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Abstract Magnetic resonance images tend to be conta-
minated with random unwanted signals called noise, due
to various reasons. Noise treatment of magnetic resonance
brain images is considered as an important and challeng-
ing task for proper clinical and research investigations. In
this manuscript, fuzzy logic-based hybrid Rician noise filter
has been proposed. Proposed filtering technique uses esti-
mated noise variance along with local and global statistics
for the construction of a robust fuzzy membership function.
Constructed fuzzy membership function assigns appropri-
ate weights to the statistical estimates, based on their noise
removal and detail preservation capability. Fuzzy weighted
local and non-local estimators are then used for the restora-
tion of a noisy pixel. Detailed simulations are performed, and
restoration results are computed based on well-known per-
formance measures. Numerical and visual results show that
the proposed technique gives much better restored images
than the existing methodologies.
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1 Introduction

Magnetic resonance imaging (MRI) is potentially a powerful
and effective diagnostic tool. MR images can be degraded
during any of the acquisition, preprocessing, compression,
transmission, storage and/or reproduction phases of process-
ing [12]. MRI signals are normally faced with several intri-
cacies such as very low signal-to-noise ratio (SNR) and dif-
ferent transverse relaxation time values in overlapping reso-
nances [1]. During the acquisition process because of the low
SNR one of the dreadful conditions is thermal noise which
fluctuates the signal randomly and degrades the quantita-
tive measurements for further clinical analysis [11,23,36].
Averaging of MR signals can be used to increase the SNR
and reduce the thermal noise, but this process in not a com-
mon practice in clinic, because this increase the acquisition
time of MRI which limits their utilization in many situations
where long replications are not viable, such as for unsta-
ble biological compounds [1,24]. There is an intrinsic com-
promise between high SNR and visual quality (resolution)
of MR images, obtaining a higher resolution image with a
desired SNR increases the acquisition time of MRI [11,28].
Therefore, after acquisition, post-processing denoising and
enhancement techniques are suitable alternatives to remove
the noise and increase the accuracy of clinical diagnostic
system.

In MR data, noise can be Gaussian or Rician distributed
depending upon the type of an image (complex or magni-
tude data). In this manuscript, the magnitude MR data has
been analyzed. Noise estimation is usually done over magni-
tude MR images because this is usual output of the scanning
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process [3], and magnitude and phase data are more directly
related to the anatomical and physiological information of
interest [35]. The raw data of an MR image are complex
valued k-space data, corrupted by white additive Gaussian
noise having equal variances in real and imaginary parts. In
order to transform the MR data from complex to magnitude,
the Gaussian distribution of the noise is transformed into a
Rician distribution [7,8,13]. Rician noise in magnitude MRI
is categorized as the signal-dependent noise model [28] that
may affect the performance of post-processing techniques,
such as registration, segmentation, parametric image synthe-
sis, or tensor estimation in diffusion tensor MRI [2]. More-
over, noise removal in MR images is a critical challenging
task because MR signal has low SNR while containing more
structural features.

A great amount of Rician noise removal techniques have
been reported in the literature. One of the first attempts
has been proposed by Henkelman [15], for the estimation
of magnitude MR image from a noisy data degraded with
Rician noise, and scrutinized the effect of noise on magni-
tude MR images. Many filtering methods are based on the
signal averaging principle by using the natural spatial pat-
tern redundancy in the images. In this sense, Gaussian filter
is a common and simple approach, used in some denoising
applications [4], but this filter blurs the edges and effects the
high-frequency regions of the image. This problem has been
mitigated by edge preserving filters such as anisotropic dif-
fusion filters (ADFs) [10,19,30]. Several other approaches
have been proposed for MRI denoising such as, conven-
tional approach [26], wavelet-based approaches [31,37],
principal component analysis-based technique [27], discrete
cosine transformation-based filter [39], maximum likelihood
approach [35,36], and machine learning-based approaches
[5,14,16,17,33,34]. The denoising performance of most of
these filter depend on the optimal parameters setting and
transform-threshold-inverse transform principle.

