
SIViP (2015) 9:1559–1565
DOI 10.1007/s11760-013-0610-7

ORIGINAL PAPER

A p-norm variable step-size LMS algorithm for sparse system
identification

Muhammad Lawan Aliyu · Mujahid Ado Alkassim ·
Mohammad Shukri Salman

Received: 3 September 2013 / Revised: 7 December 2013 / Accepted: 27 December 2013 / Published online: 7 January 2014
© Springer-Verlag London 2014

Abstract The performance of the leastmean square (LMS)
algorithm in sparse system identification has been improved
by exploiting the sparsity property. This improvement is
gained by adding an l1-norm constraint to the cost function
of the LMS algorithm. However, the LMS algorithm by itself
performs poorlywhen the condition number is relatively high
due to the step size of the LMS, and the l1-norm LMS is an
approximate method which, in turn, may not provide opti-
mumperformance. In this paper,we propose a sparse variable
step-size LMS algorithm employing the p-norm constraint.
This constraint imposes a zero attraction of the filter coeffi-
cients according to the relative value of each filter coefficient
among all the entries which in turn leads to an improved
performance when the system is sparse. The convergence
analysis of the proposed algorithm is presented and stability
condition is derived.Different experiments have been done to
investigate the performance of the proposed algorithm. Sim-
ulation results show that the proposed algorithm outperforms
different l1-norm- and p-norm-based sparse algorithms in a
system identification setting.
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1 Introduction

A system is called sparse if the ratio of the zero, or near-to-
zero, coefficients to non-zero coefficients is relatively small.
Sparse systems are usually classified into two categories: (i)
exact sparse systems; in which the response of the system
is zero, and (ii) near sparse systems; in which most of the
response taps are close (not equal) to zero [1]. If a system
did not have any of these properties, then it can be classified
as a non-sparse system [2].

The knowledge of sparse approximation is very important
as it spans to both fields of theoretical and practical applica-
tions such as image processing, audio analysis, system iden-
tification, wireless communication, and biology. The least
mean square (LMS) adaptive algorithm, introduced by Hopf
andWidrow [3], is widely used in many applications such as
echo cancelation, channel estimation, and system identifica-
tion, due to its simplicity and low computational complex-
ity. Unfortunately, the conventional LMS does not exploit
the sparsity of the system. It neglects the inherent sparse
structural information carried by the system, and this leads
to degradation in the actual performance of the system [4].
Many algorithms have been proposed to exploit this spar-
sity nature of a signal, and most of these algorithms apply
a subset selection scheme during the filtering process [5–8].
This process of a subset selection is implemented through
statistical detection of active taps or sequential tap updating
[9–11]. Other variants of the LMS algorithm assign propor-
tionate step sizes of different magnitude to each tap such as
the proportionate normalized LMS (PNLMS) and improved
proportionate normalized LMS (IPNLMS) [12,13].

Recently, many norm constraint LMS-type algorithms are
proposed to improve the performance of the LMS algorithm
by incorporating the l0-norm [14,15] or l1-norm penalty into
the cost function of the conventionalLMSalgorithm; thereby,
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increasing the convergence rate and/or decreasing the mean
square error (MSE). Unfortunately, most of these algorithms
suffer from the adaptation of the norm constraint for identify-
ing systemswith different sparsity due to the lack of adjusting
factor [4]. The variable step-size LMS (VSSLMS) was pro-
posed by Harris et al. [16] to improve the performance of the
conventional LMS, but still lacks the capability of exploiting
sparsity of the system [16,17].

In this paper, the p-norm penalty is used along with the
VSSLMS algorithm to try to overcome the above mentioned
limitations. This is achieved by incorporating the p-norm-
like constraint into the cost function of the VSSLMS algo-
rithm. This concept of the p-norm-like was fragmented to
form a new constraint definition called the non-uniform norm
which can be made more flexible for adjustment when the
need arise to counter for the swap over between the point
of anti-sparse and sparsity of the systems. Thus, with this
knowledge of the p-norm optimization exploration, the pro-
posed algorithm is called the p-norm constraint variable step
size LMS (p-NCVSSLMS).

