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Abstract This work presents an interacting multiple pedes-
trian tracking method for monocular systems that incor-
porates a prior knowledge about the environment and
about interactions between targets. Pedestrian motion being
ruled by both environment and social aspects, we model
these complex behaviors by considering four cases of
motion: going straight, finding one’s way, walking around
and standing still. They are combined within an interact-
ing multiple model particle filter strategy. We model tar-
gets interactions with social forces included as potential
functions in the weighting process of the particle filter.
We use different social force setups within each motion
model to handle high-level behaviors (collision avoid-
ance, flocking…). We evaluate our algorithm on chal-
lenging datasets and show that such semantic information
improves the tracker performance compared to the litera-
ture.
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1 Introduction

Multi-object tracking (MOT) has been a very active research
area in recent years. The techniques developed for MOT have
found applications in the automatization of processes in areas
such as robotics or video surveillance, among others. The
two main ingredients of most MOT techniques are (1) the
modeling of the target visual appearance and (2) the model-
ing of the prior knowledge about the targets motion. In this
work, we focus on the latter, i.e., the use of probabilistic
models for predicting and explaining the observed motions
and the interactions between pedestrians in a scene captured
by a video-surveillance camera. Although, at first sight, the
nature of pedestrian motion may look quite chaotic, stud-
ies [13,20] have shown that pedestrian behavior is strongly
influenced by the context, namely the other pedestrians in
his surroundings and, beyond, the environment configura-
tion and its clutter. This has been the starting point for cor-
nerstone research in the modeling of group behaviors, i.e., for
the design of escape routes in public spaces. As an example,
consider the persons present in Fig. 1. The couple at the cen-
ter of the image is standing in place, while other pedestrians
are moving around, in groups or alone, with different veloc-
ities. All agents’ velocities are clearly influenced by other
agents’ intentions and proximity: They may want to avoid
the obstacle made by the couple, or enter into conversation.
To model this behavioral context, global positions, orien-
tations and velocities of the targets are natural variables to
be used. For instance, pedestrians in the same group should
have similar orientations, whereas two nearby people talking
to each other should be oriented in an opposite way. This
kind of semantic interactions are not used in most tracking
approaches. However, our claim is that the inference of the
pedestrians interactions based on semantic dynamic models
could improve the tracking performance by producing better
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predictions in stochastic filtering. In this paper, we consider a
simplified model of four cases of motions (one probabilistic
model per motion) obtained by the analysis of the pedes-
trians in a mall [20]. For each of these motion models, we
include the modeling of target interactions through potential
functions, encoding the concept of social forces. Finally, our
motion models are integrated in one single framework with
the interacting multiple model scheme under a particle filter
methodology [6], coined as IMM-PF.

In the work presented here, the motion models are devel-
oped with semantic information modeled as in [20] that
allows to handle in a more natural way the human walking
in sparsely crowded scenes.

We propose a decentralized tracking framework, i.e., one
filter dedicated to each target. Even if the trackers are essen-
tially individual, they share semantic information through a
prior knowledge about the expected social behavior in each
motion model among a set of competing models. Our model-
ing considers the body pose of each target (in the same vein
as [8]) as a feature to control these interactions. We demon-

Fig. 1 Pedestrians with multiple motion dynamics. The interaction of
the person in the middle of the image with others depends on the region
that they occupy. From proxemic theory, these regions can be divided in
four: intimate (red), personal (yellow), social (blue) and public (green)
space (color figure online)

strate that our proposal outperforms existing approaches
thanks to large-scale comparative evaluations. Figure 2 pro-
vides an overview of our proposal.

The structure of the paper is as follows: Sect. 2 discusses
related work. The general formulation of our proposed IMM-
PF is presented in Sect. 3. Section 4 describes our contribu-
tion in the modeling of the pedestrian behavior (motion and
interaction). Results are presented in Sect. 5. Finally, conclu-
sions are drawn in Sect. 6.

2 Related work

Most of the time, naive dynamic models are used as priors
in MOT frameworks, i.e., the constant velocity model [5,8],
random walks [16], target detector output [5], among others.

Unfortunately, those models are rough approximations of
the real dynamic of the targets and they lack semantic infor-
mation that could improve tracking performance by iden-
tifying common group walking patterns, for example. [16]
proposes a technique to model a simple kind of interaction
between individual trackers. They use a potential function to
give more weight to those particles of a particle filter that are
far from other trackers, helping to keep the trackers apart.
However, this method cannot be extended very well to mul-
tiple behaviors since the interaction models may contradict
each other. In [5], the authors present a framework to track
individuals and groups of pedestrians at the same time, using
semantic information about the group formation. However,
no motion prior information is used. On the other hand, [11]
makes use of semantic information to identify groups from
independent trackers. [19] introduces a multi-camera track-
ing system with non-overlapping field of view. It uses a social
force model to generate multiple hypothesis about the move-
ments of any non-observed target who has left the field of
view of a camera. Those hypotheses are considered for tar-
get re-identification. [24] solves the tracklet data association
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Fig. 2 Workflow of our proposal. a Initial stage: the tracker system
at a given time t . b Input image is used to detect pedestrian blob can-
didates. c A new tracker is created for each isolated blob candidate.
The circles represent the particles, and their color and diameter depict
the motion model id and weight, respectively. The left bar shows the
number of particles that each model has. d IMM-PF prediction step:

a resampling (per model or over all particles) is applied if needed; the
particles are moved according to its model. e IMM-PF correction step:
particles weights are updated from color, motion and orientation cues;
the social force model is applied to each interacting trackers. f Final
tracker estimation
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problem as a directed graph, by weighting the edges accord-
ing to some social conditions. In [21], the targets interact in
such a way that they choose a free-collision trajectory. To this
end, this work finds the optimal next position of all trackers
based on an energy function that considers the targets future
position, desired speed and final destination. Other MOT sys-
tems consider trackers interaction only during the detector
association stage [7], or only when targets touch each other,
or when one is occluded in one camera. The objective in that
case is to avoid the coalescence phenomenon and to solve
the data association problem.

