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Abstract In this work, we present a robust face authenti-
cation approach merging multiple descriptors and exploiting
both 3D and 2D information. First, we correct the heads rota-
tion in 3D by iterative closest point algorithm, followed by
an efficient preprocessing phase. Then, we extract different
features namely: multi-scale local binary patterns (MSLBP),
novel statistical local features (SLF), Gabor wavelets, and
scale invariant feature transform (SIFT). The principal com-
ponent analysis followed by enhanced fisher linear discrim-
inant model is used for dimensionality reduction and classi-
fication. Finally, fusion at the score level is carried out using
two-class support vector machines. Extensive experiments
are conducted on the CASIA 3D faces database. The evalu-
ation of individual descriptors clearly showed the superior-
ity of the proposed SLF features. In addition, applying the
(3D + 2D) multimodal score level fusion, the best result is
obtained by combining the SLF with the MSLBP + SIFT
descriptor yielding in an equal error rate of 0.98% and a
recognition rate of RR = 97.22%.
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1 Introduction

A significant number of feature extraction approaches are
proposed in literature to represent face images. The exist-
ing face recognition approaches can broadly be classified
into two categories, global and local [1]. Global face recog-
nition methods are usually based on statistical approaches
in which features are extracted from the entire face image.
Among globalmethods, principal component analysis (PCA)
[2], fisher linear discriminant (FLD) [2], independent com-
ponent analysis (ICA) [3], the space–frequency techniques
such asFourier transform [4].Although the global face recog-
nition techniques are the most common in face recogni-
tion, recently, lots of work is being done on local feature
extraction methods as these are considered as more robust
against variations in facial expressions, noise, and occlusion.
These structure-based approaches deal with local informa-
tion related to some interior parts of face images. Among
the sparse descriptors, the scale invariant feature transform
(SIFT) [5], Gabor wavelet [6], and local binary patterns
(LBP) [7]. Early face recognition research was based on
2D appearance images [8]. However, an increasing num-
ber of 3D-shape-based face recognition algorithms have
recently emerged with the advent of 3D scanners. Although
the appearance of a face in a 2D image encodes the shape
information of the face, aside from the face albedo, 2D face
recognition alone has not been able to achieve the desired
accuracy because of its sensitivity to illumination, pose, and
expression variations. On the other hand, 3D face recogni-
tion can better handle pose variations (particularly in depth
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Fig. 1 Overview of the proposed framework

rotations) and the 3D data can be used to correct the pose of
the corresponding 2D image (texture) as well [9].

1.1 Overview of our proposed approach

In this paper, we investigate how local features of 3D and 2D
information contribute to face recognition when illumina-
tion, expressions and combined changes in expression under
illumination are taken into account. All processes included in
our training and test steps are fully automated. Our system,
as illustrated in Fig. 1, includes four important steps which
consist in:

1. Preprocessing: By translating and rotating one input 3D
image to align one reference 3D image, face poses, and
changed positions between the face and the equipment
are normalized.

2. Feature extraction: Robust feature representation is very
important to the whole system. It is expected that these
features are invariant to rotation, scale, expression, and
illumination. The existing work usually uses raw depth
and intensity features. In our system, we combine one
global feature and four local features.

3. Classification: PCA combined with enhanced fisher lin-
ear discriminant model (EFM) are used for reducing the
dimensional space. Classification is performed using the
normalized correlation metric.

4. Fusion system: It consists in the fusion of the classifica-
tion results by support vector machines (SVM) method
[10], and the score normalization is performed using
Min_Max method [11] upstream is chosen for its sim-
plicity.

1.2 Contributions of this paper

In this paper, we propose a new scheme to combine several
methods of local feature extraction from depth and inten-
sity images to overcome the problems due to illumination,
expressions, and combined changes in expression under illu-
mination. Themain contributions of this paper are as follows:

1. A novel feature extraction method (statistical local fea-
tures) is proposed. It is based on the calculation of statis-
tical parameters in a neighborhood of the pixel such as
the average, standard deviation, variance.

2. Study the fusion of two multimodal systems (multi-
algorithms: built by the fusion of several local charac-
teristics and multi-sensor: built by the fusion of 2D and
3D information).

