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Abstract Multiple reference frame motion estimation
(MRFME) is one of the main features of recent video
coding standards such as H.264/AVC and high efficiency
video coding. This paper presents a fast search strategy for
avoiding redundant computations during MRFME. The pro-
posed method reduces the number of pixels to be exam-
ined using the precalculated rate-distortion costs of previ-
ously searched frames. Experimental results show that the
proposed method reduces the complexity of the motion esti-
mation (ME) process by up to 81.43%.

Keywords Motion estimation ·Multiple reference frames ·
Search strategy

1 Introduction

With the generalization of mobile communication services,
user-created video content has been attracting considerable
attention because it enables users to share personal expe-
riences with their family and friends [1,2]. The captured
videos are compressed in a portable device, and then the
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compressedvideo streams are transmitted over networkswith
limited bandwidth [3]. Compression schemes which can pro-
vide high quality video with low complexity, play a key role
for this application.

Block-based motion estimation (ME) exploiting tempo-
ral redundancy between adjacent frames is one of the most
significant features of state-of-the-art video coding stan-
dards such as H.264/AVC and high efficiency video coding
(HEVC) [4–7]. For each block in the current frame, the ME
process is performed to find the best prediction, called the
reference block, which minimizes the matching distortion
within the predetermined search space. The motion vector
(MV) and the reference index, respectively, are used to spec-
ify the spatial and temporal displacement between the current
and reference blocks. It is well-known that theME technique
significantly improves video coding efficiency, but it is the
most time-consuming part of the video compression process.

Several fast search algorithms have been proposed to
accelerate the ME process. This paper focuses on ME algo-
rithms that accelerate the search process without sacrificing
coding efficiency. The partial distortion elimination (PDE)
algorithm uses the partial sum of the matching distortion to
eliminate impossible pixel positions before completing the
calculation of the matching distortion [8–10]. The succes-
sive elimination algorithm (SEA) utilizes a simple match-
ing criterion to eliminate impossible pixels before more pre-
cise distortion calculations are performed. Using an appro-
priate test, many pixels can be excluded from further con-
sideration in the ME process. In order to further reduce
the complexity of SEA, several improved algorithms have
been introduced in recent studies [11–15]. Basically, all of
these methods are designed for single reference frame ME
(SRFME). In multiple reference frame ME (MRFME), the
block matching process is conducted using additional refer-
ence frames, thereby obtaining a better prediction signal as
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compared toSRFME.TheSRFMEalgorithms canbedirectly
applied to each reference frame, i.e., all reference frames are
searched repeatedly. However, in this case, the complexity
of the encoder increases significantly in proportion to the
number of available reference frames.

This paper proposes an effective search strategy for accel-
erating MRFME [16–18]. The proposed method first ana-
lyzes the available information from the ME process of
the previous frames. Using this information, the proposed
method derives a new inequality constraint that will be used
for ME of the current frame. In the middle of the MRFME
process, the number of pixels to be examined can be reduced
by gradually increasing the tightness of the proposed inequal-
ity constraint. This paper focuses on the spiral search of the
H.264/AVC reference software [19]. However, the proposed
strategy can be applied to most conventional full-search-
equivalent ME algorithms [20].

The rest of this paper is organized as follows. Section 2
introduces some preliminaries about rate-distortion (RD)
optimization in video processing. Section 3 describes the
derivation of a new inequality constraint first and, then, intro-
duces a general search strategy for MRFME based on the
inequality constraint. The experimental results of the pro-
posed search strategy are presented in Sect. 4. Finally, con-
clusions are drawn in Sect. 5.

2 Preliminary

The problem of finding the optimal MV and reference index
for a given rate constraint can be formulated as finding the
best point on the convex hull of all possible RD points.
Lagrangian optimization is widely utilized for solving this
problem.Let s and c(m, n)be, respectively, the original block
and its reconstruction obtained by using theMVm and refer-
ence index n. For an inter-coded block, ME is performed to
find the optimal MV and reference index by minimizing [21]

J (m, n|s, m̂) = D(s, c(m, n)) + λ(R(m − m̂)+R(n)) (1)

where m̂ is the prediction for the MV and λ is the Lagrange
multiplier. The distortion D(s, c(m, n)) is the difference
between s and c(m, n). The rates R(n) and R(m − m̂) spec-
ify, respectively, the numbers of bits required for encoding
the reference index and the difference between the original
MV and the predicted one.