Capturing the complex behavior of targets like pedestri-
ans can be really challenging. An elegant solution is to rely
on a mixture of motion models through the interacting mul-
tiple model (IMM) methodology. IMM maintains a pool of
distinct, competing models and weights each of them accord-
ing to its importance in the posterior distribution [6,14].
In [14], target tracking is simulated with a bank of Kalman
Filters, where each filter is associated with a distinct linear
motion model, within the IMM methodology. This proposal
is fast and suitable for a large number of targets. In [23],
a similar bank of filters was employed in a hybrid fore-
ground subtraction and pedestrian tracking algorithm. It uses
the tracking result as a feedback to improve the foreground
subtraction. [15] proposes another Kalman-based IMM for
pedestrian tracking which is similar to ours, with two classic
motion models: constant position and constant velocity, to
track a few targets.

However, the Kalman filter cannot use nonlinear models
and the IMM schemes based on it cannot recover when one
filter of the bank fails. [6] proposes an IMM implementa-
tion with particle filter (that we will refer to as IMM-PF).
They associate a fixed number of particles to each model
and weight the models according to their importance in the
filter. This proposal suffers from a waste of computational
resources when processing many particles with low impor-
tance models. In [17], each particle motion model has the
possibility of evolving over time, passing from a moving to
a stopped state. Those changes are handled with a transition
matrix of fixed probability values. However, those fixed val-
ues cannot represent faithfully how the real model changes.
Contributions To overcome the limitations of the common
naive dynamic models (widely used in MOT [15,16,22]), we
propose a decentralized tracking system with a motion model
that considers semantic information to improve pedestrian
tracking. We model this high-level pedestrian behavior at
two levels: motion and interaction. We emulate the complex
pedestrian motion with Interactive Multiple Models (IMM),
developed from observation analysis [20]. We expand the
work of Khan et al. [16] to multiple pedestrian tracking and
include more realistic interactions between trackers coming
from the simulation community, known as social forces. We
demonstrate, in challenging video sequences through both

qualitative and quantitative evaluations, that this semantic
information improves the tracking performance compared to
conventional approaches in the literature.

3 Particle filter-interacting multiple models

We formulate the tracking problem in a Bayesian framework,
where we infer the target state X at time t (Xt ) given the
set of observations Z1:t

def= {Z1 . . .Zt }. Under the Markov
assumption, the posterior is estimated recursively:
{

p(Xt |Z1:t−1) = ∫
p(Xt |Xt−1)p(Xt−1|Z1:t−1)dXt−1,

p(Xt |Z1:t ) ∝ p(Zt |Xt )p(Xt |Z1:t−1).
(1)

The Bayes filter of Eq. (1) includes prediction (first row)
and correction (second row) steps. Following the IMM strat-
egy [6], our motion model p(Xt |Xt−1) is a mixture of M
distributions as

p(Xt |Xt−1) =
M∑

m=1

πm
t pm(Xt |Xt−1), (2)

where the terms πm
t weigh each model contribution in the

mixture. Thus, the posterior of Eq. (1) is reformulated as
{

p(Xt |Z1:t−1) = ∫ ∑M
m=1 π

m
t pm(Xt |Xt−1)p(Xt−1|Z1:t−1)dXt−1,

p(Xt |Z1:t ) ∝ p(Zt |Xt )p(Xt |Z1:t−1).

(3)

Since the contribution weight does not depend on the pre-
vious state Xt−1, we move this term out of the mixture dis-
tribution. Hence, the filter of Eq. (3) is rewritten as

p(Xt |Z1:t ) ∝ ∑M
m=1 π

m
t p(Zt |Xt )pm(Xt |Z1:t−1), (4)

with pm(Xt |Z1:t−1)=
∫

pm(Xt |Xt−1)p(Xt−1|Z1:t−1)dXt−1.
The terms πm

t are updated in function of their respective
likelihoods [6]: πm

t = πm
t−1

∫
p(Zt |Xt )pm(Xt |Z1:t−1)dXt .

The particle filter approximates the posterior in Eq. (4) by a
set of N weighted samples or particles. The multi-modality is
implemented by assigning one motion model to each particle,
indicated by a label l ∈ {1 . . .M}. Thereby, a particle n at
time t is represented by (X(n)t , ω

(n)
t , l(n)).