Local transform approaches provide better results than
transformdomain approaches [24] such asmedian filter (MF)
and non-local means (NLM) filter. MF provides compara-
tively good results for smooth regions and highly corrupted
images, while its performance decreases for high-intensity
regions and low noise variance, inMR signal. In order to han-
dle the problem of low noise variance in MR signal, multiple
variants of NLM filter are used in the literature. NLM filter,
for the first time, proposed to remove Gaussian noise form
natural images [7], using pixel- based comparison for the
similarity computation. NLM filters (simple NLM, unbiased
NLM, adaptive NLM), based on block-wise comparison for
similarity computation, proposed for Rician noise removal
[23,24]. The NLM filters provide better results if the noise
can be modeled with additive Gaussian probability density
function. Similarly, block-matching and3Dfiltering (BM3D)
denoising filter employs a non-local modeling of images by

collecting similar image patches in 3D arrays [9] that gives
better performance in case of additive Gaussian noise. The
Rician PDF deviates from the Gaussian PDF, especially at
low SNR, Rician PDF tends to Raleigh PDF which gives rise
to biased results. In case of Rician noise removal, the above
methods remove high-frequency signal components, results
in blurring the edges, and introducing some extra bias in the
quantification process. Therefore, advanced image restora-
tion methods are required to mitigate these drawbacks.

Based on problems mentioned above, a new fuzzy logic-
based hybrid filter has been proposed which combines the
noise removal and detail preservation capability of local and
non-local statistical filters for better restoration results. Pro-
posed technique adaptively construct a robust fuzzymember-
ship function by using local and global statistical parameters.

Rest of the manuscript is organized as follows: Sect. 2
presents the noise distribution in MR data, and the proposed
technique is elaborated in Sect. 3. Experiment’s setup and
performance measures are described in Sect. 4, followed by
simulation results and discussions in Sect. 5. Finally, conclu-
sion along with some future directions is made in Sect. 6.

2 Noise in MR images

In MR imaging, the complex valued MR raw data received
from anMRI device represent the frequency domain k-space
and normally corrupted by Additive White Gaussian Noise.
After applying an inverse discrete Fourier transform (IDFT),
the data remain complex andGaussian distributed, because of
the linearity and orthogonality of the Fourier transformation
[11,35,36], the complex spatial MR data can be expressed as

C(x) = A(x) + η(x) (1)

where C(x) is the complex spatial MR signal, A(x) is the
original noise-free MR signal, and η(x) � N (0, σ 2) is the
complex uncorrelated Gaussian noise with zero mean and
variance σ 2.

A(x) = AR(x) + i AI (x)

η(x) = ηR(x) + iηI (x) (2)

In the literature, the noise-free MR data from the complex
valued MR data C(x) can be estimated directly from the real
and imaginary components, or one can first transform the
complex valued data in to magnitude data. It is common to
transform the complex data in to magnitude data, since the
magnitude data can better show the anatomical and physi-
ological quantities in the MR data [11,35]. The magnitude
MR data are real valued and can be visualized easily or used
for automated computer analysis [28]. Such transformation
of MR data (complex to magnitude) changes the distribution
of the data from Gaussian to Rician, because of the non-
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linear operation performed during transformation [22]. The
magnitude of C(x) is denoted by

M = |C | =
[
(AR + ηR)2 + (AI + ηI )

2
]1/2

(3)

The probability distribution function (PDF) of magnitude
data M is represented as

p(M |A, σ )= M

σ 2 exp

(
−M2 + A2

2σ 2

)
Io

(
AM

σ 2

)
u(M) (4)

where A denotes noise-free signal amplitude, σ 2 is the vari-
ance of the white Gaussian noise, Io(.) denotes the 0th order
modified Bessel function of the first kin, u(.) is the unit step
Heaviside function, and M is the magnitude MR signal. The
unit step Heaviside function u(.) indicates that the PDF of M
is only valid for nonnegative values of M [36]. The Rician
noise is a signal-dependent noise and depends on the local
intensity of the image. In the dark region, where the SNR
tends to zero, the Rician PDF approaches to Rayleigh distri-
bution and in the signal region,where theSNR is high, it tends
to Gaussian distribution [11,24,28]. The Rician PDF simpli-
fies to the Rayleigh PDF, for SNR tends to zero, is defined as

p(M |σ) = M

σ 2 exp

(
− M2

2σ 2

)
u(M) (5)

In MRI, noise variance estimation can play a key role in
denoising and enhancement of these images. The noise can
be estimated from either complex or magnitude MR images.
In the literature, the estimation of noise variance is usually
done inmagnitudeMR imagebyusing the background region
[3]. A detail survey of noise variance estimation methods is
given in [2,13].

