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Abstract In this paper, a parameter estimation method for
multi-component chirp signals with white Gaussian noise
is proposed based on the modified discrete chirp Fourier
transform (MDCFT) and the population Monte Carlo (PMC)
methodology, in which the model order is unknown. By uti-
lizing the integrability of linear parameters in the Bayesian
model, this paper considers the posterior distribution of non-
linear parameters. MDCFT was adopted to calculate the chir-
pogram of the observed data, and clear peaks can be detected
in the discrete chirp Fourier transform domain. The impor-
tance function (IF) was constructed according to the peaks,
and the PMC algorithm was employed to evaluate the poste-
rior distribution. The proposed method cannot only use the
selected IF to generate the sample fitting target function in
the parameter region of interest, but can also utilize samples
and importance weights to update the IF adaptively. The sim-
ulation results indicated that the proposed method can real-
ize joint Bayesian model selection and parameter estimation
of multi-component chirp signals. Compared with the two
existing methods based on Monte Carlo methodology, the
proposed method exhibits improved performance.
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1 Introduction

Chirp signals are widely used in radar and communication
applications [1,2]. For example, the Doppler frequency of
a moving object in the radar system is approximately pro-
portional to the speed of the object, and the echo of the
object under uniform accelerated motion is regarded as a
chirp signal. The status and characteristics of a moving object
can be reflected by the chirp signal parameters. Frequency
and chirp rate are the prerequisites to obtain the speed and
acceleration of the moving object. According to the ampli-
tudes, the size and reflection characteristics of the object can
be known. Therefore, the proper utilization of the limited
observed data to estimate the chirp signal parameters accu-
rately is significant.

Numerous researchers have explored the parameter esti-
mation problem of chirp signals from different aspects. Tra-
ditional methods include algorithms based on the principal
of maximum likelihood estimation (MLE) [3,4], discrete
polynomial-phase transform (DPT) [5,6], time–frequency
transform [7,8], and sparse signal reconstruction [9–11].
Most existing methods are based on the MLE principle, the
estimation accuracy of which can be close to the Cramer–
Rao low bound (CRLB). However, the computational load
of such methods is large and cannot address multi-component
chirp signals. The DPT-based methods utilize the instanta-
neous phase or instantaneous frequency to perform parame-
ter estimation in a simple and efficient manner. However,
such methods require a high signal-to-noise ratio (SNR).
The idea behind time–frequency transform is to transform
the detection and estimation problem of chirp signals into
a line search problem of the time–frequency plane and then
simplify the problem into a two-dimensional peak search
problem through Radon or Hough transform. However, this
method is limited by the calculation load, resolution of
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time–frequency, and cross-term interference. Sparse recon-
struction is based on the idea that signals can be discomposed
into a linear expansion of chirplets while utilizing matching
pursuit (MP) to identify the chirplet in the signals [11]. The
obtained chirplet can be directly used to estimate the chirp
signal parameters. However, this method also has several
limitations. First, in the MP process, one chirp component
can be decomposed into multiple chirplets. Second, a huge
dictionary is adopted, the computation load of which is not
applicable in practice.

Researchers have applied Bayesian inference to the
parameter estimation problem of multi-component signals
[12–15]. A numerical method is typically used to evalu-
ate the joint posterior distribution of unknown parameters.
Some researchers [14,15] have proposed one solution based
on the Markov chain Monte Carlo (MCMC) method. This
method uses the chirpogram generated from the discrete
chirp Fourier transform (DCFT) to select initial parame-
ters. The MCMC method combined with the random walk
Metropolis–Hastings algorithm and the Gibbs sampler is uti-
lized to calculate the posterior distribution of unknown para-
meters. However, this method needs a burn-in period, during
which samples need to be abandoned. Moreover, the MCMC
method is difficult to implement in a parallel manner, which
significantly reduces its practicability. Researchers [16] have
also combined importance sampling (IS) with MLE, which
can deal with the parameter estimation problem of multi-
component chirp signals. The estimation accuracy of this
method can be close to that of the CRLB, but its computa-
tion load is huge, and its estimation precision is affected by
the “picket fence” effect.