The video encoder searches for the best matching position
within the predefined search window of size (2w+1) ·(2w+
1) for each reference frame. Thus, given N reference frames,
the overall size of the motion search space is N · (2w + 1) ·
(2w + 1) for each block. Let Ψ be a search window of size
(2w+1)·(2w+1) andmk ∈ Ψ , 0 < k ≤ (2w+1)·(2w+1),
be an MV indicating a possible pixel position in the spiral
order. Then, Ψ is composed of the pixel positions within the

search window as follows

Ψ = {m1,m2, . . . ,mW } (2)

whereW = (2w+1)·(2w+1). Suppose that, in themiddle of
the ME process, the encoder has examined the sub-window
Ψk = {m1,m2, . . . ,mk} in the reference framewith the index
n. Then, the encoder can obtain the local minimum RD cost
Jnk of the reference frame as follows

Jnk = min
mi∈Ψk

{J (mi , n|s, m̂)} (3)

where 0 < i ≤ k. Using the above notations, the proposed
search strategy is described in the next section.

3 Proposed search strategy

In Sect. 3.1, a new criterion is first derived to decide sequen-
tially whether to skip the precise RD cost calculation of the
remaining pixels. Then, in Sect. 3.2, the tightness of the pro-
posed criterion is increased using the precalculated RD costs
of the previously searched frames.

3.1 Early skipping criterion

In general, the MV distribution is highly center-biased. Che-
ung et al. [22] showed that most of the MVs concentrate on
the search center, i.e., approximately 81.80% of the MVs
are located in the central 5 × 5 square area. In order to
exploit these characteristics, the spiral search adopted in the
H.264/AVC reference software starts the search process at the
center of the search window and then moves the search posi-
tion pixel by pixel in the spiral structure around the search
center. Note that, in the current implementation, theMV pre-
diction m̂ is used as an initial search center. The spiral search
produces the best performance for video signals that have the
MV distributions gathered at the zero position (0, 0). This is
because the probability of finding the minimum matching
error at the beginning of the search process will increase. It
is well-known that the spiral search achieves better perfor-
mance than other algorithms utilizing the raster scan order.

The spiral search establishes an inequality constraint in
order to accelerate the search process while preserving the
RD optimized solution for the MV. The spiral search adopts
the following inequality relation as a criterion for skipping
the precise RD cost calculation [23]:

R(m − m̂) ≤ J

λ
. (4)

This leads to the result that, after examining the sub-window
Ψk , the encoder evaluates the cost function only for the MVs
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Fig. 1 MRFME processes of a
the conventional and b the
proposed methods

(a)

(b)

m j ’s which satisfy the following criterion:

R(m j − m̂) ≤ Jnk
λ

(5)

where k < j ≤ W . Note that, as shown in (4) and (5), the
spiral search exploits only the inequality relation between
R(m − m̂) and J.

It is natural that the complexity reduction is highly depen-
dent on the tightness of the inequality constraint. As the tight-
ness increases, there are smaller number of pixels which the
encoder needs to examine in the ME process. In this paper,
a new criterion is introduced to increase the tightness of the
inequality constraint. As mentioned earlier, when multiple
reference frames are used in theMEprocess, the rate R(n) for
encoding the reference index is included in the Lagrangian
cost function. Thus, a tighter inequality constraint between
the cost and rate can be derived by eliminating the distortion
D(s, c(m)) from (1) as

R(m − m̂) ≤ J

λ
− R(n). (6)

Then, after examining the sub-window Ψk , the proposed
method needs to evaluate the cost function only for the MVs
m j ’s which satisfy the following criterion:

R(m j − m̂) ≤ Jnk
λ

− R(n) (7)

where k < j ≤ W . If this inequality is not satisfied at the
search position corresponding to m j , m j cannot be the best
prediction. Therefore, the RD cost calculation of the search
position corresponding to m j can be safely skipped. Other-
wise, the cost function is evaluated at that particular position.
If its RD cost is less than Jnk , J

n
k is updated and the updated

Jnk is used for the remaining pixels.