3 Proposed technique

The aim of the proposed approach is to develop an efficient
denoising filter for magnitude MR data, degraded with low
or high level of Rician noise. The proposed approach is based
on fuzzy logic that combines non-local fuzzy weighted and
local-order statistical filters to suppress Rician noise while
retaining edges and structural detail information. There are
two main reasons to non- local and local filters:

1. Non-local statistical filters performs better, for non-
smooth regions and when theMR image is corrupted with
low level of Rician noise (≤15 %).

2. Local-order statistical filters on another hand performs
better, for smooth regions and when the MR image is
degraded with high level of Rician noise (≥15 %).

Based on above analysis, the proposed scheme constructs
fuzzy membership function adaptively based on statistical
features for the near optimal combination of the local and

non-local fuzzy weighted filters. The proposed fuzzy-based
hybrid filter is divided into fourmodules titled: statistical fea-
tures computation, non-local fuzzy weighted statistical filter,
local-order statistical filter, and fuzzy-based hybrid restora-
tion mechanism. The first three modules are independent of
each others can be executed in parallel to improve the running
time of the algorithm; however, the last module is dependent
upon the first three modules. The schematic block diagram
of the proposed scheme is shown in Fig. 1.

3.1 Statistical features

In this module of the proposed scheme, some of the statisti-
cal features are computed such as noise variance estimation
and mean values of the noisy image and overlapping local
neighborhoods, for the construction of fuzzy set adaptively.
In order to differentiate between smooth and textural regions
as well as background and foreground regions in the image,
local mean μi of a local neighborhood (centered around a
pixel i) with the radius Ri and global mean μg of the com-
plete noisy image, are used in the proposed method for fuzzy
membership construction.

In magnitude MR data the standard deviation σg of the
Rician noise is estimated from the background of the squared
magnitude MR image [28], as follows:

σg =
√

μb

2
(6)

where μb is mean value of the background region of the
squaredmagnitudeMRimage. In proposed scheme, the back-
ground is selected using a threshold method proposed by
Otsu [29].

3.2 Non-local fuzzy weighted statistical filter

The non-local fuzzy weighted statistical filter averages sim-
ilar pixels in an image, according to their intensity distance
and Gaussian fuzzy membership-based weights. The simi-
larity between two pixels is based on patch comparison and
pattern redundancy in non local region, where the pixels are
not penalized due to its distance from the pixel being filtered.
The non-local fuzzy weighted statistical filter can be denoted
as

ĝnonlocal =
∑
∀i∈g

NonLocalFilter(g(i)) (7)

where ĝnonlocal is an output denoised image, g is a given noisy
image corrupted with Rician noise, and i denotes a pixel in
the image. The filtered value at the pixel i is calculated as a
weighted average of all the pixels in the image, as defined by
this formula:
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Fig. 1 The block diagram of
the proposed scheme Noisy Image
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NonLocalFilter(g(i)) =
∑
∀ j∈g

[w(i, j) × g( j)]

0 ≤ w(i, j) ≤ 1,
∑
∀ j∈g

[w(i, j)] = 1 (8)

where i is the pixel being filtered and j stands for each one of
the pixels in the image g. The weights w(i, j) are computed,
based on the similarity between the square neighborhoods
Mi and Mj , with a same radius Rsim, which are centered
around pixels i and j , respectively. The similarity w(i, j)
between pixels i and j is calculated as

w(i, j) = 1

C(i)
e
− d(i, j)

h2

C(i) =
∑
∀ j

e
− d(i, j)

h2

d(i, j) = Gρ

∥∥g(Mi ) − g(Mj )
∥∥2
Rsim

(9)

where C(i) is the normalizing factor, h is an exponential
decay control parameter, d is a Gaussian weighted euclidean
distance, and Gρ is a Gaussian kernel of with zero mean
and ρ standard deviation. In order to avoid over-weighting
effects, the value of a center pixel of the Gaussian kernel
Gρ is set to the same value that the pixels at a distance 1,
and self-similarity w(i, i) = max (w(i, j)∀ j �= i). For each
pixel i , it is very inefficient to calculate the similarity of all
the pixels j in the image; therefore, the similarity of all the
pixels in a search window Msearch with a radius Rsearch has
been used that can be written as

