tzallas et al. [7] 97.72

Orhan et al. [17] 95.6

Alam et al. [5] 80

Das et al. [18] 83.5

Proposed 96.28

II (ABCD), E Tzallas et al. [7] 97.73

Kumar et al. [10] 94

Orhan et al. [17] 99.6

Liang et al. [12] 98.51

Alam et al. [5] 100

Chen et al. [20] 100

Das et al. [18] 100

Proposed 100

III A, E Tzallas et al. [9] 100

Bedeeuzzaman et al. [13] 97.75

Nicolaouet al. [15] 93.55

Orhan et al. [17] 100

Kumar et al. [10] 100

Alam et al. [5] 100

Chen et al. [20] 100

Das et al. [18] 100

Proposed 100

IV A, D, E Tzallas et al. [7] 99.28

Tzallas et al. [9] 100

Liang et al. [12] 98.67

Orhan et al. [17] 96.67

Alam et al. [5] 100

Das et al. [18] 96.8

Proposed 100

IV D, E Liang et al. [12] 98.74

Nicolaouet al. [15] 79.94

Kumar et al. [10] 95

Alam et al. [5] 100

Das et al. [18] 100

Proposed 100

VI C, E Nicolaouet al. [15] 88

Kumar et al. [10] 100

Proposed 100

5 Conclusion

In this paper, a SVM-based method has been proposed using
statistical NIG parameters computed in DT-CWT domain as
features for the automatic seizure detection and epilepsy. The
suitability of an NIG pdf in modeling EEG signals in DT-
CWT domain has been demonstrated. The discrimination
of EEG signals using the NIG parameters in the DT-CWT

sub-bands has been discussed. SVM classifiers have been
developed for binary as well as multi-way classification, the
latter employing the ECOC approach. The performance of
the SVM-based classification has been studied for a num-
ber of clinically relevant cases. It has been shown that the
parameters obtained from the three high-frequencyDT-CWT
sub-bands yield 100% sensitivity, specificity, and accuracy.
Furthermore, the proposed method gives 100% accuracy in
all the cases except one for which the accuracy is also quite
high, about 96%. However, the corresponding sensitivity for
ictal classes has been found to be 100% indicating accu-
rate detection of actual seizure events. In comparison with
several state-of-the-art algorithms, the proposed method has
been shown to provide better or at least almost the same
accuracy in detecting seizure and epilepsy. The proposed
method has also been shown to be computationally fast in
terms of feature extraction and seizure detection. The overall
performance and computational speed suggest that it can be
useful for automated analysis/monitoring of clinically used
continuous EEG records. Since the proposed method uses
the statistics of EEG signals in time–frequency domain, sim-
ilar performance is expected by the proposed classifiers for
the long-term EEG records. Currently, the authors of the
present paper are conducting a study using long-term EEG
records.
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