3.2 Fast ME algorithm for MRFME

From (7), it can be seen that the complexity reduction is
dependent on the local minimum RD cost Jnk . The lower the
value of Jnk is, the smaller the number of pixels that need to be
examined is. In the current implementation, the spiral search
is applied to each reference frame separately. Thismeans that
Jnk is initialized with the highest possible value when starting

Fig. 2 Increase ratio of ME time to the number of reference frames for
QCIF sequences with QP = 22

the search process of a new reference frame (see Fig. 1a).
Therefore, as shown in Fig. 2, the computational complexity
of the ME process increases drastically in proportion to the
number of reference frames.

In order to reduce the number of pixels to be exam-
ined, the tightness of the inequality constraint (7) is further
increased using the precalculated RD costs of the previously
searched frames. Suppose that there are N reference frames
{F1, F2, . . . , Fn, . . . , FN } in the reference list, where n
specifies the reference index. Analogous to (3), let Jn0 and
JnW be, respectively, an initial value of Jnk and the minimum
RD cost obtained from the ME process of Fn . Then, from
the definitions, the following relation holds:

Jn0 ≥ JnW . (8)

Instead of initializing Jn0 with the highest possible value, the
proposed algorithm sets the initial value as small as possible
using the precalculated RD costs. When starting the search
process of Fn , the proposed method sets Jn0 to the lowest
value among the precalculated RD costs as

Jn0 = min{J 1W , J 2W , . . . , Jn−1
W }. (9)
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If the above initializationmethod is sequentially applied to all
reference frames, the following relations hold in the middle
of the MRFME process:

Jn0 ≤ Jn−1
W (10)

and, from (8),

JnW ≤ Jn−1
W . (11)

Then, based on these observations, the proposed algorithm
shown in (9) can be simplified as

Jn0 = Jn−1
W . (12)

This leads to the result that the proposed method sets Jn0 to
Jn−1
W and performs ME of Fn using (7). Figure 1b shows

the MRFME process adopting the proposed strategy. Note
that, after finishing the search process of Fn−1, the encoder
can obtain the minimum RD cost Jn−1

W without perform-
ing any additional computations. Therefore, the proposed
method does not cause any additional computational over-
head. For each block, the overall algorithm proceeds as fol-
lows:

(a) At the beginning of theME process, the encoder searches
for the best matching block within the reference frame
F1. The minimum RD cost J 1W obtained by using F1 is
stored in memory for the following steps.

(b) Initialize Jn0 with Jn−1
W as shown in (12). Then, the pro-

posed method performs the ME process of the reference
frame Fn using (7). Note that the resultant JnW of Fn is
stored in memory for calculating the initial value Jn+1

0 of
the next reference frame Fn+1. This procedure is repeated
by increasing n by one.

(c) If n becomes larger than N , the encoder terminates the
search process of the current block. The MV and refer-
ence index corresponding to the optimal search position
are encoded.

It is obvious that the proposed algorithm can be easily inte-
grated into conventional fast search algorithms designed for
SRFME[8,11].Basically, these algorithms establish inequal-
ity constraints using the local minimum RD cost and per-
form the ME process of each reference frame separately.
In the MRFME scenario, the proposed algorithm can keep
the local minimum RD cost as small as possible. Therefore,
when applying the existing SRFME algorithms to MRFME,
the performance of the existing algorithms can be improved
significantly by combining them with the proposed search
algorithm.

