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Abstract Digital images can suffer from periodic noise,
resulting in the appearance of repetitive patterns on the image
data and quality degradation. In order to effectively reduce
the periodic noise effects, a novel adaptive Gaussian notch
filter is proposed in this paper. In the presented method, the
frequency regions that correspond to noise are determined
by applying a segmentation algorithm on the spectral band
of the noisy image using an adaptive threshold. Then, a
region growing algorithm tries to determine the bandwidth
of each periodic noise component separately. Subsequently,
proper Gaussian notch filters are used to decrease the peri-
odic noises only at the contaminated noise frequencies. The
proposed filter and some other well-known filters including
the frequency domain mean and median filters and also the
traditional Gaussian notch filter are compared to evaluate
the effectiveness of the approach. The results in different
conditions show that the proposed filter gains higher perfor-
mance both visually and quantitatively with lower computa-
tional cost. Furthermore, compared with the other methods,
the proposed filter does not need any tuning and parameter
adjustments.
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1 Introduction

Image noise as a random variation of intensity or color in
digital images is created by means of imaging sensors, scan-
ner circuits or digital cameras. The performance of imaging
sensors is affected by a variety of factors such as environ-
mental conditions during image acquisition and the quality
of sensor elements. For example, in an imaging system with
CCD cameras, light levels and sensor temperature are the
main factors creating noise in the digital image. Currently,
noise reduction algorithms have received a lot of interest
since the image noise can significantly degrade the image
quality [1].

Periodic noise, as one type of image noise, is an unde-
sired signal that creates repetitive and intermittent patterns
in the digital images. It often contaminates the whole image
as impulse-like bursts while it is not simply separable or
detectable from its background in the spatial domain. In fre-
quency domain, the periodic noise appears in the frequencies
corresponding to the periodic noise with high amplitudes.
Different sources can generate the periodic noise includ-
ing the electrical and electromechanical interference during
image acquisition, the thermal instability of optical elements,
electronic circuit’s gain in optical sensors and the scanning
process in electro-optical scanners [2].

For example, periodic noises contaminate the output of
imager system mounted on vibrated holder (e.g., in a non-
stabilized helicopter) or the output of TV receiver when the
receiving signal is weak, or the output of an imaging system
suffers fromelectrical inference between receiving signal and
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Fig. 1 X-ray imaging from
human skeleton, contaminated
by, a Stripping, b local, c global
periodic noise

another periodic signal, like inter-harmonics of power supply
frequency.

The periodic noise is usually classified into three differ-
ent categories: global periodic noises, local periodic noises
and stripping patterns [3,4]. The global periodic noise is the
repetitive and undesired patterns with fixed parameters in the
whole image. The interference of independent periodic sig-
nals is one of the main sources of this noise. Adjacent digital
clock signals can be a source of this noise in image sensor
devices. The interference of periodic digital signals with ana-
log TV sets is another example where global periodic noise is
produced. In the local periodic noise, some noise parameters
including the frequency, the amplitude and the phase of the
periodic noisemay depend on the image relative coordinates.
Unequal sensitivity of detectors and corresponding electronic
circuits in multi-sensor imaging systems can cause the third
type of noise known as stripping. The period of stripes is
usually determined by the number of available detectors in
the imaging device. Another source of striping noise can be
found in the interference of florescent lamp 50 (60Hz) light
intensity fluctuations with the rolling shutter mechanism of
an image sensor. Figure 1 shows three types of periodic noise.

According to the imager location in a multi-sensor sys-
tem, the position of stripping noise bands is predetermined,
and it is possible to reduce the noise effectively using some
spatial methods such as equalization of average and variance
of the gray level distribution in different bands [4]. Apart
from stripping noise, simple spatial methods cannot be used
to reduce global and local periodic noise.

The local and global periodic noises in spatial domain
can be modeled as the sum of sinusoidal functions, given by
Eq. (1), where the noisy image appears like stars with high
amplitude in the frequency domain [5].

n(x, y)= A sin[2πu0(x+Bx )/M+2πv0(y + By)/N ] (1)

In Eq. (1), A is the noise amplitude; u0 and v0 determine
the sinusoidal frequencies with respect to the x and y axes,
respectively, and Bx and By are phase displacements with
respect to the origin.

Since the periodic noise is spread throughout the whole
image, it cannot be detected directly in the spatial domain

and the frequency domain is preferred for its identification
and reduction.