NonLocalFilter (g(i), Rsearch, Rsim)

=
∑

∀ j∈Msearch

[w(i, j) × g( j)] (10)

3.3 Local-order statistical filter

The local-order statistical filter is a nonlinear digital filtering
method, one of the efficient, simple and widely used state-of-
the-art technique. In case of Rician noise removal, under cer-
tain conditions (high-corrupted pixels and smooth regions), it
removes noise quite efficiently with more accuracy. In local-
order statistical filter, a square neighborhood Mlocal with the
radius Rlocal convolved over the complete image and pro-
duces the median value for each pixel in the image that can
be denoted as

ĝlocal = LocalFilter(g, Rlocal) (11)

3.4 Fuzzy-based hybrid restoration

In this section, fuzzy logic-based hybrid restoration mod-
ule has been presented. In order to consider the pros and
cons of the non-local fuzzy weighted and local-order statis-
tical filters at low and high noise rates while operating on
smooth and detailed regions simultaneously, fuzzy weighted
hybrid filter has been employed. Proposed filter adaptively
computes the weights based on local and non-local statisti-
cal features using the concept of fuzzymembership function.
Fuzzy membership function has been constructed adaptively

123



SIViP (2016) 10:215–224 219

by analyzing statistical features so that better noise removal
and detail preservation capability can be achieved. For this
purpose, trapezoidal-shaped fuzzy membership function is
constructed and contributions of non-local fuzzy weighted
and local-order statistical filters are obtained. Trapezoidal-
shaped fuzzy membership function can be denoted as

f (x; a, b, c, d) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ a
x − a

b − a
, if a ≤ x ≤ b

1, if b ≤ x ≤ c
d − x

d − c
, if c ≤ x ≤ d

0, if d ≤ x

(12)

where x is an input vector for the trapezoidal function, a, b, c,
and d are the scalar parameters, a and d locate the feet of the
trapezoidal, and b and c locate the shoulders. The expressions
for computing the parameters (a, b, c, and d) are given below

a = k1 × min
{
μi , μg

}

b = k2 × max
{
μi , μg

}

c = k3 × b

d = k4 × c (13)

where k1, k2, k3, and k4 are adjusting parameters which
depend upon the estimated noise level σg and constant val-
ues, μi is the mean of a local neighborhood centered around
a pixel i with the radius Ri , andμg is the mean of a complete
noisy image g(x, y).

After fuzzy set construction, the fuzzy membership
(weight) of non- local and local estimators are computed,
using NLM μi of the local patch, such as

wnonlocal = f (μi ; a, b, c, d)

wlocal = 1 − wnonlocal (14)

where wnonlocal and wlocal represent the near optimal contri-
butions of the non-local and local filters, respectively. Finally,
the required restored image f̂ (x, y) is obtained by using the
mathematical model:

f̂ (x, y) = wnonlocal × ĝnonlocal + wlocal × ĝlocal (15)

In order to justify the expressions used by the proposed
method for fuzzy set parameters (a, b, c, and d) shown in the
Eq. 13, remarks are given in the following:

Remark 1 Estimated noise level σg has been used for com-
puting the fuzzyparameters adaptively. Thenon local statistic
does not give good results at high noise rates for low intensity
regions, so parameter a will fall near the origin of the MR
signal at low noise rate. However, as the noise rate increases,
distance between the origin and the parameter a increases,
and hence, low weightwnonlocal will be assigned to non-local
statistic at low-intensity regions.

Remark 2 Local and global mean statistics (μi and μg) con-
trol the shoulders of the trapezoidal-shaped fuzzy mem-
bership function. Close values of μi and μg suggest short
shoulders, whereas large values indicate the wider shoulders
because as the noise rate increases,μi andμg come closer to
each other. Therefore, low noise rate suggests higher weight
wnonlocal to the non-local statistic and vice versa.

