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Abstract Like bilateral filter (BF), cross bilateral filter
(CBF) considers both gray-level similarities and geometric
closeness of the neighboring pixelswithout smoothing edges,
but it uses one image for finding the kernel and other to filter,
and vice versa. In this paper, it is proposed to fuse source
images by weighted average using the weights computed
from the detail images that are extracted from the source
images using CBF. The performance of the proposed method
has been verified on several pairs of multisensor and multi-
focus images and compared with the existing methods visu-
ally and quantitatively. It is found that, none of the methods
have shown consistence performance for all the performance
metrics. But as compared to them, the proposed method has
shown good performance in most of the cases. Further, the
visual quality of the fused image by the proposed method is
superior to other methods.
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1 Introduction

Image fusion has become a widely used tool to increase
the visual interpretation of the image in various applica-
tions such as getting an ‘all-in-focus’ image from a given
set of multifocus images, medical diagnosis, surveillance,
military, machine vision, robotics, enhanced vision system,
biometrics, and remote sensing. The main objective of any
image fusion is that, to conglomerate all the significant visual
information from multiple input images by retaining the
more comprehensive, accurate and stable information than
the individual source images without introducing any arti-
facts. This makes the human/machine perception or further
processing easy [1].

Generally, one image of a complex scene does not con-
tain enough information because of limitations in the sys-
tem. Like, it is difficult to get all the objects in focus in a
single image due to limited depth of focus by optical lens
of a CCD camera. But, a series of images obtained by pro-
gressively shifting the focal plane through the scenery can
be fused with a best fusion rule to produce an image with a
quasi-infinite depth of field. This gives rise to the problem
of multifocus image fusion. Similarly, the images obtained
by CCD camera give information only in visible spectrum
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whereas Infrared (IR) camera in IR spectrum, and hence, the
multispectral data from different sensors often present com-
plementary information about the region surveyed, scene or
object. In such scenarios, image fusion provides an effective
method to enable comparison, interpretation, and analysis of
such data, as the fused image facilitates improved detection
and unambiguous localization of a target (represented in IR
image) with respect to its background (represented in the
visible image). Hence, the fusion of IR and visual images
is gaining momentum in surveillance applications. A suit-
ably fused representation of IR and visible images provides
a human operator a more complete and accurate mental rep-
resentation of the perceived scene, which results in a larger
degree of situational awareness. Likewise in medical imag-
ing, the MRI image shows brain tissue anatomy, whereas CT
scan image provides details about bony structures. The inte-
gration of these medical images of different modalities into
one image with the merits of both source images provides
both anatomical and functional information, which is impor-
tant for planning surgical procedure. The aim is to achieve
better situation assessment and/or more rapid and accurate
completion of a predefined task than would be possible using
any of the sensors individually. In the literature, it has been
defined as the synergistic combination of different sources of
sensory information into a single representational format [1].

The objective of the paper is to improve the fusion per-
formance by combining all the important visual information
contained in the individual source images using the weights
computed from the detail images of the cross bilateral filter
(CBF). The paper is organized as follows: Sect. 2 deals with
literature survey, Sect. 3 describes the proposedmethod, Sect.
4 discusses experimental results followed by conclusions and
future work in Sect. 5.

2 Literature survey

Analogous to other formsof information fusion, image fusion
is usually performed at any of the three processing levels:
signal, feature and decision. Signal-level image fusion, also
known as pixel-level image fusion, defines the process of
fusing visual information associated with each pixel from
a number of registered images into a single fused image,
representing a fusion at lowest level. As the pixel-level
fusion is part of the much broader subject of multifocus
and multisensor information fusion, it has attracted many
researchers in the last two decades [2–5]. Object-level image
fusion, also called as feature-level image fusion, fuses fea-
ture, object labels and property descriptor information that
have already been extracted from individual input images
[6]. Finally, decision- or symbol-level image fusion, being the
highest level of image fusion, represents fusion of probabilis-
tic decision information obtained by local decision makers

using the results of feature-level processing on the individual
images [7].