3. Studying several feature extraction methods to gain
insights into their complementarity.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the preprocessing procedure, which is very
important to robust recognition. Section 3 describes the fea-
tures for face representation. Section 4 reports the experi-
mental results. Finally, Section. 5 summarizes this paper.

2 Preprocessing

It is assumed in this paper that one face is described by one
3D point cloud captured by one 3D laser scanner. Each point
cloud consists of thousands of points in the 3D space. These
discrete points approximately describe the face surface. We
use CASIA 3D face database. Each point is described with
3D spatial coordinates and corresponding RGB color coordi-
nates. In this section,wedescribe how the original 3Ddata are
preprocessed. That is, we exactly register the data and then
obtain the depth and intensity images. This part prepares for
the feature extraction in the next section. This preprocessing
includes two main steps, registration of 3D face surfaces and
acquisition of depth and intensity images.

2.1 Registration

We use iterative closest point (ICP) [12]. ICP has two attri-
butions to this method. Firstly, it aligns all the faces with
the first 3D face (neutral expression). Secondly, it examines
whether the detected nose tip is correct.

2.2 Depth and intensity images

Depth and intensity images are obtained from registered 3D
data. The data are converted into a 3D image depth (see
Fig. 2a) and a color image (see Fig. 3a). In most images, the
nose is the closest part of the face in 3D scanner; it has the
highest value in depth between all points of the face. For each
pixel, the average is calculated using the neighboringwindow
of size 9 × 9 around it. Using a window of size 3× 3 which
calculates the sum of the depth of its corresponding pixels,
the nose is detected as the coordinates of the center pixel of
the window that returns the maximum value (see Fig. 2b).
After detecting the nose, a sub-image centered on the center
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Fig. 2 Preprocessingof the depth image:a the depth image,bdetecting
the nose tip, c extracted sub-image, dmean image 5× 5, e depth image
after removing noise and filling holes

Fig. 3 Preprocessing of the intensity image: a the color image, b
extracted sub-image, c intensity image, dmean image 5×5, e intensity
image after removing noise and patching holes, f intensity image after
histogram equalization

of the nose, with size 57× 47, is extracted (see Figs. 2c, 3b).
For RGB color images, we used the intensity images (see
Fig. 3c). However, due to the quality of original 3D data, the
depth and intensity images usually contain much noise, such
as holes and outliers. We can obtain enhanced images by
the following processes. The preprocessing of depth images
includes noise removal and hole filling.We use the following
scheme to remove the outliers. For each pixel, the mean is
computed for the 5 × 5 neighboring window (see Figs. 2d,
3d). If the pixel intensity is less than a given threshold, this
pixel is replaced by the mean pixel. The result is shown in
Figs. 2e, 3e. The variation in the lighting strongly influences
the presentation of the intensity images. To cope with this
problem, histogram equalization is used to reduce the influ-
ence of the illumination variations (see Fig. 3f).

3 Features for face representation

3.1 Multi-scale local binary patterns (MSLBP)

The original LBP operator was later generalized to deal
with different neighborhoods [13]. A local neighborhood is
defined as a set of sampling points evenly spaced on a circle
which is centered at the pixel to be labeled, and the sampling
points that do not fall within the pixels are interpolated using
bilinear interpolation, thereby allowing for any radius and
any number of sampling points in the neighborhood. For-
mally, given a pixel at (xc, yc), the resulting LBP can be
expressed in decimal form as:

LBPP,R(xc, yc) =
P−1∑

p=0

s(i p − ic)2
p (1)

Fig. 4 The multi-scale LBP for facial depth and intensity images

where ic and i p are respectively gray-level values of the cen-
tral pixel and P surrounding pixels in the circle neighborhood
with a radius R, and function s(x) is defined as:

s(x) =
{
1 if x ≥ 0

0 if x ≺ 0
(2)

Given a facial depth and intensity images,wegenerate a set
of multi-scale LBP for facial representation. Some examples
are illustrated in Fig. 4. In this figure, the number of sampling
points varies from 8 to 24 points, and the radius value varies
from 1 to 4 pixels.

3.2 Proposed statistical local features (SLF)

The main purpose of the proposed method is to compute
some statistical parameters in the neighborhood of the pixel
using different sizes and number of neighboring points. The
calculated parameters are:

3.2.1 The mean

It is defined as:

meanP,R(xc, yc) = 1

P

P−1∑

p=0

i p (3)

where ic and i p are respectively gray-level values of the cen-
tral pixel and P surrounding pixels in the circle neighborhood
with a radius R.