In the IMM-PF methodology, the model m ∈ {1 . . .M}
contributes to the posterior estimation according to its impor-
tance, which is defined by a weight πm

t . Each model m has
Nm particles associated to it, with a total of N = ∑M

m=1 Nm

particles. The posterior is represented by considering both
particles weights (ω(n)t ) and models weights (πm

t ):

p(Xt |Z1:t ) =
M∑

m=1
πm

t
∑

n∈ψm

ω
(n)
t δX(n)t

(Xt ),

s.t.
M∑

m=1
πm

t = 1 and
∑

n∈ψm

ω
(n)
t = 1,

(5)
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where ψm
def= {n ∈ {1 . . . N } : l(n) = m} represents the

indices of the particles that belong to model m.

3.1 Sampling and dynamic model

We use an importance proposal distribution q(·) that approx-
imates p(Xt |Xt−1,Z1:t ) and from which we can draw sam-
ples. In the multiple motion model case, we have M propos-
als, such as Xm

t ∼ qm(Xt |Xt−1,Z1:t ).Here, we sample a new
state for each particle from the motion model corresponding
to its label l(n). This model is supposed to be a Gaussian distri-
bution N (Xt ; trl(n) (X

(n)
t−1),�l(n) ), where trl(n) (·) is the deter-

ministic form of the motion model (which will be detailed
in the next section). The index l(n) indicates the model the
particle n follows.

3.2 Observation model and correction step

We implement a probabilistic observation model p(Zt |Xt )

inspired from [8,22]. [22] relies on HSV-space color and
motion histograms. We define a reference histogram hre f

anytime we create a new tracker. The likelihood is evaluated
between hre f and the current histogram h(n) (corresponding
to X(n)t ) through the Bhattacharya distance. We include spa-
tial information with the color observation by using multiple
region reference models (two histograms per target, one for
the top part of the person and another for the bottom part) as
it has been shown to be more robust [22].

Following [8], we also include observations related to the
target orientation, because, as it will be explained, orienta-
tion is part of our state, as an angle θt . It is discretized into
eight directions. The body pose angle is evaluated with a set
of multiple-level Histogram of Oriented Gradients features
(HOG) f (n) extracted from the image inside each X(n)t . They
are decomposed into a linear combination of O training sam-
ples F = { f1, . . . , fO}: f (n) ≈ a1 f1 + · · · + aO fO = Fa,
where a = {a1, . . . , aO} is the weights vector subject to non-
negative constraints (ao ≥ 0 for o ∈ [1, O]). Each sample
has a label l ′o ∈ {1 . . . 8} associated to it, corresponding to its
orientation. The idea is to find an optimal decomposition of
the detected features in terms of the training samples, i.e., to
determine a set of positive weights (a∗) such that

a∗ = arg min‖ f (n) − Fa‖2
2 + λ‖a‖1,

where λ controls the regularization. Then, the orientation
likelihood pθ (Zt |X(n)t ) is calculated as the normalized sum
of the weights of a∗:

pθ (Zt |X(n)t ) = 1

‖a∗‖1

∑
o∈ρt (θ

(n)
t )

a∗
o ,

where ρt (θ
(n)
t ) is the set of indexes o of the images from the

training database whose labels l ′o have the same (discretized)

orientation θ
(n)
t as the particle n. Assuming independence

between the observation components (color cue, motion cue,
orientation cue), the likelihood of the observation Zt evalu-
ated at the state of particle n is defined as the combination of
the three models:

p(Zt |X(n)t ) = pc(Zt |X(n)t )pm(Zt |X(n)t )pθ (Zt |X(n)t ),

where pc(Zt |X(n)t ) and pm(Zt |X(n)t ) are the color and motion
cues [22], respectively, and pθ (Zt |X(n)t ) is the orienta-
tion likelihood described above. Thus, particles weights are
updated by

ω
(n)
t = ω̃

(n)
t∑

i∈ψm ω̃
(i)
t
, ω̃

(n)
t = ω

(n)
t−1 p(Zt |X(n)t )pl(n) (X(n)t |X(n)t−1)

ql(n) (X(n)t |X(n)t−1,Z1:t )
. (6)

By assuming that the proposal and prior distribution are
the same, we have

ω̃
(n)
t = ω

(n)
t−1 · p(Zt |X(n)t ), (7)

πm
t = πm

t−1ω̃
m
t∑M

i=1 π
i
t−1ω̃

i
t

, ω̃m
t =

∑
j∈ψm

ω̃
( j)
t . (8)

Thus, Eqs. (6) and (8) ensure that the constraints on Eq. (5)
are always satisfied.

3.3 Resampling

We implement the resampling process as in [18] (Fig. 2d). It
performs the sampling, if needed, in one of two ways:

1. A sampling over all particles following a common cumu-
lative distribution function built with the weights of parti-
cles ω(n)t and models πm

t . The best particles from the best
models are sampled more often, leaving more particles
with models fitting better the target motion.

2. A sampling on a per model basis. Each model keeps a

minimum of γ
def= 0.1 ∗ N particles to preserve diver-

sity. If the model has less particles than a threshold
(Nm < γ ), we draw new samples from a Gaussian dis-
tribution: N (X̄t−1,St−1), where X̄t−1 and St−1 are the
weighted mean and covariance of all particles of the pre-
vious distribution. We take less samples from the models
with more particles to leave the total number of parti-
cles N unchanged. This resampling manages the model
transition implicitly, so no prior transition information is
required.