In the last two decades, a lot of research has been car-
ried out in the area of multifocus and multispectral image
fusion. Multispectral image fusion based on intensity-hue-
saturation method is described in Carper et al. [8] and that
based on Laplacian pyramid mergers in Toet [9]. The mul-
tifocus image fusion proposed in Haeberli [10] uses the fact
that the focused area of the image will have highest inten-
sity compared to that of unfocused areas. Further, the energy
compaction andmultiresolution properties of awavelet trans-
form (WT) were exploited by [11,12] for image fusion. In
Qu et al. [11], the medical images are fused based on theWT
modulusmaxima of input images at different bandwidths and
levels. Instead of convolution-based wavelet decomposition,
Lifting-based wavelet decomposition is proposed in Ranjith
and Ramesh [13] to reduce the computational complexity
with less memory requirements. Further, induction of com-
plex wavelets for image fusion has improved the fusion per-
formance [14]. Fusion of satellite images using multiscale
wavelet analysis is proposed in Du et al. [15] and various
image fusion methods available in the literature are com-
pared in Wang et al. [16]. Multisource image fusion using
a sequence of support value images and a low frequency
image has been described in Zheng et al. [17]. Also, pixel-
level multifocus image fusion has been proposed based on
image blocks and artificial neural networks [18]. Further,
the comparative study of several pixel-level multispectral
palm image fusion approaches for biometric applications is
conducted [19]. Image fusion by averaging approximation
subbands of the source images blurs the fused image and is
reduced by combining approximation subbands based on the
edge information present in the corresponding detail sub-
bands [20]. Here, mean and standard deviation over 3 × 3
windows are used as activity measurement to find the edge
information present in detail subbands. Further, a pixel-level
image fusion has been proposed by decomposing the source
images using wavelet, wavelet packet, curvelet [21] and con-
tourlet transform [4,22]. Due to nonideal characteristics of
the imaging systems, the source images will be noisy, and
hence, fusion of these images requires a hybrid algorithm
which addresses both image denoising and fusion. This type
of scenario has been addressed in contrast-based fusion of
noisy images using discrete wavelet transform (DWT) [23],
which considers contrast of images using local variance of
the denoised DWT coefficients as well as the noise strength.
Recently, discrete cosine transform-based image fusion has
been proposed for image fusion [24] instead of pyramids or
wavelets, and its performance is comparable to both convolu-
tion and lifting-based wavelets. Further, the superior/similar
fusion performance is achieved with discrete cosine har-
monic wavelet [25] with reduced computational complexity
than that in Naidu [24]. Also, a new multiresolution DCT
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decomposition, by viewing DCT as a tree structure, has been
proposed for multifocus image fusion to reduce the compu-
tational complexity without any degradation in the fusion
performance [26].

The bilateral filter (BF) introduced by Tomasi and Man-
duchi [27] has many applications in image denoising [28–
30], flash photography enhancement [31,32], image/video
fusion [33,34], etc. A variant of BF, Joint/Cross BF, which
uses a second image to shape the filter kernel and operate on
the first image, and vice versa was proposed in [31,32]. Both
of these papers address the problem of combining the details
of images capturedwith andwithout flash under ambient illu-
mination. In Fattal et al. [35], BF has been used formultiscale
decomposition of multilight image collections for shape and
detail enhancement. Temporal joint BF and dual BFwas pro-
posed in Bennett et al. [34] for multispectral video fusion,
where former uses IR video to find filter coefficients and fil-
ters the visible video, and latter uses both IR and visible video
to compute the filter coefficients and filters the visible video.
Further, the application of BF for hyperspectral mage fusion
has been proposed in Kotwal and Chaudhuri [36], which sep-
arates the weak edges and fine textures by subtracting the BF
output from the original image. The magnitude of this dif-
ference image is used to find the weights directly. One more
variant of BF, which uses center pixel from IR image and the
neighboring pixels from visual image to find the filter ker-
nel and operates on IR image, has been proposed for human
detection by fusing IR and visible images [37]. Further, mul-
tiscale directional BF, a combination of BF and directional
filter bank, has been proposed for multisensor image fusion
to exploit the edge preserving capability of BF and direc-
tional information capturing capability of directional filter
bank [33].