Several methods are based on adaptive importance sam-
pling (AIS). AIS, also called as the population Monte Carlo
(PMC) [17,18], is an adaptive learning method, which can
adaptively select and adjust the importance function (IF)
according to the collected information. As a result, samples
can be drawn around the true value with a greater possibil-
ity and the approximation to the object distribution can be
obtained. In [17], a fixed number of preselected transition
kernels were used and each of these kernels was assigned
different weights at different iterations. In [19], the perfor-
mance of the PMC method was improved through Rao–
Blackwellization. A combination of the Gibbs sampler and
PMC was proposed in [20]. This method first uses local max-
imum peaks in the chirpogram to construct the IF and then
generates samples and uses resampling technology to prevent
sample degeneration. Finally, the method iterates the above
process and estimates the parameters and target function of
multi-component chirp signals.

The performance of the AIS method is closely related
to the selection of the IF. An inaccurate IF does not nec-
essarily lead to the failure of the method but will signifi-
cantly degrade performance. For chirp signals, DCFT has

good detection performance. However, the detected signals
need to satisfy specific conditions [21]; otherwise, the detec-
tion performance of DCFT will degrade significantly. Thus,
this paper adopts the modified discrete chirp Fourier trans-
form (MDCFT) method [22–24] to detect peaks and con-
struct IFs. The PMC is then used to estimate the parameters
of multi-component chirp signals. In the iteration process
of the PMC, on the one hand, samples are drawn from the
IF constructed in the former iteration process; on the other
hand, IF will be updated by the samples and their weights,
and this IF will be used to draw samples in the next iteration.
The whole iteration process can be stopped at any time. This
method cannot only estimate the signal parameters but also
the posterior distribution of unknown parameters. In addi-
tion, when model order is unknown, this method can realize
the joint Bayesian model selection and parameter estimation
of multi-component chirp signals.

The remainder of this paper is organized as follows: Sec-
tion 2 mainly describes the mathematical model of multi-
component chirp signals and the posterior distribution in the
Bayesian framework. In Sect. 3, the idea and procedure of the
proposed method is analyzed and the implementation steps
and performance analysis are discussed. Section 4 verifies
the performance of the proposed method through simulation
experiments. Finally, Sect. 5 concludes the paper.

2 Problem description and theoretical background

2.1 Signal model

Let y = [y [0] , y [1] , . . . , y [N − 1]]T denote the observed
vector of N data samples. y is generated from one of the
following K models:

M0 : y [n] = ε [n]

MK : y [n] =
K∑

k=1

[
Ak exp ( j2πWk [n])

]+ ε [n] ,
(1)

where n = 0, . . . , N − 1, K denotes the model order, and
Wk [n] = fkn+ sk

2

(
n − N−1

2

)2
. fk, sk , and Ak , respectively,

denote the center frequency, chirp rate, and complex ampli-
tude of the kth chirp component. ε [n] denotes the addi-
tive white Gaussian noise with zero mean and unknown
variance σ 2

ε .
Equation (1) can be written into the following matrix form:

M0 : y = ε

MK : y = Dα + ε,
(2)

where ε = [ε [0] , ε [1] , . . . , ε [N − 1]]T is a noise vector;
α = [A1, A2, . . . , AK ]T is a complex amplitude vector; and
the N × K matrix D is defined asfollows:
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[D]n+1,k = exp

{
j2π

[
fkn + sk

2

(
n − N − 1

2

)2
]}

,

where n = 0, . . . , N − 1, k = 1, . . . , K .
The parameter estimation problem of multi-component

chirp signals can be described as follows: Assuming para-

meter set Θ �
[
αT, f T, sT, σ 2

ε, K
]T

is unknown, the objec-
tive is to estimate model order K , center frequency f =
[ f1, f2, . . . , fK ]T and chirp rate s = [s1, s2, . . . , sK ]T from
the data y.