In this paper, a novel adaptive Gaussian notch filter, which
is based on an automatic analysis of image spectrum con-
taminated by periodic noise, is proposed in the frequency
domain to effectively reduce the effect of the periodic noise.
Against the other existing methods, the proposed filter does
not need any tuning and parameter adjustments. First, the
proposed method tries to detect the frequency regions that
correspond to periodic noise by applying a segmentation and
region growing algorithm on the spectral band of the noisy
image using an adaptive threshold. Then, proper Gaussian
notch filters in which parameters are adaptively determined
are used to decrease the periodic noises only at the contami-
nated noise frequencies.

Comparison results show that the proposed approach
needs lower computational complexity. Moreover, it also
restores the image with a good quality both visually and sta-
tistically.

In the next section, a reviewon someconventional periodic
noise reduction algorithms is presented. The proposed adap-
tive Gaussian notch filter is described in the Sect. 3. Com-
parison results between the proposed algorithm and some
conventional methods are given and discussed in the Sect. 4.
Finally, some concluding remarks are presented in the last
section.

2 A review on the existing algorithms

In this section, some existing algorithms for periodic noise
reduction in the frequency domain including mean, median
and Gaussian notch filters are reviewed and discussed. These
filters are constructed from two main steps, namely the peri-
odic noise identification phase and the frequency cancelation
filter phase. The identification step checks to see whether the
image frequency component corresponds to the unwanted
periodic noise or the image data itself. The cancelation step
attempts to filter out the noise frequency. Different identifi-
cation and cancelation approaches are used in each method.
Furthermore, a constant threshold is used inmost of themeth-
ods to distinguish the image and noise components.
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2.1 Median filter in frequency domain

This filter can operate in both frequency and spatial domains
[6]. The frequency domain type is implemented on the image
spectrum amplitude, and it is necessary to initially identify
whether the spectrum component corresponds to periodic
noise or not. A moving median window of n × n dimen-
sions is used to filter the spectrum amplitude. The median
value itself is used to check the amplitude of every spectral
coefficient and accordingly identify whether the coefficient
is significantly higher than the median of local components.
If so, the coefficient is considered due to a periodic noise
source and the median filtering is applied at that location.

The identification and filtering steps can be represented
by the following equation:

Yi, j =
{
median(Xi, j ) if

Xi, j

median(Xi, j )
≥ θ and (i, j) �= (0, 0)

Xi, j otherwise
,

(2)

where Xi, j is the spectrum amplitude of the input image at
the frequency of (i, j),Y is the spectrum amplitude of the
filtered image, median(Xi, j ) is the median in the local n × n
window around the spectrum coefficient being filtered, and
θ is a predefined threshold. Conventionally, the window size
in the frequency median filter is chosen equal to or larger
than 5 × 5. Based on Eq. (2), the filter is not applied to
center spectral coefficient (X0,0), because it represents only
the mean brightness of the image.

2.2 Mean filter in frequency domain

The idea of mean filtering in the frequency domain is to
analyze the image spectrumamplitude using a sweeping local
mean calculationmaskof sizen×n,wheren is anoddnumber
[7]. The coefficients of the mask are all 1, except the center
which is 0. The local mean mask averages all local spectrum
amplitudes except the central element since it may be the one
which corresponds to the periodic noise frequency. Based on
the ratio of the image input spectrum amplitude to the mask
local mean value at the corresponding location, it is decided
whether the frequency should be filtered or not.

Themean filter and identification in the frequency domain
can be represented by the following relation:

Yi, j =
{

Xi, j
δ

if
Xi, j

S(Xi, j )
≥ θ and (i, j) �= (0, 0)

Xi, j otherwise
, (3)

where Xi, j is the spectrum amplitude of the input image at
the frequency of (i, j),Y is the spectrum amplitude of the
filtered image, S(Xi, j ) is the mean value based on the n × n
binary mask around the spectrum coefficient to be filtered, θ
is the predefined threshold, and δ is a normalizing divider to
reduce the amplitude of the periodic noise frequency.

2.3 Gaussian notch filter

In this filter, which operates on the image spectrum, the
median value of the local window is used to check the ampli-
tude of every spectral coefficient and select the noisy fre-
quency according to the peak detector and identifier [8]. The
frequency (i, j) in the spectrum is contaminated by periodic
noise if the following condition meets:

Xi, j

median(Xi, j )
≥ θ, (4)

where median(Xi, j ) is the median value in the local n × n
window around the spectrum coefficient (i, j) and θ is the
predefined threshold.