Remark 3 Constant gains (k1, k2, k3, and k4) used in the
Eq. 13 are set experimentally to get accurate restoration
results.

4 Experiment’s setup

In order to compare the effectiveness of the proposed tech-
nique, simulated (synthetic) and real (clinical) data sets of
normal brain MR images have been used which are obtained
from BrainWeb database [6] and Internet Brain Segmenta-
tion Repository (ISBR) [18], respectively. The data comprise
of three modalities, namely T1-weighted, T2-weighted, and
PD-weighted.

All of the experiments are carried out using MAT-
LAB 7.9.0 [25]. MR images are artificially degraded with
Rician noise, and the performance of restoration results
are analyzed. The proposed scheme has been compared
with familiar existing techniques such as ADF [10,30,32],
BM3D denoising filter [9], MF [20], adaptive Wiener fil-
ter (AWF) [21], and non-local means (NLM) filter [23].
All the free parameters of these methods are set to the
best setup as proposed by authors. The relevant values
of the parameters to obtain the best results are given
below:

• ADF: number of iterations = 15, integration constant =
1/7, the actual noise variance to compute the noise level,
and wide regions have privilege over smaller regions.

• BM3D: actual noise variance is taken for computing the
noise level. The values of other parameters are adjusted as
described by the authors in the article [9].

• MF: convolution window of size 3 × 3.
• AWF: convolution window using a 5 × 5 neighborhood.
In order to achieve the best performance of the filter, the
noise variance is manually set to the actual value.

• NLM filter: radius of the searching area = 5, radius of the
local area= 2, the correction constant= 1.2, and the noise
level is computed by using the actual noise variance.

In experiments, the setup of all the parameters using in the
proposed scheme is shown in Table 1 and these parameters
are adjusted empirically for denoising MR images.

Root mean squared error (RMSE), peak signal to noise
ratio (PSNR), and structural similarity indexmeasure (SSIM)
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Table 1 Parameters setup of the
proposed scheme for denoising
MR images

Parameter Description Value

Rmed Radius of the square neighborhood Mmed for local filter 1

Rsearch Radius of the square searching window Msearch for non-local filter 5

Rsim Radius of the square similarity window (Msim) includes local and
non-local neighborhoods (Mi and Mj ), for non-local filter

2

Ri Radius of the square neighborhood centered at pixel i , being filtered,
to calculate the mean μi , used in fuzzy set construction proscess

1

k1 Adjusting parameter used to calculate a (locate the left foot of the
trapezoidal), used in fuzzy set construction process

(
3.1 × σg

)

k2 Adjusting parameter used to calculate b (locate the left shoulder of the
trapezoidal), used in fuzzy set construction process

[
0.98 + (

0.8 × σg
)]

k3 Adjusting parameter used to calculate c (locate the right shoulder of
the trapezoidal), used in fuzzy set construction process

1.1

k4 Adjusting parameter used to calculate d (locate the right foot of the
trapezoidal), used in fuzzy set construction process

1.1

are used for quantitative comparison, which are more exten-
sively used in literature.

5 Comparative analysis

In this section, the performance of the proposed approach
is compared with several denoising methods on simulated
and real MR data sets. In order to evaluate the quantita-
tive metrics, the ground truth MR data are artificially con-
taminated with a noise variance having the range 5–30%.
Average restoration results over 100 iterations of all these
denoising methods are computed, based on RMSE, PSNR,
and SSIM. The quantitative results (RMSE and PSNR) for
different levels of Rician noise on simulated and realMRdata
sets are tabulated inTables 2, 3, respectively. In case ofRician
noise, a denoising method can efficiently remove noise from
a noisy image either corrupted with low or high level of
noise, because Rician probability distribution approaches to
Raleigh PDF at lowSNR and it tends toGaussian distribution
at high SNR.