The resampling per over all particles is applied every four
frames and the one over model is applied every five frames.
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4 Models for pedestrian semantic behavior

This section describes our main contribution with more
details. We propose a multiple motion model that improves
the tracking performance by fitting better to different pedes-
trian dynamics (Fig. 2e). Also, it incorporates semantic infor-
mation about the interaction of the targets, with a set of
expected behavioral rules relying on the concept of inter-
personal space between targets (illustrated by Fig. 1).

The target state is defined as a bounding box, including its
position in the image plane (x, y), its global shoulders orien-
tation θ , and its linear and angular velocities (vl , vθ ). Hence,
the state X stands as (x, y, θ, vl , vθ )

T . The bounding box
dimensions (h, w) around the pedestrians are fixed accord-
ing to the average size of an adult person, given the camera
projection matrix, at the specified image location (see [18]).
As we have already mentioned it, the reason why we also
include the orientation is that target interactions are common
in MOT and that the orientation is strongly correlated to the
pedestrian’s “intentionality” (characterized by the shoulders
orientation), i.e., pedestrians from the same group share sim-
ilar orientations.

4.1 Priors on pedestrian dynamics

According to [20], four pedestrian motions can be considered
in human-centered environment:

– Going straight The pedestrians go directly to their goal,
as fast as possible, with small variations in the trajectory.

– Finding one’s way The pedestrians have an approximate
idea of their destination (i.e., an address over a route).
They walk at a regular speed, with more variations in their
trajectories.

– Walking around The pedestrians do not have a specific
goal. They walk at slow speed and tend to change their
trajectories more often.

– Stand still The pedestrians remain at the same position,
occasionally changing their body orientation. They may
be interacting with other persons.

We build four motion models to emulate those behaviors.
The first three cases (k = 1, 2 and 3) are associated with the
following generic transition model:

trk(X) =

⎡
⎢⎢⎢⎢⎣

x + vl ∗ cos(θ)
y + vl ∗ sin(θ)
θ + vθ
μk

vθ

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

N (0, σx )

N (0, σy)

N (0, α(vl) ∗ σθ )
N (0, σvl,k )

N (0, α(vl) ∗ σvθ,k )

⎤
⎥⎥⎥⎥⎦ ,

(9)

where σx , σy and σθ are predefined constant values and rep-
resent a variance of 0.2, 0.2 m and 5◦, respectively. The new
position is updated as a constant velocity non-holonomic
motion model. Normally, a pedestrian who walks fast has
a rather constant orientation. Following this idea, we calcu-
late the new orientation and angular velocity by considering
an adapting level of noise, controlled by α(v) = exp(−v2/σα).
Hence, the higher the linear velocity vl , the smaller the vari-
ance of the Gaussian noise. The μk and σ·,k values depend
on the model to be used, allowing to control the behavior of
the aforementioned categories 1, 2 and 3. These parameters
are estimated following the algorithm of Sect. 4.2. The stand
still case is simpler:

tr4(Xt ) =
[

I3×3 03×2

02×3 02×2

]
Xt + ν, (10)

where ν is a realization of a Gaussian noise. Pedestrians are
also influenced by a set of external rules known as social
forces (SF) [13]. Those SF depend on the dynamics of the
people. They will be detailed in Sect. 4.3.

4.2 Tuning of the free parameters

In Sect. 4.1, we described a transition model [Eq. (9)]
that incorporates semantic information about the pedestrian
motions. This model is controlled by three parameters: the
mean μk and the variance σvl ,k of the target speed, and the
variance in the pedestrian orientation σvθ ,k . For the three
presented cases, we estimate those parameters as follows.
Initially, we set them with the values proposed in [20] for
pedestrians in a shopping mall. To make our framework
more adaptable to other scenarios, we refine those para-
meters by using the particle marginal Metropolis-Hastings
(PMMH) algorithm [4]. This algorithm is a Markov Chain
Monte Carlo (MCMC) algorithm that recovers jointly the
state Xt and the model parameters β

def= {μk, σvl ,k, σvθ ,k}. In
a Bayesian context, the parameters follow a prior distribution
β ∼ N (μβ, σβ), where μβ is set according to the parameter
values presented in [20] and σβ = 0.5. The idea is to estimate
their posterior p(β|Z1:t ) following the Metropolis-Hastings
strategy. At an iteration g, a candidate βc is generated from
a proposal distribution qβ(βc|βg−1) ∼ N (βc;βg−1, 0.5).
Then, we apply the filter from Sect. 3 with the parameters
βc. This candidate is accepted with probability:

min

{
1,

p̂(Z1:t |βc)κ(βc)

p̂(Z1:t |βg−1)κ(βg−1)

qβ(βg−1|βc)

qβ(βc|βg−1)

}

where p̂(Z1:t |βc) = 1
N

∑N
n ω̃

(n)
t is the particle filter unbi-

ased estimate of the marginal likelihood. Note that this quan-
tity is estimated with the particle weights of Eq. (7).
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4.3 Social behaviors for trackers interaction

The social forces (SF) model makes possible to model the
interaction between trackers. We associate a set of SFs to
each motion model according to the behavior expected in
each case. These behaviors are selected from the proxemic
theory [12] and depend on the space occupied by the inter-
acting trackers. In Fig. 1, we depict an example, where the
central pedestrian (labeled as 2) interacts with his neighbors
according to their relative position (circles of colors). The
state Xt is projected into the world plane to control the effect
of each force in real coordinates. We use two SFs: (1) A repul-
sion force, keeping the trackers apart from each other, and
preventing identity switching or collisions; (2) An attraction
force, keeping the targets close to each other, and modeling
social groups. By setting both forces with different values,
we can model many kinds of behaviors.