After detecting the frequency of the periodic noise, the
corresponding Xi, j together with its neighborhood m × n
window which is called X̂m,n

i, j is corrected by the windowed
Gaussian notch filter Gm,n as follows:

Ŷ m,n
i, j = X̂m,n

i, j ◦ Gm,n, (5)

where Y is the spectrum of the filtered image, Ŷ m,n
i, j is the

m×n area around Yi, j , “•” denotes the element-wise matrix
multiplication, and Gm,n is an m × n matrix and its (x, y)
element is defined as:

Gm,n = 1 − Ae−B(x2+y2)

x = −
[n
2

]
, . . . ,

[n
2

]
y = −

[m
2

]
, . . . ,

[m
2

]
, (6)

where [] denotes the integer part of a real number, 0 < A < 1
is themagnitude of the generated peak, and B > 0 is a scaling
coefficient along the x and y axes. Therefore, for the output
spectrum Y , the relation of the Gaussian notch filter can be
defined as:{
Ŷ m,n
i, j = X̂m,n

i, j ◦ Gm,n if
Xi, j

median(Xi, j )
≥ θ and (i, j) �= (0, 0)

Yi, j = Xi, j otherwise

(7)

Equation (6) defines a Gaussian-like surface. This equation
has a single peak in the center of the surface and the surface
is of the same size as the filtering window used in Eq. (5).
Equation (7) is applied locally, so only coefficients within
the filtering window are affected, which makes it more bene-
ficial. Also, Eq. (6) is possible to define the width of the gen-
erated peak (controlled by B), its magnitude (controlled by
A) and the corrected area (m and n) independently, allowing
a wide peak in a narrow window to attenuate strong spectral
distortions.

2.4 Comparison of existing methods

Detection and identification of the frequencies that are con-
taminated by periodic noises is an important challenge in the
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Fig. 2 Example of image spectrum segmentation

periodic noise restoration procedure, where in some cases it
can be solved by median and mean filtering in the frequency
domain. However, one of the disadvantages of median filter
is choosing an initial threshold value and filtering window
size. Furthermore, since the median value should be cal-
culated for all frequencies of the image, the computational
complexity for realization of this filter is also high and expo-
nentially increases with the median window dimension such
that despite its effectiveness, it is not suitable for time crit-
ical applications. The mean filter in the frequency domain
has less computational cost compared with the median filter
in the frequency domain. Experimental results show that it
removes sharp periodic noise in the frequency domain prop-
erly, but when the bandwidth of the periodic noise increases,
the impact of this filter degrades and so some parts of noise
will remain.

In terms of visual and statistical quality, the Gaussian
notch filters result in better performance compared with the
other methods. However, since the detection of noise fre-
quency is similar to themedianfilter in the frequency domain,
it inherits the same problems from themedian filtering. Thus,
in images contaminated by multiple frequencies, this filter
shows poor performance. Also, increasing the noise power
tends to decrease noise removal quality. In this paper, in order
to improve these disadvantages, a novel adaptive Gaussian
notch filter is proposed.

3 Proposed method: adaptive Gaussian notch filter

The proposed method is based on the Gaussian notch fil-
ter while it is accompanied by an adaptive image noise
spectrum analyzing block to detect the noise frequencies
and bandwidths. The proposed algorithm includes two basic
steps: detection of the noise frequencies and applying a tuned
Gaussian notch filter, for each noise component.

3.1 Detection of noise frequencies

This step tries to detect the center frequency of each noise
component using segmentation of noisy image spectrum and
comparison with an adaptive threshold. When the image is
contaminated by a periodic noise, the amplitude of the noise
frequencies is generally higher than the corresponding fre-
quencies of the original image; therefore, the noise frequen-
cies can be separated by thresholding. On the other hand, the
amplitude of spectrum frequencies near the origin (which is
due to smooth part of the original image) tends to be relatively
high and should not be confused with periodic noise. There-
fore, before segmentation, it is necessary to separate this low
frequencies region (LFR) whose radius is assumed RLFR,
from the image spectrum. In order to determine the parameter
RLFR, in the first step, the image spectrum is segmented into
arc-shaped portions using concentric rings of 5 pixels width
as shown in Fig. 2. Each ring is divided into n slices, and the
average value of each part is calculated. Subsequently, among
the n slices of each ring, the maximum average is chosen and
the average intensity value of the selected slices can be plot-
ted as a function of distance from the diagram origin. In order
to choose the best n, we have tested different slices including
6, 12 and 16 for several images with different complexities.
Averagely, for most of the images, 12 slices resulted in the
best performance in terms of establishing a tradeoff between
complexity and accuracy (Fig. 2).