4 Experimental results

In the simulation, JM 18.3 reference software was used
and the performance was evaluated by using several video
sequences with 1080p format. Only the first frame was
encoded in intra mode and ME was performed with integer-
pixel accuracy. The quantization parameters (QPs) were set
to 22, 26, 30, and 34. The processing time of ME was
measured for video sequences with 100 frames. The search
range was set to 32×32 and context-based adaptive vari-
able length coding (CAVLC) was used in all simulations.
We used sum of absolute differences (SAD) for measuring
the distortion between the original and reference blocks. The
proposed algorithm was compared to the sorting-based PDE
(SPDE) algorithm [8], the column-based SEA (CSEA) [15]
algorithm, and the spiral search (SP) of the reference soft-
ware [19]. Since all algorithms generate the sameME results,
only the computational complexity was evaluated through
simulations.

4.1 Complexity analysis

The computational complexity of an algorithm is analyzed by
measuring the number of examined pixels in theME process.
Figure 3 shows the ratio of the number of examined pixels
to the total number of pixels for each reference frame. For
the first reference frame with index 1 (n = 1), all algorithms
can significantly reduce the number of examined pixels in
the search process. For the Park Scene sequence, the SPDE,
CSEA, and SP algorithms reduce the number of examined
pixels by 78.32, 81.23, and 85.58%, respectively. Note that,
when n = 1, the number of examined pixels of the proposed
algorithm is the same as that of SP.

Figure 3 clearly shows that, in the case of SPDE, CSEA,
and SP, the ratio of the examined pixels increases as n
increases. The algorithms are applied to each reference
frame separately. This results in that the local minimum RD
cost used for eliminating impossible pixels increases as n
increases. Note that the lower the local minimum RD cost is,
the smaller the number of pixels to be examined is. There-
fore, in the case of SPDE, CSEA, and SP, the encoder should
examine more pixels as n increases.

The proposed algorithm can keep the local minimum RD
cost as small as possible by exploiting the precalculated RD
costs of the previously searched frames. Figure 3 presents
that the proposed algorithm reduces the ratio of the num-
ber of examined pixels as n increases. Therefore, it can be
expected from Fig. 3 that the performance improvement of
the proposed algorithm will increase sharply as n increases.
The processing time comparison is presented in the following
subsection.
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Fig. 3 Ratio of the examined pixels with varying reference indexes. a Park Scene. b Rush hour

Table 1 Processing time
comparison of the conventional
and proposed algorithms for
N = 4

Sequences QP Bitrate (kbps) PSNR (dB) Time saving

�TSPDE (%) �TCSE A (%) �TSP (%)

Park scene 22 37,768.20 40.44 24.62 22.70 13.88

26 17,480.83 37.84 35.05 32.12 16.57

30 8,292.62 35.27 43.21 39.24 18.77

34 3,845.52 32.91 50.59 46.68 20.77

Pedestrian area 22 15,092.32 42.10 42.31 37.44 30.83

26 7,533.54 40.59 51.17 44.75 36.94

30 4,438.59 38.93 58.08 50.67 41.55

34 2,703.09 37.08 63.95 55.14 45.46

Rush hour 22 12,093.92 42.65 35.10 28.87 18.27

26 6,008.27 41.73 48.62 41.83 25.41

30 3,464.76 40.41 58.74 51.82 31.24

34 2,015.47 38.72 66.39 58.81 35.62

Sunflower 22 8,622.47 43.70 51.25 45.34 38.63

26 4,385.60 42.59 63.94 56.89 49.93

30 2,512.49 40.81 71.17 63.90 56.45

34 1,434.38 38.76 75.65 67.76 59.66

Average 52.49 46.50 33.75

4.2 Processing time comparison

The processing time of several ME algorithms was measured
with variation of the number of reference frames (N ) and, in
the simulation, N was set to 4 and 8. Themeasured results are
summarized in Tables 1 and 2where�TSPDE ,�TCSE A, and
�TSP indicate the time savings of the proposed algorithm as
compared to SPDE, CSEA, and SP, respectively. Note that,
since all ME algorithms accelerate the ME process without
sacrificing the coding efficiency, their bitrates and PSNRs are
exactly the same as each other.