This paper is organized as follows. InSect. 2, theVSSLMS
algorithm is reviewed and the proposed algorithm is derived.
In Sect. 3 convergence analysis of the proposed algorithm is
presented and its stability criterion is derived. In Sect. 4,
experimental results are presented and discussed. Finally,
conclusions are drawn.

2 Proposed algorithm

2.1 Review of the variable step-size LMS algorithm

The VSSLMS algorithm is deduced from the conventional
LMSalgorithmwith a variable step size. Let y(n) be a sample
output of an observed signal

y(n) = wT x(n) + v(n), (1)

where w = [
w0w1 . . . wN−1

]T and x(n) = [x(n)x(n − 1)
. . . x(n− N + 1)]T denote the filter coefficient and the input
tap vector, respectively. v(n) is the observed noise which is
assumed to be independent from x(n).

The main aim of the LMS algorithm is to sequentially
estimate the coefficients of the filter using the input–output
relationship of the signal [18]. Let w(n) be the estimated
coefficient vector of the adaptive filter at the nth iteration. In
the conventional LMS, the cost function J (n) is defined as:

J (n) = 1

2
e2(n), (2)

where e(n) is the instantaneous error:

e(n) = y(n) − wT (n)x(n). (3)

The filter coefficients vector is then updated by

w(n + 1) = w(n) − μ
∂ J (n)

∂w(n)

= w(n) + μe(n)x(n), (4)

where μ is the step size which serves as the condition of the
LMS algorithm given by,

0 < μ <
1

λmax(R)
, (5)

where λmax is the maximum eigenvalue of R, and R is the
autocorrelation matrix of the input tap vector. Usually, there
is a trade off between the convergence rate and MSE value
in LMS algorithm. The VSSLMS algorithm uses a variable
step size, as proposed in [16], in order to avoid such a trade
off, and is given by,

μ′(n + 1) = αμ′(n) + γ e2(n), (6)

with 0 < α < 1 and γ > 0 then

μ(n) =
⎧
⎨

⎩

μmax if μ′(n + 1) > μmax

μmin if μ′(n + 1) < μmin

μ′(n + 1) otherwise,
(7)

where 0 < μmin < μmax. Therefore, the step size is a pos-
itive value whose strength can be controlled by α, γ and
the instantaneous error e(n) as in (6). In other words, if the
instantaneous error is large, the step size will increase to
provide faster tracking. If the prediction error decreases, the
step size will be decreased to reduce the misadjustment and
hence provides a small steady-state error. The perfection of
the algorithm could be attained atμmax, [17].μmax is chosen
in such a way to assure constrained MSE [19]. A sufficient
condition to achieve this is

μmax ≤ 2

tr(R)
. (8)

2.2 The p-norm variable step-size LMS algorithm

Even though, the VSSLMS algorithm provides a good per-
formance, still, its performance can be improved further by
imposing the sparsity condition of the system. The proposed
algorithm is derived by solving the optimization problem:

w(n) = arg min
w

J1,n(w), (9)

where J1,n(w) is the modified cost function in (2) which is
achieved by incorporating a p-norm penalty function as:

J1,n(w) = 1

2
|e(n)|2 + λ‖w(n)‖p

p. (10)

The last term in (10) is a p-norm-like constraint penalty,
where λ is a positive constant whose value is used to adjust
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the penalty function. This function has a definition which is
different from the classic Euclidean norm [4], defined as:

‖w(n)‖p
p =

n∑

i=1

|wi |p, (11)

where 0 ≤ p ≤ 1 and we can deduce that:

lim
p→0

‖w(n)‖p
p = ‖w(n)‖0, (12)

which counts the number of non-zero coefficients, and

lim
p→1

‖w(n)‖p
p = ‖w(n)‖1 =

n∑

i=1

|wi |. (13)