As an example, Fig. 3 shows a noisy image, corresponding
image spectrum, a mask made up of the parts featured with
the maximum average, and multiplication of the mask and
image spectrum. As it can be seen from the result, the noise
frequencies are separated effectively by the corresponding
mask.

Figure 4 illustrates the maximum average plot versus dis-
tance from origin for the case shown in Fig. 3d. When there
are no periodic noises, the plot is almost a decreasing func-
tion of R, but in the existence of periodic noise, there are
some peaks after the initial descending part of the plot. RLFR

is considered as the R value of the first local minimum of the
plot.

Figure 5b shows the image spectrum of Fig. 3a, after reset-
ting all amplitude of corresponding frequencies inside RLFR

to zero. Actually, Fig. 5b is similar to a thermal image when
there are some warm target points (Figs. 4, 5).

In an infrared image, when the temperature of a point tar-
get is higher than the background, it will appear as bright
spots. This condition is also observed in the image spectrum
contaminated by periodic noise since the noise frequencies
are higher than the other components. Therefore, the segmen-
tation algorithm for warm point targets in the infrared images
[9] can be used for the identification of the noise targets. To
determine the center of noise frequencies, a proper threshold
value (Ath) is required for the image spectrum thresholding
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Fig. 3 a Sample 256 × 256
Lena image contaminated with
periodic noise. b Corresponding
image spectrum. cMask
showing rings that have
maximum mean and d
multiplication of mask with
image spectrum. The plot of
slice averages that have
maximum mean amplitude in
their corresponding rings can be
used to determine RLFR

Fig. 4 Plot of mean amplitude
of slices in Fig. 3c versus
distance from origin (R)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
g

e 
In

te
n

si
ty

 V
al

u
e 

o
f 

ri
n

g
s

R

algorithm. The threshold value (Ath) can be determined by
Eq. (11) as follows:

Ath = (Amax + Amean)

2
, (8)

where Amax and Amean are the maximum value and mean
value of image spectrum amplitude after eliminating the LRF
region, respectively. To avoid the effect of noisy frequency
components in extraction of Amean, the corners of the image
spectrum are used for this purpose. As shown in Fig. 6, the
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Fig. 5 a Image spectrum of
Fig. 3a, b image spectrum after
resetting the region inside RLFR
to zero and c detection of the
noise center frequencies, like
warm target points in thermal
images

Fig. 6 Four arc corners used to calculate Amean

four arc regions that reside outside of the circle with radius
R are considered as the noise free area. The radius R can be
calculated by the following equation:

R=maximum

⎧⎨
⎩

√(
M

2

)2

+
(
N

4

)2

,

√(
M

4

)2

+
(
N

2

)2
⎫⎬
⎭ ,

(9)

where M and N are the image dimensions.
After computing the threshold value (Ath) based on Eq.

(8), thresholding is applied to the whole image spectrum,
except the LFR region, and the center frequency of periodic
noise components is extracted.

In this work, the actual noise reduction block is aGaussian
notch filter, therefore, in order to tune the parametersm and n
in Eq. (7), besides the noise center frequency; its expansion
about the center is also required. To extract the amount of
noise spreading in the frequency domain, a region growing
algorithm is incorporated. The proposed algorithm is sim-
ilar to the method presented in Szeliski [10] and is based
on selecting the noise center frequencies as the initial seeds
and extending the region till a certain criteria is met. For this
purpose, initially a 3× 3 window is placed around the noise
center frequencies that were detected by the previous adap-

Fig. 7 Two 3 × 3 and 5 × 5 windows, used in the proposed region
growing algorithm

tive thresholding step. Then, a larger 5 × 5 window is used
for neighbor cell comparison. Figure 7 shows all pair pixels
that should be used for comparison. As shown in this figure,
every three corners in the larger window are compared with
a single corresponding cell in the smaller window.