3 Proposed method

The proposed image fusion algorithm directly fuses two
source images of a same scene using weighted average.
The proposed method differs from other weighted average
methods in terms of weight computation and the domain of
weighted average. Here, the weights are computed by mea-
suring the strength of details in a detail image obtained by
subtracting CBF output from original image. The weights
thus computed aremultiplied directlywith the original source
images followed by weight normalization. The block dia-
gram of the proposed scheme is show in Fig. 1 for two source
images A and B.

3.1 Cross bilateral filter (CBF)

Bilateral filtering is a local, nonlinear and noniterative tech-
nique which combines a classical low-pass filter with an

Fig. 1 Proposed image fusion framework

edge-stopping function that attenuates the filter kernel when
the intensity difference between pixels is large. As both gray-
level similarities and geometric closeness of the neighboring
pixels are considered, theweights of the filter depend not only
on Euclidian distance but also on the distance in gray/color
space. The advantage of the filter is that it smoothes the image
while preserving edges using neighboring pixels. Mathemat-
ically, for an image A, the BF output at a pixel location p is
calculated as follows [27]:

AF (p) = 1

W

∑

q∈S
Gσs (‖ p − q ‖)

×Gσr (|A (p) − A(q)|) A(q) (1)

where Gσs (‖ p − q ‖) = e
− ‖p−q‖2

2σ2s is a geometric closeness
function,

Gσr (|A (p) − A(q)|) = e
− |A(p)−A(q)|2

2σ2r is a gray-level
similarity/ edge-stopping function,
W = ∑

q∈S Gσs (‖ p − q ‖)Gσr (|A (p) − A(q)|) is a
normalization constant,
‖ p − q ‖ is the Euclidean distance between p and q,

and S is a spatial neighborhood of p.
Since σs and σr control the behavior of BF, the depen-

dency of σr/σs values and derivative of the input signal on
the behaviors of the BF are analyzed in Zhang and Gunturk
[28]. The optimal σs value is chosen based on the desired
amount of low-pass filtering and blurs more for larger σs , as
it combines values from more distant image locations [28].
Also, if an image is scaled up or down, σs must be adjusted
accordingly in order to obtain equivalent results. It appears
that a good range for the σs value is roughly (1.5–2.1); on the
other hand, the optimal σr value will depend on the amount
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of edge to be preserved. If the image is amplified or attenu-
ated, σr must be adjusted accordingly in order to retain the
same result.

CBF considers both gray-level similarities and geometric
closeness of neighboring pixels in image A to shape the filter
kernel and filters the image B. CBF output of image B at a
pixel location p is calculated as [31]

BCBF (p) = 1

W

∑

q∈S
Gσs (‖ p − q ‖)

×Gσr (|A (p) − A(q)|) B(q) (2)

where Gσr (|A (p) − A(q)|) = e
− |A(p)−A(q)|2

2σ2r is a gray-level
similarity/ edge-stopping function, and W = ∑

q∈S Gσs

(‖ p − q ‖)Gσr (|A (p) − A(q)|) is a normalization con-
stant.

The detail image, obtained by subtracting CBF output
from the respective original image, for image A and B is
given by AD = A − ACBF and BD = B − BCBF, respec-
tively. In multifocus images, unfocused area in image A will
be focused in image B and the application of CBF on image
B will blur the focused area more compared to that of unfo-
cused area in image B. This is because the unfocused area
in image A anyway looks blurred with almost similar gray
values in that area thereby making the filter kernel close to
Gaussian. Now, the idea is to capturemost of the focused area
details in detail image BD such that these details can be used
to find the weights for image fusion using weighted average.
Similarly, in multisensor images, the information in image B
is absent in image A and the application of CBF on image B
will blur the information in image B. This is because, as the
information in A is absent, the gray levels in that region have
similar values thereby making the kernel as Gaussian. Figure
2 shows the simulated multifocus lady source images along
with the respective CBF output and detail images. From Fig.
2c and d, it is observed that CBF has blurred the focused
area keeping the unfocused area as it is and the details in the
focused area has been captured in the detail images (Fig. 2e
and f). Now, these detail images are used to find the weights
by measuring the strength of details.