Table 1 presents the processing time comparison for N =
4. In this case, the average ME time of the proposed algo-
rithm is 52.49 and 46.50% less than those of SPDE and
CSEA, respectively. Further, if N = 8, Table 2 shows that
the amount of the ME time reduction increases to 59.62 and
54.65% as compared to SPDE and CSEA, respectively. As
compared to the SP algorithm, the average ME time saving
of the proposed algorithm is 33.75% for N = 4 and 47.30%
for N = 8. The results clearly show that the performance of
the proposed algorithm is improved as N increases. This is
because the proposed algorithmgradually increases the tight-
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Table 2 Processing time
comparison of the conventional
and proposed algorithms for
N = 8

Sequences QP Bitrate (kbps) PSNR (dB) Time saving

�TSPDE (%) �TCSE A (%) �TSP (%)

Park scene 22 36,097.83 40.44 32.03 29.02 25.08

26 16,740.68 37.86 42.03 38.44 28.94

30 8,057.44 35.29 49.96 45.82 31.86

34 3,787.65 32.93 56.18 50.53 34.79

Pedestrian area 22 14,571.09 42.12 50.66 45.59 43.02

26 7,310.54 40.60 58.51 52.05 49.24

30 4,337.30 38.94 65.42 56.62 53.78

34 2,663.08 37.10 70.57 61.47 58.55

Rush hour 22 11,831.08 42.65 42.43 38.08 30.33

26 5,892.65 41.74 56.05 51.64 40.33

30 3,409.85 40.44 66.00 61.31 46.63

34 1,999.66 38.77 72.81 68.02 53.06

Sunflower 22 8,532.24 43.72 60.19 56.60 53.86

26 4,348.18 42.61 71.75 67.95 64.44

30 2,505.30 40.84 77.91 73.82 69.57

34 1,426.43 38.81 81.43 77.41 73.25

Average 59.62 54.65 47.30

ness of the inequality constraint (7) byusing the precalculated
RD costs of the previously searched frames. The proposed
algorithm can reduce the ME time by up to 81.43% for the
Sunflower sequence with N = 8 as compared to the SPDE
algorithm. The experimental results reveal that the proposed
algorithm consistently outperforms the SPDE, CSEA, and
SP algorithms.

It can also be observed fromTables 1 and 2 that the amount
of theME time reduction becomes larger as theQP increases.
For example, when the QP is set to 22 and N = 8, the ME
time reduction of the proposed method is 46.33% as com-
pared to the SPDE algorithm. Further, the average ME time
savings increase to 57.08, 64.82, and 70.25% for the QPs
26, 30, and 34, respectively. As compared to the SP algo-
rithm, the average ME time savings of the proposed method
are 38.07, 45.74, 50.46, and 54.91% for the QPs 22, 26, 30,
and 34, respectively. Therefore, the proposed method tends
to achieve better performance at low bitrates.

5 Conclusion

A newMRFME algorithmwith reduced computational com-
plexity was presented in this paper. At first, a new criterion
was derived to decide sequentially whether to skip the pre-
cise RD cost calculation of the remaining pixels. Then, this
paper proposed an algorithm that can gradually increase the
tightness of the proposed criterion utilizing the precalculated

RD costs of the previously searched frames. The experimen-
tal results clearly demonstrated that the proposed method
achieves a substantially higher speedup than the SPDE and
SP algorithms in the MRFME scenario.

References

1. Park, I., Capson, D.W.: Improved motion estimation time using
a combination of dynamic reference frame selection and residue-
basedmode decision. Signal ImageVideo Process. 6, 25–39 (2012)

2. Pan, X., Ye, Y.,Wang, J.: Fractional directional derivative and iden-
tification of blur parameters ofmotion-blurred image. Signal Image
Video Process. 8, 1–12 (2013)

3. Park, C.S.: Spatial and interlayer hybrid intra-prediction for
H.264/SVC video. Opt. Eng. 52(7), 071503 (2013)

4. Sullivan, G., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the
high efficiency video coding (HEVC) standard. IEEE Trans. Cir-
cuits Syst. Video Technol. 22(12), 1649–1668 (2012)

5. Draft ITU-T Recommendation and final draft international stan-
dard of join video specification, ITU-T Rec. H.264|ISO|IEC
14496–10 AVC (2003)