Generally, when a frequency is contaminated by peri-
odic noise, its corresponding amplitude in the larger window
should be lower than its comparison pair in the smaller win-
dow.Thismeans thatwhen the amplitude of a frequency com-
ponent in the 5 × 5 window is lower than its corresponding
comparison cell in the 3 × 3 window, this frequency should
be also be considered as noise frequency. If more than half
of the frequencies in the 5 × 5 window are contaminated by
periodic noise, the growing algorithm is repeated with the
5×5 window, as the initial frame, and the surrounding 7×7
window, as the comparison neighbor cells. After termination
of this process, the dimensions of the surrounding window of
noise frequencies are used to tune the parameters m and n in
Eq. (5). For a sample detected noise, center frequency in Fig.
8a,b shows all frequencies contaminated by periodic noise.
The surroundingwindow for tuning the parametersm andn in
Gaussian notch filter is shown in Fig. 8c by thewhitewindow.

3.2 Applying the Gaussian notch filter

After detecting all noise frequency components and cor-
responding dimensions of the surrounding window, the
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Fig. 8 a Close-up of a sample
noise frequency, b all noise
frequencies detected by the
proposed region growing
algorithm which is shown by
black and c the surrounding
window for tuning the Gaussian
notch filter

Fig. 9 a Sample noisy image with A = 0.05 in Eq. (14), restored image with b mean, c median, d Gaussian notch filters and e the proposed
adaptive Gaussian notch filter method

Table 1 Comparison results of adaptive Gaussian notch (AGNF),
Gaussian notch (GNF), median and mean filters

Parameter AGNF GNF Median filter Mean filter

MAE 1.494 1.518 1.595 2.962

STD 4.962 5.313 5.691 6.186

SSIM 0.891 0.875 0.809 0.768

Time (s) 3.878 9.311 10.328 2.926

Gaussian notch filter is used to compensate these compo-
nents. It means that each detected noise frequencies has its
own m and n in Eq. (6). Since the detection of all noise fre-
quencies and corresponding parameters is adaptively done,
the proposed method is relatively robust to changes in the
image and periodic noise conditions.

4 Results and comparison

The proposed adaptive Gaussian notch filter algorithm has
been implemented in MATLAB environment and compared
with the frequency domainmean,median andGaussian notch
filters, qualitatively and quantitatively. Moreover, execution
times of compared algorithms are presented as a criterion for
complexity comparison. In order to quantitatively compare
the results, the mean absolute error (MAE) between the orig-
inal and filtered images and its standard deviation (STD) are
presented. The MAE and STD are expressed with Eq. (10a)
and (10b), respectively.

MAE = 1

N .M

N−1∑
i=0

M−1∑
j=0

[∣∣x(i, j) − y(i, j)
∣∣] (10a)
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Fig. 10 Plot of MAE versus
noise amplitude (A) for the
compared algorithms

Fig. 11 Plot of STD versus
noise amplitude (A) for the
compared algorithms

STD=
⎡
⎣ 1

N .M

N−1∑
i=0

M−1∑
j=0

[∣∣x(i, j)−y(i, j)
∣∣−MAE

]2⎤⎦
1
2

(10b)

In Eq. (11), M and N are the image dimensions; x is the
original noiseless image, while y is the restored image after
applying the restoration algorithm. Lower MAE means the
restoration algorithm shows higher performance. Lower STD
shows that the variation between the noiseless and restored
images is lower.

MAE and STD are appealing because they are simple to
calculate, have clear physical meanings and are mathemat-
ically convenient in the context of optimization. But they
are not very well matched to perceived visual image quality.

The measure of structural similarity (SSIM) can be used to
compare the visual quality of original and distorted images
[11]:

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
(11)

In Eq. (11), SSIM (x,y) is equal to unity if and only if x=y.
μx is the mean intensity and σx is the STD (the square root
of variance) of pixels and can be calculated by Eqs. (12) and
(13) as follows:

μx = 1

N .M

N−1∑
i=0

M−1∑
j=0

[x(i, j)] (12a)
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Fig. 12 Plot of SSIM versus
noise amplitude (A) for the
compared algorithms

Table 2 Comparison results for adaptive Gaussian notch (AGNF),
Gaussian notch (GNF), median and mean filters applied on images
degraded by periodic noise N1