Table 2, clearly shows that the proposed hybrid technique
has much better restoration results than existing methods at
low as well as at high rates of Rician noise. Proposed tech-
nique exploits the fact that non-local filter gives good result
at low-noise-corrupted detailed regions and local filter per-
forms better at smooth regions degraded with high noise.
Therefore, hybrid filter based on region characteristic and
its noise contamination, adaptively assign appropriate fuzzy
logic-based weights to local and non-local filters for better
restoration of degraded image. Furthermore, at low noise rate
(5%), the proposed technique has improvement of 0.3db for
T1, 0.4db for T2, and 0.3db for PD as compare to the best
performing NLM filter. As the noise rate increases, the per-

formance of the hybrid filter also increases as we can see
in Table 2. This is due to fact that even at high noise rates,
the proposed technique accurately differentiates the low and
high noise regions, and hence, better estimate of noisy pixel
is obtained. Similarly, Table 3 shows that in case of real MR
data sets, the proposed scheme out perform than existing
techniques by same margin as discussed for Table 2.

During noise smoothing process, retaining the important
structural information, such as texture and edges, is consid-
ered as an important task in image restoration. PSNR and
RMSE are global quantitative measures and do not quantify
that how well the detailed information, present in the image,
are preserved. In order tomeasure the detail preservation per-
formance of the proposed filter, a well-known quantitative
measure SSIM is used. SSIM is based on the hypothesis that
human visual system is highly adopted for extracting struc-
tural information. The comparison of the proposed hybrid
filter using SSIM is shown in Fig. 2 using both simulated
and real data sets. Figure 2 clearly indicates that the pro-
posed technique is superior in terms of retaining structural
information at all noise levels.

In order to compare the visual performance, detailed
results are obtained with the close up view of the restored
images for better inspection in Figs. 3 and 4. Each figure
incorporates, original image, noisy image, and the restored
images by using existing and proposed approaches. Figure 3
shows the visual results for simulated MR slice corrupted
with 10% level of Rician noise. It can be observed from the
figure that ADF and AWF are unable to smooth out noise
completely. Furthermore, MF is good at preserving some
details at the cost of some noisy spots, whereas NLM filter
removes the noise completely but most of the image struc-
tural information has been lost. Visual results on real image
data set, corrupted with 20% level of Rician noise, are shown

123



SIViP (2016) 10:215–224 221

Table 2 Quantitative comparison on Simulated MR data (BrainWeb) using PSNR (RMSE)

Modality (slice#) Noise ratio Noisy image ADF BM3D MF AWF NLM method Proposed

T1-weighted slice#70 0.05 25.5 (13.6) 27.8 (10.4) 26.6 (11.9) 28.1 (10.0) 28.2 (9.9) 28.8 (9.2) 29.1 (8.9)

0.10 19.4 (27.3) 22.3 (19.5) 20.6 (23.8) 22.8 (18.6) 22.4 (19.3) 22.8 (18.5) 23.3 (17.4)

0.15 15.9 (41.0) 17.2 (35.4) 19.0 (28.6) 19.2 (27.8) 18.8 (29.2) 19.1 (28.2) 19.6 (26.7)

0.20 13.4 (54.5) 14.7 (46.9) 16.5 (38.1) 16.7 (37.3) 16.2 (39.7) 16.5 (38.1) 17.1 (35.6)

0.25 11.5 (68.0) 14.5 (48.2) 12.9 (57.8) 14.5 (47.8) 14.0 (50.7) 14.4 (48.6) 15.0 (45.1)

0.30 9.9 (81.3) 12.8 (58.7) 11.4 (68.9) 12.8 (58.4) 12.3 (61.8) 12.7 (59.2) 13.2 (55.6)

Mean 15.9 (47.6) 18.8 (33.9) 17.2 (38.2) 19.0 (33.3) 18.7 (35.1) 19.1 (33.6) 19.6 (31.5)

T2-weighted slice#70 0.05 25.4 (13.7) 27.6 (10.7) 26.3 (12.3) 24.2 (15.8) 26.6 (11.9) 28.4 (9.7) 28.8 (9.3)

0.10 19.3 (27.6) 21.9 (20.4) 20.4 (24.4) 21.1 (22.4) 21.9 (20.5) 22.8 (18.6) 23.1 (17.9)

0.15 15.9 (40.8) 18.7 (29.8) 17.1 (35.8) 18.5 (30.4) 18.6 (29.9) 19.0 (28.7) 19.3 (27.6)

0.20 13.5 (54.1) 16.2 (39.6) 14.7 (46.7) 16.2 (39.5) 16.1 (40.2) 16.1 (40.1) 16.5 (38.2)