3.2 Pixel-based fusion rule [38]

Fusion rule proposed in Shah et al. [38] is discussed here
for completeness to compare the performance of proposed
method. Here, the weights are computed using statistical
properties of a neighborhood of detail coefficient instead of
wavelet coefficient as in Shah et al. [38]. A window of size
w × w around a detail coefficient AD(i, j) or BD(i, j) is
considered as a neighborhood to compute its weight. This
neighborhood is denoted as matrix X . Each row of X is
treated as an observation and column as a variable to compute

unbiased estimate Ci, j
h of its covariance matrix [39], where

i and j are the spatial coordinates of the detail coefficient
AD(i, j) or BD(i, j).

covariance (X) = E
[
(X − E[X ]) (X − E[X ])T

]
(3)

Ci, j
h =

∑w
k=1(xk − x̄)(xk − x̄)T

(w − 1)
(4)

where xk is the kth observation of the w-dimensional vari-
able and x̄ is the mean of observations. It is observed that
diagonal of matrix Ci, j

h gives a vector of variances for each

column of matrix X . Now, the eigenvalues of matrix Ci, j
h

is computed and the number of eigenvalues depends on
size of Ci, j

h . Sum of these eigenvalues are directly pro-
portional to horizontal detail strength of the neighborhood
and are denoted as HdetailStrength [38]. Similarly, an
unbiased covariance estimate Ci, j

v is computed by treating
each column of X as an observation and row as a vari-
able (opposite to that of Ci, j

h ), and the sum of eigenval-

ues of Ci, j
v gives vertical detail strength VdetailStrength.

That is,

HdetailStrength (i, j) =
w∑

k=1

eigenk of C
i, j
h

V detailStrength (i, j) =
w∑

k=1

eigenk of C
i, j
v

where eigenk is the kth eigenvalue of the unbiased esti-
mate of covariance matrix. Now, the weight given to a par-
ticular detail coefficient is computed by adding these two
respective detail strengths. Therefore, the weight depends
only on the strength of the details and not on actual intensity
values.

wt (i, j) = HdetailStrength (i, j)

+VdetailStrength (i, j)

After computing the weights for all detail coefficients
corresponding to both the registered source images, the
weighted average of the source images will result in a fused
image.

If wta and wtb are the weights for the detail coeffi-
cients AD and BD belonging to the respective source images
A and B, then the weighted average of both is computed as
the fused image using Eq. 5.

F (i, j) = A (i, j) wta(i, j) + B (i, j) wtb(i, j)

wta(i, j) + wtb(i, j)
(5)

3.3 Parameters to evaluate the fusion performance

Evaluation of fusion performance is a challenging task as the
ground truth is not available in most of the applications. In
literature, various parameters have been proposed and used
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Fig. 2 Simulated multifocus
lady source images in a and b,
CBF output images in c and d,
and detail images in e and f,
respectively

to evaluate the performance of image fusion. Among them,
several classical evaluation parameters reported in literature
are considered for exhaustive study. They are [21,38]

1. Average pixel intensity (API) or mean (F̄) measures
an index of contrast and is given by API = F̄ =∑m

i=1
∑n

j=1 f (i, j)
mn , where f (i, j) is pixel intensity at (i, j)

and mxn is the size of the image

2. Standard deviation (SD) is the square root of the variance,
which reflects the spread in data and is given by SD =√

∑m
i=1

∑n
j=1( f (i, j) − F̄)

2

mn
3. Average gradient (AG) measures a degree of clarity and

sharpness and is given by

AG =
∑

i
∑

j

(
( f (i, j)− f (i+1, j))2+( f (i, j)− f (i, j+1))2

)1/2

mn
4. Entropy (H ) estimates the amount of information present

in the image and is given by H = −∑255
k=0 pk log2(pk),
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where pk is the probability of intensity value k in an 8-bit
image