Both (12) and (13) are utilized for proper solution and analy-
sis of sparse system derived by the l0 and l1-norm algorithms
as stated in [5]. Since the p-norm has been analyzed, next is
to find a solution for the optimization problem in (9) by using
a gradient minimization techniques, the gradient of the cost
function with respect to the filter coefficient vector w(n) is

∇̂J1,n(w) = ∂|e(n)|2
∂w

+ λ
∂‖w(n)‖p

p

∂w
, (14)

whose solution was found to be

∇̂J1,n(w) = w(n) + λp
sgn[w(n)]
‖w(n)‖1−p

. (15)

Thus, from the gradient descent recursion,

wi (n + 1) = wi (n) − μ(n)∇̂J1,n(w)

= wi (n) + μ(n)e(n)x(n − i)

−κ(n)p
sgn[wi (n)]

σ + |wi (n)|1−p
, ∀0 ≤ i < N ,

(16)

where ∀0 ≤ i < N ,μ(n) is the variable step size of the algo-
rithm given by (1), κ(n) = λμ(n) > 0 is an adjustable para-
meter controlling the stability of the system, σ is a very small
positive constant to avoid dividing by zero and sgn[wi (n)] is
a component-wise sign function.

The introduction of the p-norm facilitates the optimiza-
tion of the norm constraint, this can be achieved by adjusting
the parameter p as in (11). This parameter has effect on both
the estimation bias and the intensity of the sparsity measure,
hence the trade off makes it difficult to achieve the best solu-
tion for the optimization problem.

To address these problems, the classic p-norm as in (9) is
riven into a non-uniform p-norm-like [4]. In this method, a
different value of p is assigned for each entry of w(n) as:

‖w(n)‖p
p,N =

N∑

i=1

|wi |pi , (17)

where 0 ≤ pi ≤ 1 and the new cost function, which is
subjected to (16), can be deduced from the gradient descent

recursion equation as,

wi (n + 1) = wi (n) + μ(n)e(n)x(n − i)

−κ(n)pi
sgn[wi (n)]

σ + |wi (n)|1−pi
, (18)

where ∀0 ≤ i < N , and the introduction of p =
[p0, p1, . . . , pN−1]T vector makes it feasible to control the
effect of estimation bias and sparsity correction measure by
assigning a different value of p for every tap weight vector.
The last part of (18) suggests that a metric of the absolute
value of wi (n) can be introduced to quantitatively classify
the filter coefficients into small and large categories.

By considering the range of the expected value of the tap
weight vector, the absolute value expectation can be defined
as:

hi (n) = E [|wi (n)|] , ∀0 ≤ i < N , (19)

since we are interested in the minimum possible value of
p rather than its index, and minimizing the term pi

|wi (n)|1−pi

in (18) is equivalent to minimizing pi |wi (n)|pi−1, then the
optimization of the large category for each entry of p can be
expressed as:

min
pi

[pi |wi (n)|pi−1] = 0, sub.to : wi (n) > hi (n), (20)

and for the small category, pi is set to be unity to avoid
the imbalance between the extremely great or slight inten-
sity caused by various values of small wi (n). Therefore, the
comprehensive optimization of the non-uniform norm con-
straint will cause pi to take a value of either a 0 or 1 when
wi (n) > hi (n) or wi (n) < hi (n), respectively. With these,
the update equation in (18) becomes

wi (n + 1) = wi (n) + μ(n)e(n)x(n − i)

−κ(n) fi sgn[wi (n)], ∀0 ≤ i < N , (21)

where fi can be obtained by:

fi = sgn[E [|wi (n)|] − |wi (n)|] + 1

2
, ∀0 ≤ i < N . (22)

The second term in (21) provides a variable step size update
while the last term imposes a non-uniform norm constraint
whose function is to attract small filter coefficients to zero.
Unlike other norm constraint algorithms, the norm exertion
here depends on the value of individual coefficient with
respect to the expectation of the tap weight. Also the zero
attractor of the non-uniform norm increases the convergence
rate of small coefficients and eliminates the estimation bias
caused by large coefficients, hence improves the performance
of the algorithm.