Interactions are modeled with pairwise potential func-
tions [16]. We define one such potential, for each of the M
models, SFm(Xi ,X j ) which can be easily included in the
prior motion model of Eq. (2):

p(Xt,i |Xt−1,i ) =
M∑

m=1

πm
t pm(Xt,i |Xt−1,i )

×
∏
j∈ϕi

SFm(Xt,i ,Xt, j ),

where ϕi
def= { j ∈ {1 . . . N } : i �= j}. As in Eq. (3), the

interaction term SFm(·) does not depend on the previous state
Xt−1, so this term is moved out of the mixture distribution
with πm

t . This way, the posterior of Eq. (4) for a target i is
reformulated as

p(Xt,i |Z1:t ) ∝
M∑

m=1

πm
t p(Zt |Xt,i )

×
∏
j∈ϕi

SFm(Xt,i ,Xt, j )p
m(Xt,i |Z1:t−1).

Since the interaction term is out of the mixture distribu-
tion, we can treat it as an additional factor in the importance
weight. Thus, we weight the samples of Eq. (7) according to

ω̃
(n)
t,i = ω

(n)
t−1,i · p(Zt |X(n)t,i )

∏
j∈ϕi

SF
l(n)i
(X̂(n)t,i , X̂t, j ),

where X̂t =
[
x̂, ŷ, θ̂ , v̂l , v̂θ

]T

t
is the state projected on the

ground plane through the homography (which let us measure
the targets real positions) and r̂ = [

x̂, ŷ
]T is the position.

The term SF
l(n)i
(·, ·) is the social force model the particle n is

associated to . We measure the distance between two trackers
(i, j) through the L2 norm as d̂i, j = ‖r̂i,t − r̂ j,t‖. All the
distance considerations in the rest of the paper come from
the study of nonverbal communication known as proxemics

and try to emulate the notion of personal space depicted in
Fig. 1. We define the social forces for each motion models as

1. Going straight The pedestrians who walk fast are aware
of the obstacles present in their public space (green circle
in Fig. 1) and decide with enough anticipation their direc-
tion for a comfortable free-collision path. In that case, we
use a repulsion function over any tracker under a public
distance, i.e., d̂i j < PD, depicted as green circles in Fig. 1.
The social force for case 1 (Sect. 4.1) is:

SF1(X̂
(n)
t,i , X̂t,ϕi ) =

∏
j∈ϕi

GS(X̂(n)t,i , X̂t, j ),

GS(Xi ,X j ) =

⎧⎪⎨
⎪⎩

1 − exp

(
−d2

i, j

σ 2
f1

)
if d̂i, j < 3.5 m,

1 otherwise.

(11)

We have used PD = 3.5 m and σ f1 = 2 m.
2. Finding one’s way The pedestrian walks at middle/high

speed, moving alone, inside a group or merges/splits from
a group. At this speed, groups are not too close, preserving
a social distance SD. We consider that two targets with
d̂i, j < SD, ‖v̂l,i − v̂l, j‖ < εv , and orientation ‖θ̂i − θ̂ j‖ <
εθ belong to a same group. They are depicted as blue
circles in Fig. 1. We model this as

FWattr(Xi ,X j ) = exp

(
− (d̂i, j − SD)2

σ 2
f2

)
, (12)

where SD = 2.5 m and σ f2 = 20 cm is the standard devi-
ation on distances. Otherwise, the target i evades targets
j and this is modeled by:

FWrep(Xi ,X j ) = 1 − exp

(
−d2

i, j

σ 2
f3

)
, (13)

with σ f3 = 1 m. Thus, the social force for case 2 is as
follows:

SF2(X̂
(n)
t,i , X̂t,ϕi ) =

∏
j∈ϕi

FW(X̂(n)t,i , X̂t, j ),

FW(Xi ,X j )=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

FWattr(Xi ,X j ) if d̂i, j < PD and
‖v̂l,i −v̂l, j‖ < εv and
‖θ̂i − θ̂ j‖ < εθ ,

FWrep(Xi ,X j ) if d̂i, j < PD,
1 otherwise.

(14)

3. Walking around Pedestrians tend to walk at comfortable
speeds, in groups. Targets belong to the same group if
they satisfy d̂i, j < SD, depicted as the yellow region

123



SIViP (2014) 8 (Suppl 1):S113–S123 S119

in Fig. 1, keeping a personal distance of QD, a similar
velocity ‖v̂l,i −v̂l, j‖ < εv and almost the same orientation
‖θ̂i − θ̂ j‖ < εθ . This flock behavior is modeled as

WAattr(Xi ,X j ) = exp

(
− (d̂i, j − Q D)2

σ 2
f2

)
, (15)

where QD = 1.5 m. Otherwise, it avoids the obstacles:

WArep(Xi ,X j ) = 1 − exp

(
−d2

i, j

σ 2
f4

)
, (16)

with σ f4 = 1 m. The SF influence over a particle is:

SF3(X̂
(n)
t,i , X̂t,ϕi ) =

∏
j∈ϕi

WA(X̂(n)t,i , X̂t, j ),

WA(Xi ,X j )=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

WAattr(Xi , X j ) if d̂i, j < SD and
‖v̂l,i −v̂l, j‖ < εv and
‖θ̂i − θ̂ j‖ < εθ ,

WArep(Xi , X j ) if d̂i, j < SD,
1 otherwise.