5. Mutual information (MI) quantifies the overall mutual
information between source images and fused image,
which is given by MI = MIAF + MIBF, where MIAF =
∑

k
∑

l pA,F (k, l) log2
(

pA,F (k,l)
pA(k)pF (l)

)
is the mutual infor-

mation between source image A and fused image F ,

and MIBF = ∑
k
∑

l pB,F (k, l) log2
(

pB,F (k,l)
pB (k)pF (l)

)
is the

mutual information between source image B and fused
image F

6. Information symmetry or fusion symmetry (FS) indicates
how much symmetrical the fused image is with respect to

source images and is given by FS = 2 −
∣∣∣MIAF
MI − 0.5

∣∣∣
7. Correlation coefficient (CC) measures a relevance of

fused image to source images and is given by CC =
(rAF + rAF)/2, where

rAF =
∑

i
∑

j(a(i, j)− Ā)( f (i, j)−F̄)√(∑
i
∑

j(a(i, j)− Ā)
2
)(∑

i
∑

j( f (i, j)−F̄)
2
) , and

rBF =
∑

i
∑

j(b(i, j)−B̄)( f (i, j)−F̄)√(∑
i
∑

j(b(i, j)−B̄)
2
)(∑

i
∑

j( f (i, j)−F̄)
2
)

8. Spatial frequency (SF) measures the overall informa-
tion level in the regions (activity level) of an image

and is computed as SF =
√
RF2 + CF2, where RF =√∑

i
∑

j ( f (i, j)− f (i, j−1))2

mn and CF =
√∑

i
∑

j ( f (i, j)− f (i−1, j))2

mn

In addition to these, objective image fusion performance
characterization [5,40] based on gradient information is con-
sidered. This provides an in-depth analysis of fusion perfor-
mance by quantifying: total fusion performance, fusion loss
and fusion artifacts (artificial information created). The pro-
cedure for computing these parameters are given in [5,40]
and their symbolic representation is given below:

QAB/F = Total information transferred from source images
to fused image,
L AB/F = Total loss of information, and
N AB/F = Noise or artifacts added in fused image due to
fusion process.

It is noted that total fusion performance QAB/F , fusion
loss L AB/F and fusion artifacts N AB/F are complimentary
indicating that the sum of all these should result in unity
[25,40], i.e.,

QAB/F + L AB/F + N AB/F = 1. (6)

In most of the cases, this may not lead to unity, and hence,
these parameters are reviewed and amodification of the para-
meter which measures the fusion artifacts has been proposed
in Shreyamsha Kumar [25], and its equation is given here for
completeness.

N AB/F
m =

∑
∀i

∑
∀ j AMi, j

[(
1 − QAF

i, j

)
wA
i, j +

(
1 − QBF

i, j

)
wB
i, j

]

∑
∀i

∑
∀ j (w

A
i, j + wB

i, j )

(7)

where AMi, j =
{
1, gFi, j > gA

i, j and gFi, j > gBi, j
0, otherwise

, indicates

locations of fusion artifacts where fused gradients are
stronger than input.

gA
i, j , gBi, j and gFi, j are the edge strength of A, B and F,

respectively,
QAF

i, j and QBF
i, j are the gradient information preservation

estimates of source images A and B, respectively,
wA
i, j and wB

i, j are the perceptual weights of source images
A and B, respectively.

The procedure for computing these parameters gA
i, j , g

B
i, j ,

gFi, j , Q
AF
i, j , QBF

i, j , wA
i, j and wB

i, j is given in [5,40]. With this

newlymodified fusion artifact measure N AB/F
m , the Eq. 6 can

be rewritten as

QAB/F + L AB/F + N AB/F
m = 1. (8)

4 Results and discussion

Experiments were carried out on various standard test pairs
of multifocus, medical and IR–visible images provided by
online resource for research in image fusion (http://www.
imagefusion.org). Due to lack of space, fusion performance
comparison is given only for three standard test pairs, namely
medical (MRI), multisensor (gun), multifocus (office). Fused
image by the proposed method is compared with different
methods discussed in [4,20,22,36,38] with the same simula-
tion parameters indicated in the respective methods with db8
wavelet decomposition. The parameters used for the pro-
posed method are σs = 1.8, σr = 25, neighborhood win-
dow=11 × 11 (for CBF) and neighborhood window = 5×
5 (to find detail strength). The output of CBF is subtracted
from the respective source image to get the detail image. For
two source images, two detail images are obtained, which are
used to find the weightswta and wtb by measuring the detail
strengths. These weights are used to find the fused image by
weighted average.