0.25 11.5 (68.1) 14.1 (50.4) 12.9 (58.1) 14.3 (49.2) 13.9 (51.3) 13.9 (51.3) 14.5 (48.1)

0.30 9.8 (82.3) 12.3 (61.9) 12.5 (60.3) 11.3 (69.7) 12.1 (63.4) 12.1 (63.0) 12.8 (58.7)

Mean 15.9 (47.8) 18.5 (35.5) 17.3 (39.6) 17.8 (36.2) 18.2 (36.2) 18.7 (35.2) 19.1 (33.3)

PD-weighted slice#50 0.05 25.5 (13.5) 28.3 (9.8) 26.5 (12.0) 27.6 (10.7) 28.3 (9.8) 29.1 (9.0) 29.4 (8.6)

0.10 19.4 (27.2) 22.7 (18.7) 20.7 (23.6) 22.7 (18.6) 22.8 (18.4) 23.4 (17.2) 23.7 (16.7)

0.15 15.8 (41.2) 19.3 (27.7) 17.5 (33.8) 19.5 (27.2) 19.2 (27.9) 19.9 (25.8) 20.2 (24.8)

0.20 13.3 (55.0) 16.8 (36.7) 15.2 (44.2) 17.0 (36.1) 16.6 (37.7) 17.3 (34.9) 17.7 (33.3)

0.25 11.3 (69.4) 14.9 (46.0) 13.6 (53.3) 15.0 (45.1) 14.6 (47.7) 15.1 (44.6) 15.8 (41.5)

0.30 9.7 (83.0) 13.3 (55.3) 12.2 (62.6) 13.4 (54.7) 12.9 (57.8) 13.4 (54.4) 14.0 (50.8)

Mean 15.9 (48.2) 19.2 (32.4) 17.6 (38.2) 19.2 (32.1) 19.1 (33.2) 19.7 (31.0) 20.1 (29.3)

Overall mean — 15.9 (47.9) 18.8 (33.9) 17.4 (38.7) 18.7 (33.9) 18.6 (34.8) 19.2 (33.3) 19.6 (31.4)

Table 3 Quantitative comparison on Real MR data (IBSR dataset 657) using PSNR (RMSE)

Modality (slice#) Noise ratio Noisy image ADF BM3D MF AWF NLM method Proposed

T1-weighted slice#10 0.05 25.1 (14.2) 27.4 (10.9) 26.2 (12.5) 27.3 (11.0) 27.5 (10.8) 27.8 (10.4) 28.3 (9.9)

0.10 18.9 (29.0) 21.3 (21.9) 20.0 (25.5) 21.5 (21.3) 21.2 (22.3) 21.5 (21.5) 21.9 (20.4)

0.15 15.3 (43.7) 17.7 (33.2) 16.4 (38.5) 17.9 (32.4) 17.4 (34.3) 17.8 (32.9) 18.2 (31.5)

0.20 12.7 (58.9) 15.0 (45.5) 13.9 (51.5) 15.2 (44.3) 14.6 (47.3) 15.0 (45.1) 15.4 (43.2)

0.25 10.7 (74.0) 12.8 (58.1) 11.9 (64.9) 13.0 (56.8) 12.5 (60.5) 12.9 (57.7) 13.3 (55.2)

0.30 9.1 (89.5) 11.1 (71.3) 10.2 (79.2) 11.3 (69.6) 10.7 (74.1) 11.1 (70.7) 11.5 (67.9)

Mean 15.3 (51.6) 17.5 (40.1) 16.4 (45.3) 17.7 (39.2) 17.3 (41.5) 17.7 (39.7) 18.1 (38.0)

T2-weighted slice#10 0.05 25.0 (14.4) 26.9 (11.5) 26.1 (12.7) 26.8 (11.6) 27.1 (11.3) 27.1 (11.2) 27.5 (10.8)

0.10 18.8 (29.2) 21.1 (22.6) 19.9 (25.8) 21.3 (21.9) 20.9 (22.9) 21.2 (22.3) 21.5 (21.5)

0.15 15.1 (44.7) 17.3 (34.7) 16.3 (39.0) 17.6 (33.8) 17.1 (35.7) 17.4 (34.4) 17.7 (33.2)