(17)

4. Stand still The person remains in the same position maybe
interacting with other people, i.e., talking, with an inter-
personal distance of ID = 1 m. This is the case in
Fig. 1, where the target 2 speaks with target 3. We model
this behavior with an attraction function between two
close trackers (d̂i, j < QD) with opposite orientations
(θ̂i, j = ‖θ̂i − θ̂ j‖ > 60◦):

CPattr(X̂i , X̂ j ) = exp

(
− (d̂i, j − ID)2

σ 2
f2

)
. (18)

A static pedestrian can move apart, letting others to pass.
This behavior is modeled with a repulsion effect:

CPrep(Xi ,X j ) = 1 − exp

(
−d2

i, j

σ 2
f1

)
, (19)

with σ f2 = 1 m. Note that a particle can be in both situa-
tions at the same time. Only one social force is applied at
a time. The SF for this motion model is:

SF4(X̂
(n)
t,i , X̂t,ϕi ) =

∏
j∈ϕi

CP(X̂(n)t,i , X̂t, j ),

CP(X̂i , X̂ j ) =

⎧⎪⎪⎨
⎪⎪⎩

CPattr(X̂i , X̂ j ) if d̂i, j < QD and
θ̂i, j < 60◦,

CPrep(X̂i , X̂ j ) if d̂i, j < QD,
1 otherwise.

(20)

5 Experimental setup, results and evaluation

We have tested our proposal on six realistic video sequences
to evaluate our results both qualitatively and quantita-
tively. We have compared our algorithm performance against
other proposals from the current state of the art, and we
show how the social forces model can boost the tracking
results.

5.1 Experimental setup

We have used several videos, from three datasets: PETS09 [3],
PETS06 [2] and CAVIAR [1]. All datasets give challenging
benchmarks to test and evaluate the performance of pedes-
trian tracking algorithms. The PETS09 dataset consists of a
set of eight camera video sequences of an outdoor scene. We
apply our proposal in the sparse crowd scenario S2-L1 (795
frames). The PETS06 dataset is a set of video sequences of an
indoor scene from four distinct cameras. We use the S6 sce-
nario (2,800 frames). Those scenes present challenging situ-
ations of pedestrian tracking. Finally, we have also used three
sequences from the CAVIAR dataset: EnterExitCrossing-
Paths1cor (EECP1cor), TwoEnterShop1cor (TES1cor) and
TwoLeaveShop2cor (TLS2cor). Those sequences are com-
plementary and cover the situations that can be encountered
in this application (occlusion, crowds, interaction, erratic
motion, etc.).

We have manually generated a Ground-Truth (GT) dataset,
for each pedestrian in the scene over all frames of the
views 1 and 2 of the PETS09 S2-L1 scenario and View
4 of the PETS06 S6 scenario. The CAVIAR project pro-
vides the GT data. We measure the performance of our algo-
rithm with five standard tracking evaluation metrics [10]:
(1) Sequence Frame Detection Accuracy (SFDA) penalizes
missed detections and false positive; (2) Average Track-
ing Accuracy (ATA) penalizes shorter or longer trajecto-
ries, missed trajectories and false positive; (3) Multiple
Object Tracking Precision (MOTP) and (4) Multiple Object
Detection Precision (MODP) measures the tracks spatio-
temporal precision and spatial precision, respectively; (5)
Multiple Object Detection Accuracy measures the detec-
tion accuracy, missed detections and false positives. All
those metrics set scores between 0 (worst) and one (per-
fect).

The creation and destruction of the trackers are automatic:
From a binary image, coming from a foreground detector
algorithm, we initialize new trackers from the detected fore-
ground blobs (regions with motion, see Fig. 2b), whenever
they have the expected dimensions of an adult (with the help
of the camera projection matrix, see Fig. 2c). The tracker
is suppressed when its linearized likelihood stays under a
threshold for a given time, i.e., ten frames. The number of
particles is fixed initially to 100 for each of the four mod-
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Fig. 3 Example of tracking (central couple only). The top and bottom
rows depict the results of our proposal without and with social forces,
respectively. We use the View 5 of PETS09 S2-L1 scenario. The rectan-

gles at the left of each bounding box represent the contribution weight
of each model. Red for stand still, green for going straight, blue for
finding one’s way and yellow for walking around (color figure online)

els, so that N = 400. This is a compromise between pre-
cision (more particles for more precision) and efficiency
(more particles mean more computational times). The ori-
entation cue classification presented in Sect. 3.2 is imple-
mented as in [8]. We use the publicly available INRIA Per-
son Dataset [9] to train the classifier with 16 images (man-
ually selected) for each of the eight discretized directions.
Those images have a resolution of 96 × 160 and present
the whole body of the pedestrian at the center of image.
The performance of estimating the head–shoulder orienta-
tion by this technique is good enough and does not affect
the performance of our tracking proposal. The worst-case
scenario for the classifier only happens when the pedes-
trian is still with the arms and legs straight. In that case,
the algorithm may not identify the orientation correctly, giv-
ing a distribution almost uniform for each of the eight ori-
entations. This does not affect our framework drastically
since the particle filter can manage these “noisy” observa-
tions. A quantitative analysis of the performance is presented
in [8].