Conventional performance measures, API, SD, AG, H ,
MI, FS, CC and SF are tabulated in Table 1, and the objective
performancemeasures QAB/F , L AB/F , N AB/F and N AB/F

m

along with their respective sums are tabulated in Table 2. The
quality of the fused image is better when these parameters
have higher value, excluding L AB/F , N AB/F and N AB/F

m ,
which should have lower values. In these Tables, higher
values are bolded except for LAB/F , N AB/F and N AB/F

m ,
where lower values are bolded. As the goal of image fusion
is to enhance comprehensive, accurate and stable informa-
tion such that the fused image is more suitable for human
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Table 1 Conventional image fusion performance measure

Measure API SD AG H MI FS CC SF

Input image Multisensor MRI

Proposed 54.7351 57.6902 11.0334 6.7311 5.3292 1.6142 0.6565 19.8160

[38] 46.3165 52.3071 8.8572 6.6926 2.3097 1.6899 0.6374 15.6624

[20] 36.4330 51.3242 9.7398 6.1728 1.5464 1.7651 0.5563 17.4809

[4] 40.1711 46.8869 8.9507 6.6467 1.9804 1.7126 0.6185 15.4078

[22] 44.1301 51.3010 9.3093 6.6820 2.0679 1.6880 0.6011 15.8166

[36] 33.8052 36.1403 6.8810 5.9619 3.6685 1.6455 0.6922 12.2309

Input image Multisensor gun

Proposed 6.3412 5.5260 3.9668 3.9412 2.2981 1.8756 0.6774 4.8476

[38] 5.7801 6.1473 3.6183 4.0012 1.6561 1.9054 0.6630 4.4755

[20] 4.7303 6.4447 3.5464 3.5656 1.3278 1.7196 0.5956 4.6016

[4] 4.2140 4.0842 3.6094 3.5773 0.9895 1.8138 0.6736 4.3948

[22] 4.0907 4.1445 3.4600 3.5328 0.8361 1.6651 0.6126 4.2559

[36] 4.3483 3.8317 2.7239 3.5857 2.1754 1.8888 0.7247 3.3778

Input image Simulated multifocus office

Proposed 81.3517 66.8859 13.2674 7.4217 6.1486 1.9963 0.9643 24.6667

[38] 80.6225 64.0681 12.8277 7.4846 4.8645 1.9802 0.9656 23.7224

[20] 81.0247 65.9277 13.8664 7.3366 5.0888 1.9420 0.9586 24.9933

[4] 80.6444 64.3795 12.7710 7.4750 4.9359 1.9507 0.9654 23.5254

[22] 80.8079 64.3038 12.8823 7.4497 4.8638 1.9476 0.9636 23.5419

[36] 80.4006 59.5628 8.7694 7.5245 5.1310 1.9865 0.9747 14.9741

Table 2 Objective image fusion performance measure

Measure QAB/F L AB/F N AB/F Sum (Eq. 6) N AB/F
m Sum (Eq. 8)