Moreover, the performance of the proposed algorithm can
be improved further by reweighting the term introduced in
(22) whichmakes it completely behaves as a reweighted zero
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Table 1 A summary of the proposed algorithm

Initialize w = zeros(N , 1)

initial values of κ(n), ε, μmax, μmin, γ, α

for n = 1, 2, . . . do

e(n) = d(n) − wT (n)x(n)

wi (n + 1) = wi (n) + μ(n)e(n)x(n − i)

− κ(n) fi
sgn[wi (n)]
1+ε|wi (n)| ,

fi = sgn[E[|wi (n)|]−|wi (n)|]+1
2 , ∀0 ≤ i < N ,

where μ′(n + 1) = αμ′(n) + γ e2(n),

μ(n) =

⎧
⎪⎨

⎪⎩

μmax if μ′(n + 1) > μmax

μmin if μ′(n + 1) < μmin

μ′(n + 1) otherwise.

attractor [5]. By this, the update equation of the proposed
algorithm can be expressed as:

wi (n + 1) = wi (n) + μ(n)e(n)x(n − i)

−κ(n) fi
sgn[wi (n)]
1 + ε|wi (n)| , ∀0 ≤ i < N , (23)

where ε > 0 is an adjustable parameter whose value controls
the reweighing factor. Table 1 provides a summary of the
proposed algorithm.

3 Convergence analysis of the proposed algorithm

In this section, the convergence analysis of the proposed algo-
rithm is presented and a stability condition is derived. The
essence of the convergence analysis is to ensure that the algo-
rithm fulfills the criteria needed for the application require-
ments. Now, starting by substituting (22) in (23),

wi (n + 1) = wi (n) + μ(n)e(n)x(n − i)

−κ(n)

(
sgn(E [|wi (n)|] − |wi (n)|) + 1

2(1 + ε|wi (n)|)
)

×sgn [wi (n)] . (24)

Assuming that an i.i.d zero-mean Gaussian input signal x(n)

corrupted by a zero-mean white noise v(n), the filter mis-
alignment vector can be defined as:

δw(n) = w(n) − w0 (25)

wherew0 represents the unknown system coefficients vector.
The mean and the auto-covariance matrix of δw(n) can be

written as,

ε(n) = E[δw(n)], (26)

S(n) = E
[
q(n)qT (n)

]
, (27)

where q(n) is the zero-mean misalignment vector defined as:

q(n) = δw(n) − E[δw(n)], (28)

The instantaneous mean square deviation (MSD) can be
defined as:

J (n) = E[‖δw(n)‖p
p]

=
N−1∑

i=0

Λi (n), (29)

where Λi (n) denotes the i th-tap MSD and is defined with
respect to the i th element of δw(n)

Λi (n) = E[δ2i (n)]
= Sii (n) + ε2i (n); i = 0, . . . , N − 1 (30)

where Sii (n) and εi (n) are the i th diagonal element and the
i th of the S(n) and ε(n), respectively.

Substituting d(n) = wT
0 x(n) + v(n) and (3) in (24) gives

wi (n + 1) = wi (n)

+μ(n)[xT (n)w0+v(n)−xT (n)w(n)]x(n−i)

−κ(n)

(
sgn(E [|wi (n)|] − |wi (n)|) + 1

2(1 + ε|wi (n)|)
)

×sgn [wi (n)] , (31)

Equation (31) can be rewritten in vector form as,

w(n + 1) = w(n)+μ(n)x(n)
[
xT(n)w0+v(n)−xT(n)w(n)

]

−κ(n)

2
({sgn(E [|w(n)|] − |w(n)|) + 1}

× � sgn [w(n)]) � (1 + ε|w(n)|) , (32)

where |w| is the element wise absolute ofw, 1 denotes a vec-
tor of ones of the same size ofw, and� and�denote element-
by-element vector multiplication and division, respectively.
Subtracting w0 form both sides of (32) and substituting (25)
gives