We implemented our algorithm in C++, and we tested
it in a PC with an Intel Core i7 processor. Our algorithm
allows to process around 5–10 frames per second without
special parallelization. This time depends on the number
of trackers and on how many of them get into interaction
(see Fig. 6), the worst-case scenario being when all track-
ers interact with each other. In this worst- case scenario, the
SFs have to be computed for all the T trackers with N par-
ticles which complexity is N · T 2. In our implementation,
the orientation estimation is the most time-consuming part
since it involves a recurrent computation of HOG feature
vectors.

Fig. 4 Example of tracking. Each row depicts the results with the
IMM-PF and IMM-PF-SF proposals, respectively, using the View 3
of the PETS06 S6 scenario. In the IMM-PF implementation, the tracker
3 switches from one target to another meanwhile in IMM-PF-SF, the
identity is preserved. The bounding boxes are the output of our frame-
work where the left rectangles depict the contribution weight of each
model. Red for stand still, green for going straight, blue for finding one’s
way and yellow for walking around (color figure online)

5.2 Results and comparison with other methods

The Figs. 3 and 4 show some qualitative results. The bound-
ing boxes depict the filter output. The rectangles at the left
of each bounding box represent the contribution weight of
each model, i.e., the dominant color indicates the model that
fits best to the dynamic of the target. In these two images,
we observe the switch of the motion model. When the target
remains in the same position, the dominant color in the left
rectangle is red which means that the stand still model is the
one who contributes most to the state estimation. When the
target moves, the dominant color changes to the associated
model whose motion fits best to target speeds.
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In Fig. 3, we track only the couple at the center of the
image. The top and bottom rows show the tracking results
with our IMM-PF proposal without and with social forces,
respectively. Both targets have similar appearance, hence the
trackers on the top (without SF) end following the same tar-
get, meanwhile in the bottom row, the trackers keep their
respective targets. This is due to the repulsion/attraction
effect of the stand still social force model which gives the
mayor contribution (i.e., left bar is mostly red in central
images). This SF model prevents other particles from the
tracker to follow the same target (repulsion) but also try
to keep them at a given distance with opposite orientation
(attraction). In this sequence, multiple pedestrians cross in
front of the tracked couple. However, our proposed motion
model including SFs is robust enough to overcome short par-
tial or total occlusions. The same situation is observed in
Fig. 4: The talking couple is correctly tracked meanwhile a
tracked pedestrian passes in front and occludes them. The tar-
get appearance is kind of similar, especially between tracker
1 and 3, and the pedestrians are moving slowly. In the top
row, all trackers end in the same position (one pedestrian is
partially occluded by the other) due to the lack of information
(appearance/motion). In the bottom row, the couple trackers
keep apart by the same phenomenon as in Fig. 3, i.e., the
repulsion effect of all SF models aids to preserve the identity
of tracker 3. The Fig. 5 depicts the trajectories of the tracker
at foot level of the last 50 frames where the color represents
the model that contributes more at each frame. One can note
that the model switches when there is a change in the trajec-
tory. In Fig. 6, we depict a representation of the social forces
existing between four trackers. The left image is the output of
the IMM-PF SF proposal, and the right image is the projec-
tion of the tracker position in the world plane. In this image,
the edges are estimated by the normalized sum of the social
forces SF(·) presented in Sect. 4.3. The line thickness is
adjusted according to this normalized sum. Thus, the edges
only connect those trackers that interact and a thicker line
indicates a major influence from that tracker. In this exam-
ple, tracker 3 is influenced by trackers 1, 2 and 4, while the
tracker 0 is far enough not to affect tracker 3.

The Table 1 presents quantitative results over the sequence
S2-L1 views 1 and 2 of PETS09, View 4 of PETS06 S6
scenario, and the sequences from the CAVIAR dataset. The
Fig. 7 depicts a graphical representation of this table. Those
are low-density videos with multiple pedestrian interac-
tions (talking people, couple walking). We tested three mod-
els: a classic constant velocity model (CV), our proposal
alone (IMM-PF) and our proposal including the social forces
(IMM-PF SF). The rest of the implementation (observation
model, initialization, termination, etcetera) remains the same.
The SFDA, MODP and MOTP metrics measure the detection
precision. In this case, the results show no significant changes
for sequences PETS09 View 1, PETS06 View 4 and CAVIAR

Fig. 5 Tracker trajectories. The lines represent the tracker trajectory
for the last 50 frames. The color indicates the model that contributes
most to the state estimation. Red is for stand still, green for going
straight, blue for finding one’s way and yellow for walking around (color
figure online)

Fig. 6 Social forces representation. In the left image, we depict the
output of our framework with IMM-PF SF. The four trackers are pro-
jected to the world plane through camera calibration (right image). The
(directed) edges connect the trackers which interact with each other.
Edges of same color correspond to the same tracker

TES1cor, indicating that our tracking system is robust enough
to detect the targets most of the time, under different tech-
niques. On the other hand, we can observe an improvement
for the PETS09 View 2 sequence, because the video has
multiple occlusions between pedestrians. The MODA metric
shows that we can handle correctly the initialization and ter-
mination of the trackers. The ATA metric measures the track-
ing performance. We observe that it is significantly improved
with our proposal, meaning that our algorithm can follow a
target with the same tracker for more time.