Input image Multisensor MRI

Proposed 0.8932 0.0961 0.0950 1.0844 0.0107 1

[38] 0.8065 0.1856 0.0735 1.0657 0.0078 1

[20] 0.6900 0.2776 0.2172 1.1849 0.0323 1

[4] 0.7760 0.2137 0.0924 1.0820 0.0103 1

[22] 0.7300 0.2531 0.1310 1.1142 0.0168 1

[36] 0.6724 0.3260 0.0133 1.0116 0.0017 1

Input image Multisensor gun

Proposed 0.9024 0.0953 0.0363 1.0340 0.0022 1

[38] 0.9167 0.0811 0.0524 1.0502 0.0022 1

[20] 0.8744 0.1174 0.1870 1.1787 0.0082 1

[4] 0.7899 0.2094 0.0256 1.0250 0.0006 1

[22] 0.6799 0.3184 0.0337 1.0321 0.0017 1

[36] 0.7619 0.2380 0.0031 1.0029 0.0002 1

Input image Simulated multifocus office

Proposed 0.8848 0.1130 0.0116 1.0093 0.0023 1

[38] 0.8766 0.1157 0.0802 1.0724 0.0078 1

[20] 0.8712 0.1102 0.1627 1.1441 0.0186 1

[4] 0.8635 0.1287 0.0523 1.0445 0.0078 1

[22] 0.8571 0.1328 0.0586 1.0485 0.0102 1

[36] 0.8021 0.1978 0.0005 1.0004 0.0001 1
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Fig. 3 Multisensor MRI source images in a and b, fused images by c proposed, d [38], e [20], f [4], g [23], h [36]

perception, visual analysis is also very important in addi-
tion to quantitative analysis. There are three criteria that are
widely used in the literature for visual analysis: (1) informa-
tion transferred from each individual image to fused image,
(2) information lost from the source images and (3) artifacts
introduced because of fusion. To compare the performance
visually, the fused images of MRI, gun, office and zoomed
version of office are shown in Figs. 3, 4, 5 and 6, respectively.
In all the figures, (a) and (b) show the source images, fused
images by proposed method in (c), [4,20,22,36,38] in (d),
(e), (f), (g), (h), respectively.

It is observed from Fig. 3 that image quality of the fused
MRI image by the proposed method (Fig. 3c) is better than
the other methods considered and has all details from both
the source images Fig. 3a and bwith less information loss and

artifacts. That is, it could be able to fuse much of the infor-
mation from both the source images when compared with
other fused images. The other methods considered could be
able to transfer all the details from the source image shown
in Fig. 3a, but not from the other source image shown in
Fig. 3b. Among the other methods, the method discussed
in Shah et al. [4] has better performance than the remain-
ing methods. Now, to compare the performance of fused
MRI image quantitatively, Tables 1 and 2 are considered.
For multisensor MRI image, it is observed that the proposed
method has shown good performance for all the parameters
except FS, CC, N AB/F and N AB/F

m . The methods in Kotwal
and Chaudhuri [36] and Arivazhagan et al. [20] have shown
good performance in terms of CC, N AB/F , N AB/F

m and FS,

respectively. The proposed method has high QAB/F (more
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Fig. 4 Multisensor gun source images in a and b, fused images by c proposed, d [38], e [20], f [4], g [23], h [36]

information has been transferred from source images) and
low L AB/F (loss of information is less), and this has been
found true by visual inspection of Fig. 3c.

All the fused images shown in Fig. 4 could be able to
show the presence of gun except in Fig. 4e [20]. Further,
the visibility of the gun in Fig. 4h [36] is feeble compared
to other fused images. Eventhough Fig. 4g [22] is showing
the presence of gun, it is very difficult to identify the face
of the person. Visual performance of the proposed method
(Fig. 4c) is almost akin to the methods in Shah et al. [4]
(Fig. 4f) and [38] (Fig. 4d). From the Tables, it is observed
that the performance of the proposed method is superior to
other methods in terms of API, AG, MI, SF with excep-
tion of SD, FS, CC, QAB/F , L AB/F , N AB/F and N AB/F

m .
The methods in Kotwal and Chaudhuri [36] and Shah et
al. [38] have shown good performance in terms of CC,
N AB/F , N AB/F

m and H , FS, QAB/F , L AB/F respectively. As
in MRI, Kotwal and Chaudhuri [36] has less artifacts in
the fused image, i.e., both N AB/F and N AB/F

m have lower
values.