3.2.2 Standard deviation

Standard deviation shows how much variation exists from
the average. It is defined as:

stdP,R(xc, yc) =
√

1

P

∑P−1

p=0
(i p − meanP,R(xc, yc))2

(4)
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Fig. 5 The statistic local features (SLF), a facial depth image, b inten-
sity image

3.2.3 Variance

The variance is a measure of how far a set of numbers is
spread out. It is one of several descriptors of a probability
distribution, describing how far the numbers lie from the
mean (expected value). It is defined as:

VARP,R(xc, yc) = 1

P

P−1∑

p=0

(i p − meanP,R(xc, yc))
2 (5)

3.2.4 Skewness

Skewness is a measure of symmetry, or more precisely, the
lack of symmetry. A distribution, or data set, is symmetric if
it looks the same to the left and right of the central point. It
is defined as:

skewP,R(xc, yc)

=
1
P

∑P−1
p=0 (i p − meanP,R(xc, yc))3

(√
1
P

∑P−1
p=0 (i p − meanP,R(xc, yc))2

)3/2 (6)

3.2.5 Kurtosis

Kurtosis is a measure of whether the data are peaked or flat
relative to a normal distribution. It is defined as:

kurP,R(xc, yc) =
1
P

∑P−1
p=0 (i p − meanP,R(xc, yc))4

(√
1
P

∑P−1
p=0 (i p − meanP,R(xc, yc))2

)2

(7)

Some examples for SLF features are illustrated in Fig. 5.

3.3 Overview of Gabor wavelet filters

In this paper, we use 2D Gabor filters of depth and inten-
sity images to characterize a person. The Gabor wavelets

Fig. 6 The SIFT-based keypoints detected from an original depth,
intensity facial image, and four associated LBPP,R

Fig. 7 SIFTmatches between learning and evaluation faces belonging
to a the same identity and b different identities

represent the properties of spatial localization, orientations,
and spatial frequency selectivity. The representation of faces
using Gabor wavelet has been successfully used in 2D and
3D face recognition [14]. This representation of an image
describes the facial characteristics of both the spatial fre-
quency and spatial relations.

3.4 Scale invariant feature transform (SIFT)

The SIFT [5] is a local 2D feature calculated at keypoint loca-
tions. The interested reader is referred to Lowes paper [5] for
the details of the keypoint localization and the SIFT feature
extraction.The SIFT operator works on each LBPP,R sepa-
rately. Because LBPP,R highlight the local characteristics of
smooth facial image depth and intensity. Many SIFT-based
keypoints can be detected for the following step more than
in the original images. Same statistical work was done along
with the experiments onCASIA 3D faces database. The aver-
age number of descriptors extracted from each of LBPP,R

depth is 52 and LBPP,R intensity is 162 while that of each
original facial depth image is limited to 14, and intensity
is limited to 63. The SIFT descriptors for these faces were
then computed using Lowes code [15]. Figure 6 shows the
SIFT-based keypoints extracted from one range and intensity
face image and its four associated LBPP,R . To calculate the
similarity between a learning and evaluation face, their SIFT
descriptors were matched using the Euclidean distance (see
Fig. 7).
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4 Experimental results

4.1 The CASIA 3D database

We use the CASIA 3D face database [16] to test our pro-
posed authentication system. The basis is constructed by a
3D scanner Minolta VIVID 910 non-contact working in the
fast mode. This database contains 123 subjects, each sub-
ject having 37 or 38 images with individual variations of
poses, expression, illumination, and combined changes in
expression under illumination and pose as expressions. This
database contains complex variations that are difficult to any
algorithm. In this section, we studied the variations of illu-
mination (images: 1, 2, 3, 4, 5), expressions (images: 6, 7,
8, 9, 10) and the combined changes in expression under illu-
mination (images: 11, 12, 13, 14, 15). Therefore, we used
15 images for each subject. We used an assessment protocol
of separating people into two classes, client and impostor.
Customer group contains 100 subjects, while the impostor
group is divided into 13 impostors for evaluation and 10 for
testing. The repartition of images in different sets is given in
Table 1.