δ(n + 1) = A(n)δ(n) + μ(n)x(n)v(n)

−κ(n)

2
({sgn(E [|w(n)|] − |w(n)|) + 1}

� sgn [w(n)]) � (1 + ε|w(n)|) , (33)

where IN denotes the N × N identity matrix and

A(n) = IN − μ(n)x(n)xT (n), (34)

Taking the expectation of (33) and using the independence
assumption [21] provide

ε(n + 1) = [1 − μ(n)σ 2
x ]ε(n)

−κ(n)

2
E[({sgn(E [|w(n)|] − |w(n)|) + 1})

� sgn [w(n)])] � (1 + ε|w(n)|) , (35)
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where σ 2
x is the variance of x(n). Now, subtracting (35) from

(33) and substituting (26) and (28) gives

q(n + 1) = A(n)q(n) + μ(n)x(n)v(n) + κ(n)

2
Z(n) (36)

where

z(n) = E
[
(sgn(E [|w(n)|] − |w(n)|) + 1)

� ([1 + ε|w(n)|])] � sgn [w(n)]

− (sgn(E [|w(n)|] − |w(n)|) + 1)

� ([1 + ε|w(n)|]) � sgn [w(n)] . (37)

By (27),

S(n + 1) = E
{
q(n + 1)qT (n + 1)

}

= E

{ [
A(n)q(n) + μ(n)x(n)v(n) + κ(n)

2
z(n)

]

×
[
A(n)q(n)+μ(n)x(n)v(n)+ κ(n)

2
z(n))

]T }

= E
{
A(n)q(n)qT (n)AT (n)

}

+E
{
A(n)q(n)μ(n)v(n)xT (n)

}

+κ(n)

2
E

{
A(n)q(n)zT (n)

}

+E
{
μ(n)v(n)x(n)qT (n)AT (n)

}

+E
{
μ2(n)v2(n)x(n)xT (n)

}

+κ(n)

2
E

{
μ(n)v(n)x(n)zT (n)

}

+κ(n)

2
E

{
z(n)qT (n)AT (n)

}

+κ(n)

2
E

{
μ(n)v(n)z(n)xT (n)

}

+
(

κ(n)

2

)2

E
{
z(n)zT (n)

}
. (38)

To evaluate (38), we use the fact that the fourth-order
moment of a Gaussian variable is three times its variance
squared [20], and by the independence assumption [21] and
symmetric behavior of the covariance matrix S(n),

E
{
A(n)q(n)qT (n)AT (n)

}

=
(
1 − 2μ(n)σ 2

x + 2μ2(n)σ 4
x

)
S(n)

+μ2(n)σ 4
x tr[S(n)]IN , (39)

and

E
{
A(n)q(n)zT (n)

}
= ET

{
z(n)qT (n)AT (n)

}

= (1−μ(n)σ 2
x )E

{
wT (n)z(n)

}
, (40)

where tr(.) denotes the trace of a matrix. Now, finding the
trace of (38) and by using the results of (39) and (40), we
obtain

tr[S(n + 1)] =
(
1 − 2E {μ(n)} σ 2

x + 2E
{
μ2(n)

}
σ 4
x

)

× tr[S(n)] + NE
{
μ2(n)

}
σ 4
x

× tr[S(n)] + NE
{
μ2(n)

}
σ 2

v σ 2
x

+ κ(n)(1 − E {μ(n)} σ 2
x )E

{
wT (n)z(n)

}
.