AGNF GNF Mean filter Median filter

0.9298 0.9144 0.7011 0.7872 Crowd

0.8940 0.8650 0.5876 0.6756 Girl

0.8924 0.7833 0.6224 0.7038 Flower

0.7919 0.6983 0.4576 0.5470 Lena

0.7449 0.7207 0.3590 0.4364 Birds

μy = 1

N .M

N−1∑
i=0

M−1∑
j=0

[y(i, j)] (12b)

σx =
⎡
⎣ 1

N .M − 1

N−1∑
i=0

M−1∑
j=0

[x(i, j) − μx ]
2

⎤
⎦

1
2

(13a)

σy =
⎡
⎣ 1

N .M − 1

N−1∑
i=0

M−1∑
j=0

[
y(i, j) − μy

]2⎤⎦
1
2

(13b)

σxy =
⎡
⎣ 1

N .M − 1

N−1∑
i=0

M−1∑
j=0

[
(x(i, j) − μx )(y(i, j) − μy)

]⎤⎦
1
2

(13c)

In Eq. (11),C1 andC2 are added to avoid instability when
μ2
x + μ2

y or σ 2
x + σ 2

y are very close to zero. They can be
adjusted byC1 = (K1L)2 andC2 = (K2L)2, where K1 � 1
and K2 � 1 are small constants and L is the dynamic range
of the pixel values (255 for 8-bit gray level images). In this
work, both K1 and K2 are set to 0.05.

Table 3 Comparison results for adaptive Gaussian notch (AGNF),
Gaussian notch (GNF), median and mean filters applied on images
degraded by periodic noise N2

AGNF GNF Mean filter Median filter

0.9438 0.9287 0.8723 0.8560 Crowd

0.9316 0.9190 0.8058 0.8021 Girl

0.9281 0.8978 0.8174 0.8056 Flower

0.8654 0.8229 0.6965 0.7120 Lena

0.8297 0.8357 0.6176 0.6353 Birds

Table 4 Comparison results for adaptive Gaussian notch (AGNF),
Gaussian notch (GNF), median and mean filters applied on images
degraded by periodic noise N3

AGNF GNF Mean filter Median filter

0.9406 0.9382 0.8704 0.8420 Crowd

0.9365 0.9389 0.8183 0.7747 Girl

0.9290 0.9227 0.8270 0.7938 Flower

0.8545 0.8581 0.6862 0.6420 Lena

0.8315 0.8301 0.5922 0.5522 Birds

Table 5 Comparison results for adaptive Gaussian notch (AGNF),
Gaussian notch (GNF), median and mean filters applied on images
degraded by periodic noise N4

AGNF GNF Mean filter Median filter

0.9751 0.9690 0.9438 0.9687 Crowd

0.9659 0.9576 0.9569 0.9505 Girl

0.9703 0.9637 0.9628 0.9555 Flower

0.9298 09114 0.8963 0.8816 Lena

0.9069 0.9119 0.8421 0.8476 Birds
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Fig. 13 a Contaminated images with noise N1, restored image with b median, c mean, d Gaussian notch filters and e the proposed adaptive
Gaussian notch filter

4.1 Results for simulated periodic noises

Generally, when an image is corrupted by a single fre-
quency periodic noise, all compared restoration algorithms
work well, but multi-frequency periodic noise is a challeng-
ing problem. Therefore, in the first simulation, the multi-
frequency periodic signal n(x, y), given by Eq. (14), was
chosen as the noise source:

n(x, y) = A × [sin(8y) + sin(8x)

+ sin(5.25x + 5.25y) + sin(x + 5.25y)] (14)

In the compared methods, including frequency domain
median, mean and Gaussian notch filters, in order to obtain
suitable results, some parameters should be initially tuned.
The simulation results show the window dimension 11× 11
is the best choice for parameter n in Eqs. (2), (3) and
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Fig. 14 a Image with periodic
stripes, b image spectrum, c
restored image with the
proposed method, adaptive
Gaussian notch filter and d
spectrum of restored image

(4). Similarly, the threshold value θ for median, mean
and Gaussian notch filters was considered 6, 5 and 4.5,
respectively. The normalizing divider in Eq. (3) was set to
100, and coefficients A and B in the Gaussian notch fil-
ter are set to 1.0 and 0.01, respectively, while m and n
are both set at 7, in Eq. (5) [8]. In contrast, the proposed
adaptive Gaussian notch filter method requires no parame-
ter adjustments, which is a major advantage of the tech-
nique.