Table 1 Distribution of photos in different sets

Together Customer Impostor

Learning 500 images (1, 4, 8, 9, 10) 0 images

Evaluation 500 images (2, 6, 7, 14, 15) 195 images (1:15)

Test 400 images (3, 5, 11, 12, 13) 150 images (1:15)

4.2 Global feature (PCA + EFM)

For this part, we use a holistic approach. The characteristic
vector of 2D and 3D image is built by concatenation of rows
of depth and intensity image. We use PCA + EFM method
for reduction and separation of space and normalized correla-
tion for similaritymeasure. Table 2 shows the error rate in the
entire evaluation and testing for a comprehensive approach
(PCA + EFM) feature extraction. (EER: equal error rate and
RR: the recognition rate (RR = 100−FRR−FAR). FRR: the
false reject rate and FAR: the false accept rate, FN: feature
number is the number of feature extracted by enhanced fisher
linear discriminant model (EFM). It is generally computed
experimentally [11]. We vary FN from 10, 20, . . . , 200, and
then, we select the one which gives the best result. P: num-
ber of points in the neighborhood pixel, R: radius). The table
shows that PCA+ EFM gives a poor performance for depth
information (3D). Indeed, the RR criterion for instance is
89.36%, whereas the RR is 93.14% when relative inten-
sity information(2D) and multimodal fusion (3D and 2D)
are used.

4.3 Multi-scale LBP (MSLBP)

For this part, we use theMSLBP local method. Table 3 shows
the error rate in all tests and evaluation by this method of fea-
ture extraction. The number of sampling points varies from 8
points to 24 points, and the radius value varies from 1 pixel to
4 pixels. LBP method gives better results for 3D information
in the case of 2D information for the four radius values (R).
The fusion of four radius values (MSLBP) improves per-

Table 2 Performance of the PCA + EFM throughout evaluation and test set

3D image 2D image 3D and 2D image

Eval Test Eval Test Eval Test

EER FAR FRR RR FN EER FAR FRR RR FN EER FAR FRR RR

7.24 4.24 6.4 89.36 10 3.36 2.94 4.8 92.26 30 2.61 2.61 2.86 93.14

Best performance is indicated in bold

Table 3 Performance of the multi-scale LBP method throughout evaluation and test set

(P,R) 3D image 2D image 3D and 2D image

Eval Test Eval Test Eval Test

EER FAR FRR RR FN EER FAR FRA RR FN EER FAR FRA RR

1-(1,8) 4.74 3.11 5.2 91.68 50 5.90 6.93 7.4 85.66 60 3.82 4.26 3.6 92.14

2-(16,2) 6 5.79 3.8 90.40 50 4.22 5.41 5.2 89.38 100 3.56 4.08 3 92.92

3-(24,3) 6.17 5.79 4 90.2 50 4.37 5.46 4.8 90.04 70 3.79 4.08 2.9 93.12

4-(24,4) 6.17 5.52 4.2 90.27 50 4.17 6.58 4.40 89.02 100 3.61 4.35 3.2 92.44

MSLBP 5.36 4.63 3.8 91.56 – 4.62 4.98 4.40 90.61 – 0.95 1.25 4.2 94.54

Best performance is indicated in bold
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Table 4 Performance of the SLF throughout evaluation and test set