6. Park, C.S.: Level-set-based motion estimation algorithm for mul-
tiple reference frame motion estimation. J. Vis. Commun. Image
Represent. 24(8), 1269–1275 (2013)

7. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview
of the H.264/AVC video coding standard. IEEE Trans. Circuits
Syst. Video Technol. 13(7), 560–576 (2003)

8. Choi, C., Jeong, J.: New sorting-based partial distortion elimination
algorithm for fast optimalmotion estimation. IEEETrans. Consum.
Electron. 55(4), 2335–2340 (2009)

9. Gersho, A., Gray, R.M.: Vector quantization and signal compres-
sion. Kluwer, Boston (1991)

123



SIViP (2016) 10:243–249 249

10. Kim, J.N., Ryu, T.K.: A fast PDE algorithm using adaptive match-
ing scan order for real-time video coding. Lect. Notes Comput. Sci.
6111, 336–343 (2010)

11. Li,W., Salari, E.: Successive elimination algorithm formotion esti-
mation. IEEE Trans. Image Process. 4(1), 105–107 (1995)

12. Gao, X.Q., Duanmu, C.J., Zou, C.R.: Amultilevel successive elim-
ination algorithm for block matching motion estimation. IEEE
Trans. Image Process. 9, 501–504 (2000)

13. Zhu, C., Qi, W.-S., Ser, W.: Predictive fine granularity successive
elimination for fast optimal block matching motion estimation.
IEEE Trans. Image Process. 14(2), 213–221 (2005)

14. Liu, S.W., Wei, S.D., Lai, S.H.: Fast optimal motion estimation
based on gradient-based adaptive multilevel successive elimina-
tion. IEEE Trans. Circuits Syst. Video Technol. 18(2), 263–267
(2008)

15. Paramkusam, A.V., Reddy, V.S.K.: The efficient optimal and
suboptimal motion estimation algorithms. Signal Image Video
Process. 1–6 (2013). doi:10.1007/s11760-013-0562-y

16. Su, Y., Sun,M.-T.: Fastmultiple reference framemotion estimation
for H. 264/AVC. IEEE Trans. Circuits Syst. Video Technol. 16(3),
447–452 (2006)

17. Jun, D., Park, H.: An efficient priority-based reference frame selec-
tionmethod for fast motion estimation inH. 264/AVC. IEEETrans.
Circuits Syst. Video Technol. 20(8), 1156–1161 (2010)

18. Ho, H., Klepko, R., Ninh, N., Wang, D.: A high performance hard-
ware architecture for multi-frame hierarchical motion estimation.
IEEE Trans. Consum. Electron. 57(2), 794–801 (2011)

19. Lim,K.P., Sullivan, G.,Wiegand,T.: Text description of jointmodel
reference encoding methods and decoding concealment methods.
Joint Video Team, Doc. JVT-N046 (2005)

20. Coban, M.Z., Mersereau, R.M.: A fast exhaustive search algo-
rithm for rate-constrained motion estimation. IEEE Trans. Image
Process. 7(5), 769–773 (1998)

21. Park, C.S., Jung, S.W., Choi, K.S., Ko, S.J.: Fast encoding algo-
rithm avoiding repetition of motion estimation in scalable video
coding. Electron. Lett. 46(4), 280–282 (2010)

22. Cheung, C.H., Po, L.M.: A novel cross-diamond search algorithm
for fast block motion estimation. IEEE Trans. Circuits Syst. Video
Technol. 12(12), 1168–1177 (2002)

23. Park, C.S.: A general search strategy for multiple reference frame
motion estimation. In: 2013 IEEE International Conference on
Consumer Electronics (ICCE), pp. 328–329 (2013)

123

http://dx.doi.org/10.1007/s11760-013-0562-y

	Temporal correlation based general search strategy for multiple reference frame motion estimation
	Abstract 
	1 Introduction
	2 Preliminary
	3 Proposed search strategy
	3.1 Early skipping criterion
	3.2 Fast ME algorithm for MRFME

	4 Experimental results
	4.1 Complexity analysis
	4.2 Processing time comparison

	5 Conclusion
	References