(41)

From (37), it is obvious that z(n) is bounded, and hence,
the term in (41) E

{
wT (n)z(n)

}
converges. Thus, the adaptive

filter is stable if the following holds:

|1 − 2E{μ(n)}σ 2
x + (N + 2)E{μ2(n)}σ 4

x | < 1. (42)

As the algorithm converges (n is sufficiently large), the error
e(n) → 0, and hence, by (6), μ(n) becomes constant. In
this case, E{μ2(n)} = E{μ(n)}2 = μ2(n). Hence the above
equation simplifies to

0 < μ(∞) <
2

(N + 2)σ 2
x
. (43)

This result shows that if μ satisfies (43), the convergence of
the proposed algorithm is guaranteed.

4 Experimental results

In this section, numerical simulations to investigate the per-
formance of the proposed algorithm in terms of the steady-
state MSD (MSD = E‖h − w(n)‖2) and convergence rate
are carried out. The performance of the proposed algorithm is
compared to those of the non-uniformnormconstrainedLMS
(NNCLMS) [4] and ZA-LMS [5] algorithms. Two-system
identification experiments have been designated to demon-
strate the performance analysis. All simulations are obtained
by 100 times independent runs.

In the first experiment, the sparse system, to be identified,
is assumed to be of 64 taps with 5 random taps are assumed to
be 1. The driven input and observed noise are both assumed to
be white Gaussian processes with zero mean and variances 1
and 0.01, respectively. The algorithms are simulated with the
following parameters: For the ZA-LMS,μ = 0.015 and κ =
0.0015. For NNCLMS, μ = 0.015, κ = 0.0015, and ε = 2.
For the proposed algorithm, γ = 0.0005, α = 0.97, μmin =
0.011, μmax = 0.017, κ = 0.0015, and ε = 2. As shown in
Fig. 1, it can be noticed that the proposed algorithmconverges
at the same rate of the other algorithmswith 4 and10dB lower
MSD’s than those of theNNCLMSandZA-LMS algorithms,
respectively. Figure 2 shows the evolution curve of μ(n) of
the proposed algorithm in white Gaussian noise. From the
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Fig. 1 Ensemble MSD curves of the proposed, NNCLMS and ZA-
LMS algorithms in white Gaussian noise

0 500 1000 1500
0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

Iteration

µ(
n)

Fig. 2 Evolution curve of μ(n) of the proposed algorithm in white
Gaussian noise

figure, we note that μ(n) initially is large to provide fast
convergence, and as the algorithm starts converging, μ(n)

starts decreasing to provide low MSD value.
In order to test the performances of all algorithms due to

the change of the sparsity of the unknown system, experiment
one is repeated by only changing the unknown system. The
unknown system is assumed to be 50 taps. As shown in Fig. 3,
at the beginning, one random coefficient of the system is
assumed to be 1 and the others are set to zeros. Between
iterations 1,500 and 3,000, four random coefficients are set
to 1 and the rest are zeros. After iteration 3,000, 14 random
coefficients are set to 1 and the rest are zeros. From Fig. 3, we
note that even though all the algorithms converge at the same
rate, but the proposed algorithm converges to a lower MSD
than the others. Also, the ZA-LMS is highly affected by the
sparsity of the system. Figure 4 shows the evolution curve of
μ(n) of the proposed algorithm for the experiment in Fig. 3.
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Fig. 3 Ensemble MSD curves of the proposed, NNCLMS and ZA-
LMS algorithms in white Gaussian noise (different sparsity ratios)
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Fig. 4 Evolution curve of μ(n) of the proposed algorithm in white
Gaussian noise (different sparsity ratios)
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Fig. 5 MSD curves versus sparsity ratio
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Figure 5 shows the effect of sparsity on the performance of
the algorithms (1 denotes %100 sparse system).

5 Conclusions

In this paper, a new p-norm-based VSSLMS algorithm for
sparse system identification is proposed. The proposed algo-
rithm exploits sparsity by attracting relatively small coeffi-
cients of the sparse system to zero. Convergence analysis
of the proposed algorithm is presented. The performance of
the proposed algorithm has been compared to those of the
ZA-LMS and NNCLMS algorithms in a sparse system iden-
tification setting. Simulations results show that the proposed
algorithm is superior to the other algorithms.
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