(P,R) 3D image 2D image 3D and 2D image

Eval Test Eva Test Eval Test

EER FAR FRR RR FN EER FAR FRR RR FN EER FAR FRR RR

1-mean (8,1) 6 3.89 5.4 90.7 10 3.36 2.73 4.4 92.86 50 2.17 1.74 3.6 94.66

(16,2) 5.56 4.12 4.8 91.07 10 3.39 2.49 4.4 93.10 50 2.17 1.79 3 95.20

(24,3) 5.20 4.78 4.8 90.41 10 3.23 1.99 5.2 92.8 30 1.95 0.96 3.6 95.43

(24,4) 6 4.03 5.2 90.76 10 3.58 2.28 5.4 92.31 20 2.42 1.05 4.2 94.74

MS 5.18 3.96 5 91.04 – 3.18 2.41 3.8 93.78 – 1.3 0.68 4.2 95.11

2-Std (8,1) 11.59 14.39 10.4 75.2 30 3.76 3.3 4.8 91.89 60 3.57 3.36 4.2 92.16

(16,2) 10.44 8.17 8.4 83.42 10 2.84 2.37 4.2 93.42 70 2.76 2.19 3.8 94.00

(24,3) 9.24 7.79 7.6 84.6 20 3 2.13 3.2 94.66 80 1.96 2.4 2.8 94.80

(24,4) 8.22 6.19 6.6 87.2 30 3.15 1.7 3.2 95.09 90 3.36 1.69 3 95.3

MS 5.63 4.86 7.4 87.74 – 3.04 2.41 2.6 94.98 – 1.63 1.26 3.6 95.13

3-Var (8,1) 11.8 8.62 11 80.38 20 5.61 4.76 7 88.23 70 4.62 4.22 4.6 91.17

(16,2) 10.42 9.66 9.4 80.93 30 3.76 3.42 4.2 92.37 70 2.98 3.2 3.4 93.40

(24,3) 11.19 11.34 10.2 78.46 40 2.97 2.48 3.4 94.11 70 2.81 2.68 3.2 94.11

(24,4) 10.98 13.17 8.6 78.22 30 4.56 3.71 4 92.28 50 3.61 4.18 3.2 92.61

MS 10.21 10.24 8.2 81.55 – 3.36 2.84 3.8 93.35 – 1.4 1.6 4.4 93.99

4-Skew (8,1) 11.80 5.29 5.4 89.30 80 5.61 4.26 5.2 90.53 80 3.79 3.58 4.4 92.02

(16,2) 5.39 4.54 4.4 91.05 50 3.78 3.88 5.6 90.51 60 3.81 3.45 3.6 92.94

(24,3) 4.82 4.46 4.8 90.74 60 3.38 3.3 4 92.70 90 3.40 3.2 3.2 93.60

(24,4) 4.61 3.03 4.2 92.76 50 3 3.23 3.6 93.16 50 2.83 2.38 2.4 95.21

MS 5.16 4.28 4.4 91.31 – 2.96 3.06 4 92.94 – 1.61 1.72 3.8 94.48

5-Kur (8,1) 14.84 14.08 11 74.91 20 18.78 20.33 18.6 61.06 20 12.98 13.51 14.20 72.28

(16,2) 15.64 18.82 13.8 67.37 20 11.36 16.26 14.4 69.33 20 8.59 12.38 13.40 74.22

(24,3) 20.44 23.30 20.6 56.10 20 10.18 15.46 12.4 72.13 40 9.16 14.74 13.40 71.86

(24,4) 13.56 14.20 11.6 74.20 10 6.6 8.4 9 82.59 50 5.79 7.16 9.40 83.43

MS 11.59 13.28 10.6 76.12 – 4.76 7.11 15 77.88 / 5.16 7.24 8.40 84.35

1+2+3 +4+5 3.6 2.06 3.80 94.13 – 4.98 2.14 2.6 95.25 / 0.99 0.80 4.00 95.20

1+2+ 3+4 3.24 1.87 3.60 94.52 – 5.04 2.03 2.6 95.36 / 1.2 0.88 2.80 96.32

Best performance is indicated in bold

formance for 2D and 3D information and the multi-sensor
fusion (3D + 2D) with an EER = 0.95% overall evaluation
and RR = 94.54% in the test set.

4.4 Statistical local features (SLF)

For this part,weuse the proposed localmethod (SLF). Table 4
shows the error rate in every test and evaluation for SLF
method. The number of sampling points varies from 8 points
to 24 points, and the radius value varies from 1 pixel to 4
pixels. First, the fusion of the four radii (R = 1, 2, 3, 4) for
different neighborhoods does not improve performance for
five statistical descriptors available. We also notice that for
R = 3, R = 4 and the number of points P = 24 (maximum
neighborhood size in our application), we obtain a better
result for all statistical descriptors. Therefore, the increase of
the number points in the vicinity improves the performance

in the case of statistical descriptors. The four descriptors
(mean, standard deviation, variance, skewness) give almost
the same results. Kurtosis is the worst descriptor. It confirms
the results of visual perception (image quality) obtained in
images kurtosis24,4 ( see Fig. 6) The fusion of the five para-
meters of our local features improves face authentication.
Performance without the kurtosis is better than the fusion of
five statistical parameters with EER = 1.20% overall eval-
uation and RR = 96.32% in the test set.