Figures 5 and 6 show the visual performance comparison
of the fused images of simulated multifocus office and its

zoomed version by different methods. It is observed that the
image quality of fused images byShah et al. [38] (Fig. 5d) and
the proposed method (Fig. 5c) looks similar and have almost
all the information from both the source images. From Fig.
5h, it is observed that the fused image by Kotwal and Chaud-
huri [36] looks blurredwith loss of information from both the
source images. At the same time, it has fewer artifacts com-
pared to fused images by [4,20,22] (Fig. 5e, f, g) and this
is confirmed by almost zero values in N AB/F and N AB/F

m .
The artifacts can be observed in right top corner (glass of
the window above monitor) of the fused images in Fig. 5e, f,
g. A horizontal line between focused and unfocused portion
of the source image is visible near top portion of the fused
images by the proposed method (Fig. (c)) and [38] (Fig. (d))
and is an artifact introduced because of fusion, which has
increased the value of N AB/F and N AB/F

m . Hence, the per-
formance of the proposed method is better than [4,20,22,38]
in terms of N AB/F and N AB/F

m and worse than [36]. As in
MRI, here also Kotwal and Chaudhuri [36] has shown good
performance in terms of H,CC, N AB/F and N AB/F

m . Also,
Arivazhagan et al. [20] has shown good performance in terms
of AG, SF and L AB/F , and in terms of other parameters, the
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Fig. 5 Simulated multifocus office source images in a and b, fused images by c proposed, d [38], e [20], f [4], g [23], h [36]

proposed method supersedes the other methods. The fused
imageofKotwal andChaudhuri [36] has blurred edges (edges
of window strip and monitor) (Fig. 6h) as compared to other
fused images in Fig. 6.

From Table 1, it is observed that the proposed method
has scored well in most of the parameters with very good
visual performance. In some cases, [20,36,38] have scored
only in some of the parameters. From the simulation results,
it is clear that the fused image having highest values in any of
API, SD,AG,H,MI, FS, CC and SF can be visually degraded
compared to other fused images with low value of API, SD,
AG, H , MI, FS, CC and SF. This shows that API, SD, AG,
H , MI, FS, CC and SF, which may be a good criteria to eval-
uate fusion performance, may work well for some images
and may not for other images. Therefore, performance com-

parison using more appropriate criteria based on the idea
of measuring localized preservation of input gradient infor-
mation in the fused image is used, which is consistent with
visual quality of the fused image. FromTable 2, it is observed
that the proposed method has performed well in terms of
QAB/F for all the images except for multisensor gun and
L AB/F for MRI image. But for simulated multifocus office
image, Arivazhagan et al. [20] have scored over the proposed
method in terms of QAB/F and L AB/F . Whereas, in terms of
N AB/F and N AB/F

m , Shah et al. [38] has performedwell over
the other methods. It is clear from the simulation results that
the objective image fusion performance metric [2,40]-based
evaluation is in agreement with visual quality. Further, from
these experiments, it is found that the visual quality of the pro-
posed method is superior/similar to the methods considered.
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Fig. 6 Simulated multifocus office source images (zoomed) in a and b, fused images by c proposed, d [38], e [20], f [4], g [23], h [36]

Even in terms of the quantitative parameters, the proposed
method is performed well when compared to other methods.

5 Conclusions and future work

In this paper, it was proposed to use detail images extracted
from the source images by CBF for the computation of
weights. These weights, thus computed by measuring the
strength of horizontal and vertical details, are used to fuse
the source images directly. Several pairs of multisensor and
multifocus images are used to assess the performance of
the proposed method. Through the experiments conducted
on standard test pairs of multifocus, medical and IR–visible
images, it was found that the proposed method has shown

superior/similar performance in most of the cases as com-
pared to other methods in terms of quantitative parameters
and in terms of visual quality, it has shown superior perfor-
mance to that of other methods.

The application of other nonlinear filters instead of CBF
for detail image extraction is left as future work and will
inspire further research toward image fusion. Also, the per-
formance of the proposed method could be improved by
exploring the other methods of weight computation and the
domain of weighted average to reduce the fusion artifacts.
Further, it can be extended to fuse multiple source images.
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