The Fig. 8 compares our best performance (last diagram)
against other approaches which were extracted from [10,18].
Once again, our proposal ATA stands out. So our proposal,
with the aid of the SF, can track the same target longer than
other techniques that fail preserving the identity of targets
with similar appearance. The closest ones are the methods
labeled as Yang and Horesh, but it is important to notice
that these two approaches perform multi-camera tracking,
while our system is monocular. The SFDA measure (blue
column) for Horesh and ours are similar, meaning that both

123



S122 SIViP (2014) 8 (Suppl 1):S113–S123

Table 1 Results for the six
sequences (PETS’09, views 1
and 2, PETS06 and CAVIAR
sequences) using: a constant
velocity model (CV), our
proposal with (IMM-PF SF) and
without (IMM-PF) social forces

The median over 30 experiments
is shown, with variance inferior
to 0.001 in all cases. This proves
the approach repeatability,
despite the stochastic nature of
the particle filter. The best
results are in italics

Sequence Method SFDA ATA N-MODP MOTP MODA

PETS09 View 1 CV 0.67 0.36 0.75 0.73 0.80

IMM-PF 0.63 0.50 0.77 0.63 0.60

IMM-PF SF 0.70 0.60 0.82 0.70 0.74

PETS09 View 2 CV 0.51 0.40 0.57 0.56 0.60

IMM-PF 0.62 0.51 0.85 0.67 0.54

IMM-PF SF 0.74 0.63 0.91 0.68 0.65

PETS06 View 4 CV 0.33 0.48 0.58 0.50 0.33

IMM-PF 0.33 0.53 0.66 0.54 0.29

IMM-PF SF 0.37 0.57 0.73 0.65 0.31

CAVIAR EECP1cor CV 0.66 0.35 0.88 0.64 0.54

IMM-PF 0.74 0.63 0.88 0.78 0.68

IMM-PF SF 0.75 0.67 0.89 0.81 0.68

CAVIAR TES1cor CV 0.54 0.45 0.77 0.70 0.47

IMM-PF 0.51 0.57 0.78 0.68 0.30

IMM-PF SF 0.55 0.59 0.79 0.72 0.40

CAVIAR TLS2cor CV 0.41 0.29 0.40 0.94 0.34

IMM-PF 0.54 0.49 0.52 0.82 0.42

IMM-PF SF 0.53 0.54 0.51 0.87 0.45

Fig. 7 Results for all sequences (PETS’09, PETS’06 and CAVIAR) using as a motion model: a classic constant velocity model (CV), our proposal
with and without including social forces, both with parameter estimations. Median over 30 experiments, with variance inferior to 0.001 in all cases

Fig. 8 Evaluation in View 1 of
PETS09 S2-L1 sequence. The
last diagram shows the
performance of our best
approach, IMM-PF SF. The
others results come
from [10,18]. The results
labeled Conte, Breitenstein and
Shama are monocular tracking
system, meanwhile Yang,
BerclazKSP and Horesh are
multi-view

are good enough to detect the pedestrian, minimizing the false
positives and missed detections. In this case, Horesh relies
on a target detector employed in each frame and we, on the
other hand, initialize the tracker by a simple blob detector.

5.3 Discussion

The experimental results show that our method performs well
both on indoor and outdoor sequences. The four motion cases
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allow to handle most of the pedestrian dynamics for medium
and low dense scenarios. However, our proposal, more gen-
erally any form of tracking with Bayes filters, is not adapted
to high-density crowd scenarios, since occlusions may be
much longer in that case and most targets are barely distin-
guishable. Also, our proposal may fail more frequently when
targets move in completely abnormal ways, i.e., with multi-
ple changes of velocity or direction. Finally, from the PETS
results of Table 1, we observe that the use of the social forces
incorporates the intentionality of the pedestrians in such a
way that the trackers interact as people would do, improving
the tracking performances. From the CAVIAR results in the
same table, we can note that the use of SF does not enhance
significantly the score, which is because in these sequences,
interactions are rather scarce and short in time. In fact, ide-
ally, our approach should outperform others in sequences for
which the context influences the human trajectories. Given
this insight, we have shown results on sequences correspond-
ing to several contexts: outdoor, underground hall, etc. In
environments where the targets have erratic motion or no
group interaction but passing by, our approach is less suited.
To sum it up, we would expect performances depending on
the nature of the sequence and its underlying context.

6 Conclusions and perspectives

We have presented a context-based tracker system with a
multiple motion model that includes semantic information
of pedestrian behavior for monocular multiple target visual
tracking. The IMM-PF allows to handle models with dif-
ferent social content, such as grouping or reactive motion
for collision avoidance. The social forces model is a sim-
ple and at the same time efficient way to deal with semantic
information. The combination of multiple interaction allows
our proposal to model high-level behaviors in low-density
scenes. The experiments depict how our approach manages
efficiently challenging situations that could generate identity
switching or target loss.
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