4.5 Gabor wavelets

The family of Gabor filters is characterized by a number of
resolutions or frequencies and orientations. In this work, we
concatenated for each resolution the eight directions in the
feature vector. Gabor filters have a complex shape that can be
exploited. It is important to use the information provided by
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Table 5 Performance of the LBPP,R + SIFT descriptor throughout evaluation and test set

(P,R) 3D image 2D image 3D and 2D image

Eval Test Eval Test Eval Test

EER FAR FRR RR EER FAR FRR RR EER FAR FRR RR

1- (8,1) 6.73 5.96 5.60 88.44 8.97 8.33 10 81.67 4.30 2.56 5 92.44

2-(16,2) 6.30 3.11 7.00 89.89 6.09 5.33 7.2 87.47 5.31 5.62 3 91.37

3-(24,3) 7.25 4.9 6.40 88.7 4.18 3.34 5 91.66 3.43 0.64 5 91.66

4-(24,4) 6.34 4.89 4.60 90.51 3.7 5.11 5.4 89.49 2.85 2.3 4.2 93.50

1+2+3+4 4.67 2.41 4.6 92.98 2.91 2.46 4.6 92.94 2.48 2.26 3.00 94.73

Best performance is indicated in bold

Table 6 Performance of five methods of feature extraction throughout evaluation and test set

Feature 3D image 2D image 3D and 2D image

Extraction Eval Test Eval Test Eval Test

EER FAR FRR RR EER FAR FRR RR EER FAR FRR RR Runtime (s)

1- PCA+EFM 7.24 4.24 6.4 89.36 3.36 2.94 4.80 92.26 2.61 2.86 4 93.14 0.371

2-MSLBP 5.36 4.63 3.80 91.56 4.62 4.98 4.40 90.61 0.95 1.25 4.20 94.54 0.374

3-SLF 3.24 1.87 3.60 94.52 5.04 2.03 2.60 95.36 1.20 0.88 2.80 96.32 0.399

4-Gabort 5.41 4.08 4.20 91.71 2.56 1.18 3.40 95.42 1.57 0.66 3.20 96.13 1.337

5-LBP+SIFT 4.67 2.41 4.60 92.98 2.91 2.46 4.60 92.94 2.48 2.26 3.00 94.73 1.084

3+2 2.55 2.02 3.00 94.97 2.18 1.03 3.40 95.56 1.16 0.76 2.80 96.43 0.472

3+1 3.55 2.22 3.40 94.38 2.61 0.86 3.80 95.33 1.35 1.08 2.60 96.31 0.469

3+4 3.18 2 3.00 95.09 4.64 2 2.40 95.68 1.20 0.76 2.60 96.64 1.435

3+5 2.39 1.74 2.00 96.26 3.56 1.89 2.40 95.70 0.98 0.97 1.80 97.22 1.182

3+5+4 2.35 1.61 1.60 96.78 2.37 1.78 2.80 95.41 1.00 0.76 2.20 97.03 2.22

3+5+2 1.81 0.94 4.20 94.86 1.63 0.74 3.20 96.06 0.96 0.69 2.20 97.10 1.255

3+5+1 2.38 1.60 2.60 95.79 2.04 0.96 3.60 95.44 0.84 0.75 2.80 96.44 1.252

1+2+3+4+5 1.64 0.87 4.00 95.12 1.58 0.68 3.40 95.92 0.77 0.56 3.00 96.43 2.358

Best performance is indicated in bold

the real part and the imaginary part of Gabor coefficients. We
use the filtered phase responses of Gabor filters as in [11],
we have shown that the filtered phase more relevant in this
application. We use Gabor wavelets for each resolution and
the fusion of five resolutions. The best results are obtained
when the resolution is λ= 4, that is, EER = 1.57% and RR =
96.13%. The fusion of five resolutions does not improve.