In the first simulation, the amplitude of periodic noise in
Eq. 14 is set to 0.05. Figure 9 shows the result of the different
algorithms for image restoration.

The quantitative results including MAE and STD as well
as execution times of the compared algorithms are presented
in Table 1. An Intel Core 2 Duo CPU T9550, 2.66GHz with
4.096GB DRAM was chosen as the processor.

In order to evaluate the results in different noise ampli-
tudes, in the second simulation, the amplitude A in Eq. (14)
is varied between 0.1 and 0.9. The MAE, STD and SSIM
values are plotted versus A, in Figs. 10, 11 and 12, respec-
tively. When the noise amplitude increases, MAE and STD
also increase but SSIM decreases.

In terms of MAE and SSIM, the proposed algorithm,
AGNF, shows the best results. Moreover, if the noise ampli-
tude (A) increases, difference between AGNF and GNF as
nearest competitor in terms of MAE and SSIM increases. It
means that AGNF could adaptively work and it also does
not need any parameter tuning. However, in terms of STD,
at some amplitude, GNF shows better results than AGNF.
Considering all the criteria, we conclude that AGNF is the
best algorithm.

In the next simulation, four noise signals with arbitrary
frequencies and amplitudes are added to 5 different input
images and then restored using the median, mean, GNF and
AGNF filters. The parameter SSIM is calculated for each
case and reported in Tables 2, 3, 4 and 5. The noise signals
N1 through N4 are given by Eqs. (15)–(18).

N1(x, y) = 0.2 × [sin(1.8x + 1.8y) + sin(x + y)

+ sin(2.2x + 2.2y) + sin(1.8x − 1.8y)

+ sin(x − y) + sin(2.2x − 2.2y)] (15)

N2(x, y) = 0.15 × [sin(0.5x − 0.5y)

+ sin(1.5x−1.5y)+sin(2.5x−2.5y)] (16)
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Fig. 15 a Real television image
corrupted by a complex periodic
noise, b the image spectrum, the
restored image by c median
filter, d mean filter, e Gaussian
notch filter and finally, f
adaptive Gaussian notch filter

N3(x, y) = 0.1 × [sin(2x + 2y)

+ sin(0.5x+y0.5)+sin(3x)+sin(4y)] (17)

N4(x, y) = 0.05 × [sin(1.1x + 1.1y) + sin(1.5x)

+ sin(1.5y) + sin(1.1x − 1.1y)] (18)

Figure 13 shows the result of reconstructing images cor-
rupted with the periodic noise N1 for qualitative comparison.
The contaminated images are shown in the first row. In the
second, third, fourth and fifth row, the results of applying
median, mean, Gaussian notch and the proposed adaptive
Gaussian notch method to the noise input images are repre-
sented, respectively.

The AGNF algorithm has also been applied to an image
with periodic stripes, and the result is shown the Fig. 14.

4.2 Results for real periodic noise

In order to evaluate the performance of the compared algo-
rithm in real situation, a real television image that has been
interfered with a periodic electrical signal is tested as bench-
mark. Unfortunately, the MAE value of the compared algo-
rithm cannot be computed, because the original image is not
accessible. Figure 15 shows the restored images using differ-
ent approaches. In this example, qualitatively, the AGNF and
median filter show the best results, while AGNF complexity
is lower and it does not need any parameter adjustment steps.

5 Conclusions

In order to reduce the effect of periodic image noise, in this
paper, an adaptive Gaussian notch filter was presented. The
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proposed algorithm consists of two main stages. In the first
stage, the main noisy frequencies are detected by the pro-
posed thresholding in the image spectrum space, with an
adaptive threshold value. Then, for each main noise com-
ponent, the proposed region growing algorithm is used to
determine all corrupted frequencies. In the second stage, a
tuned Gaussian notch filter is applied on the noisy image to
reduce the effects of the periodic noise.

The proposed algorithmwas comparedwith the frequency
domain mean, median and Gaussian notch filters for restor-
ing the images corrupted by simulated and real periodic noise
sources. Experimental results showed that the proposed algo-
rithm not only does not need any initial parameters setting,
but also provides higher performances, quantitatively and
qualitatively.Moreover, the complexity of the proposed algo-
rithm was shown to be lower than the previously reported
algorithms.

For multi-dimensional images like color images, where
the noise property is equal for all dimensions, the proposed
method can be used for periodic noise reduction in which
computational complexity increases linearly relative to the
number of dimensions.
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