0.20 12.6 (60.0) 14.7 (47.0) 13.7 (52.8) 14.9 (45.9) 14.4 (48.7) 14.7 (46.7) 15.2 (44.4)

0.25 10.6 (75.4) 12.6 (59.6) 11.7 (66.3) 12.8 (58.3) 12.3 (61.8) 12.7 (59.2) 13.0 (56.9)

0.30 8.9 (91.3) 10.9 (73.0) 10.0 (80.7) 11.1 (71.2) 10.5 (75.8) 10.9 (72.5) 11.3 (69.2)

Mean 15.2 (52.5) 17.2 (41.4) 16.3 (46.2) 17.4 (40.5) 17.1 (42.7) 17.3 (41.1) 17.7 (39.3)

PD-weighted slice#10 0.05 24.9 (14.5) 27.1 (11.3) 26.0 (12.8) 27.0 (11.3) 27.2 (11.2) 27.4 (10.9) 27.7 (10.5)

0.10 18.8 (29.4) 21.1 (22.4) 19.9 (25.8) 21.4 (21.8) 21.0 (22.8) 21.3 (22.0) 21.6 (21.1)

0.15 15.2 (44.1) 17.6 (33.6) 16.4 (38.8) 17.8 (32.8) 17.3 (34.7) 17.7 (33.3) 18.1 (31.7)

0.20 12.7 (59.1) 15.0 (45.6) 13.8 (51.8) 15.2 (44.6) 14.6 (47.4) 15.0 (45.3) 15.4 (43.3)

0.25 10.7 (74.5) 12.8 (58.3) 11.8 (65.4) 13.0 (57.2) 12.5 (60.7) 12.9 (57.8) 13.3 (55.3)

0.30 9.1 (89.7) 11.1 (71.2) 10.2 (78.9) 11.3 (69.8) 10.7 (74.1) 11.1 (70.7) 11.5 (68.1)

Mean 15.2 (51.9) 17.4 (40.4) 16.4 (45.6) 17.6 (39.6) 17.2 (41.8) 17.6 (40.0) 17.9 (38.3)

Overall mean — 15.2 (52.0) 17.4 (40.6) 16.4 (45.7) 17.6 (39.8) 17.2 (42.0) 17.5 (40.3) 17.9 (38.5)
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Fig. 2 SSIM-based comparison
of the proposed scheme with
other techniques. a T1-weighted
simulated (slice 70) b
T1-weighted real (slice 10) c
T2-weighted simulated (slice
70) d T2-weighted real (slice
10) e PD-weighted simulated
(slice 50) f PD-weighted real
(slice 10)
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in Fig. 4. It can be seen in the figure that by increasing the
power of noise, the NLMfilter has been produced some extra
blur and smoothness in the restored images. The proposed
approach produces better results to overcome these limita-
tions in the restored data by using the intelligent combination
of local (such as median) and non local (such as non local
means) filters.

Finally, we can conclude, based on quantitative and visual
results, that in all levels of Rician noise, the proposed
approach has produced more pleasant results such as more
noise cleaning ability, and retention of edges and structural
information.

6 Conclusion and future work

In this article fuzzy logic basedhybrid image restoration tech-
nique has been proposed, which combines the advantages
of local and non local estimators based on noise level and
region intensities. In proposed scheme trapezoidal shaped
fuzzy membership function gives us a suitable degree degree
of membership to local and non local statistics. It has been
observed that appropriate construction of fuzzy membership
parameters combines the advantages of local and non-local
estimates in an innovative manner. The results show that
the proposed scheme gives better performance than existing
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Visual comparison for Simulated T1-Weighted MR image with 10% Rician noise. a Original image, b noisy image c ADF d BM3D eMF
f AWF g NLM h proposed

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4 a Original image b noisy image c ADF d BM3D eMF f AWF g NLM h proposed

techniques based on well-known quantitative measures over
simulated and real MR brain images. Furthermore, visual
results confirm the achievements made through quantitative
measures and clearly indicate that the proposed technique has
capability of better noise removal and detail preservation. In
future, unbiased estimate for the proposed technique can be
computed for more accurate results.
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