4.6 MSLBP + SIFT

Table 5 shows the error rate in the entire evaluation and test-
ingwith the extraction of characteristics forLBP.The number
of sampling points varies from 8 points to 24 points, and the
radius value varies from 1 pixel to 4 pixels. Subsequently,
SIFT is computed from the MSLBP 2D data. The table
shows that the fusion of four LBP(P, R) (R = 1, 2, 3, 4

and P = 8, 16, 24) plus SIFT gives the best result with a
EER = 2.48% and RR = 94.73%.

4.7 Fusion of feature representation

Table 6 compares the error rates, scores and computational
load for the five considered descriptors and the fusion of these
descriptors. Experiments were conducted on Matlab imple-
mentation on a Intel i5 2.50 GHz CPU processor with a 8 GB
RAM. From this table, we can infer that: The SLF features
give the best results with EER = 1.20% overall evaluation
and RR = 96.32% in the test set and a low runtime equal
0.399s. This shows the effectiveness of the proposed descrip-
tor. Compared with all global and local descriptors studied,
which justifies the effectiveness of our descriptor. The fusion
of our proposed descriptor SLF with the descriptor MSLBP
combined to SIFT gives the best results Indeed, we obtain an
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Table 7 Comparison of
recognition rate with
state-of-art(CASIA databases)

Best performance is indicated in
bold

Authors image RR

Xu et al. [14] Gabor + a hierarchical selecting scheme embedded in LDA and
AdaBoost learning

93.3

Wang et al. [17] CPDM, Gabor, LBP, and PCA fusion 95.61

Ming et al. [18] Robust sparse bounding sphere representation (RSBSR) 94

Ming [10] Orthogonal spectral regression (ROSR) 96.13

Our method SLF and MLBP +SIFT fusion 97.22

EER = 0.98%, RR = 97.22% and a runtime equal 1.182
s. The fusion of all considered descriptors does not improve
the performance compared with the fusion of two descriptors
SLF andMSLBP combined to SIFT. The performance of the
proposed system is compared with the state-of-art in 3D and
2D face recognition for CASIA databases . The comparisons
are based on the recognition rate as shown in Table 7. The
results show that the proposed system achieves higher aver-
age recognition rate compared with the current systems in
the literature tested using the same database.

5 Conclusion

In this work, we presented an automatic multimodal authen-
tication algorithm based on 2D intensity and 3D depth face
image. Firstly, we used a comprehensive approach based on
the reduction of space PCA followed by EFM , secondly, by
four local methods: MSLBP (based on the coding of a local
neighborhood), SLF (based on the calculation of statistical
parameters in a few neighborhood of the pixel), SIFT and
Gabor wavelets. The application is carried out on the CASIA
3D database according to a protocol proposed for addressing
major problems in the field of 3D facial recognition and mul-
timodal, including: variations in illumination, expressions,
variations combined in various expressions. From all the
experiments carried out, we can say that:

• MSLBP is a good descriptor in the case ofmodality depth
3D versus 2D intensity modality, a significant improve-
ment in performance is obtained by fusion of two modal-
ities 3D and 2D.

• The best results are obtained by SLF descriptor if the
neighborhood size becomes significant (R = 3, R = 4).

• The fusion of four LBP (R = 1, 2, 3, 4 and P =
8, 16, 24) + SIFT gives the best result with TEE =
2.85% and RR = 93.50%.

• For Gabor wavelets, the best result is obtained with
the first resolution (λ = 4) with EER = 1.57% and
RR = 96.13%. The fusion of the five resolutions will
not improve performance.

• Local descriptor statistics SLF gives the best result com-
pared with all global and local descriptors studied, which

justifies the effectiveness of our proposed descriptor (we
obtained TEE = 1.2 and RR = 96.32%.

• The fusion of our proposed descriptor SLF with the
MSLBP + SIFT descriptor gives the best result with
EER = 2.39% and RR = 96.26% of the depth image
(3D) and EER = 3.56% and RR = 95.70% for the
intensity image (2D). Finally, themulti-fusion algorithms
(3D + 2D) gives a TEE = 0.98% and RR = 97.22%.

Our approach is fully automatic and has been tested on
different shifts, expressions and illuminations. The perfor-
mances obtained are stable. For the future work we propose
to:

• Study large rotations of the head,
• Improve the detection of the nose (since our algorithm
uses only the most salient point),

• Study the fusion at features in the case of our method
local statistics (SLF) for an adaptive selection of the best
features.
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