2.2 Bayesian model and aims

In the Bayesian model, data and signal parameters can be
regarded as random variables. According to Eq. (2), the like-
lihood of y is assumed as:

p (y|Θ) = 1
(
πσ 2

ε

)N exp

{
− 1

σ 2
ε

(y − Dα)H (y − Dα)

}
. (3)

Using Bayesian methodology p (Θ|y) = p (y|Θ) p (Θ)/

p (y), the posterior distribution of the unknown parameter set
Θ can be expressed as follows:

p (Θ|y) ∝ p (y|Θ) p (Θ)

∝ p
(
y|α, f , s, σ 2

ε , K
)
p
(
α, f , s, σ 2

ε , K
)
. (4)

The Bayesian inference has to assume the prior of the
unknown parameters reasonably and construct the following
form [12,13,18]:

p
(
α, f , s, σ 2

ε , K
)

= p
(
α|f , s, σ 2

ε , K
)
p (f , s|K ) p

(
σ 2

ε

)
p (K ). (5)

The amplitude vector α, center frequency vector f , and the
chirp rate vector s determine the components of each chirp.
The amplitude vector α and the additive noise level σ 2

ε are
closely related since they both determine the amplitude of the
observed signal as well as the SNR. Thus, α is closely asso-
ciated with f , s, σ 2

ε , and K . The prior of α can be expressed
as p
(
α|f , s, σ 2

ε , K
)
. This paper regards the center frequency

and chirp rate of each chirp component as a set of parame-
ters to draw samples. Considering their close correlation, the
prior of f and s is expressed as p (f , s|K ).

Referring to the selected parameter priors in [12,13,18],
the prior of each parameter is assumed as

p
(
α|f , s, σ 2

ε , K
)

= N

(
α; 0, δ2σ 2

ε

(
DHD

)−1
)

, (6)

p
(
σ 2

ε

)
= IG

(
σ 2

ε ;υ0, γ0

)
, (7)

where δ2 denotes an expected SNR of the observed signals; α
is subject to maximum entropy Gaussian distribution of zero
mean; N (x;mx,Σx) indicate that x obeys the multivariate

Gaussian distribution, the mean of which is mx and covari-
ance matrix is Σx; and IG (x;α, β) denotes that x obeys the
inverse Gamma distribution, the hyper-parameters of which
are (α, β). Assuming that the prior probability of each model
is equal, p (K ) = 1/K . The normalized center frequencies
satisfy 0 < f1 < f2 < · · · < fK < 1, and the normalized
chirp rates satisfy 0 ≤ sk ≤ 2. Therefore, we can obtain
p (f , s|K ) = (1/2)K .

Based on this assumption, we can derive the posterior
distribution of K , f , and s on y as follows (please refer to
“Appendix 1” for the detailed deviation):

p (f , s, K |y) ∝
(
γ0 + yHPy

)−(N+υ0) ×
(
1 + δ2

)

K · 2K
. (8)

The posterior distribution of Eq. (8) is highly nonlinear
and therefore cannot be expressed in a closed form. Section 3
will describe the feasibility of approximation to the posterior
using the proposed method.

2.3 DCFT and MDCFT

This subsection describes the DCFT and MDCFT and
explains the advantage of the latter over the former.

The DCFT for discrete chirp signals with length N is
defined as

Xc (k, l)= 1√
N

N−1∑

n=0

x (n)Wkn+ln2

N , 0≤k, l≤N−1, (9)

where k and l, respectively, represent the frequency and chirp
rate; WN = exp (− j2π/N ); x (n) can represent x (n) =
exp
[
j2π
N

(
k0n + l0n2

)] = W
−(k0n+l0n2

)

N ; k0 and l0 are both

integers; and 0 ≤ k0, l0 ≤ N − 1.
The literature [21] introduces the basic properties of

Xc (k, l). Given that DCFT is a linear transform, it will not
give rise to the cross-term interference of Wigner–Ville dis-
tribution. This method can deal with multi-component chirp
signals. The multiple peaks in the DCFT domain, respec-
tively, correspond to each target signal. However, this method
requires signals to satisfy specific conditions [21,25]. For
example, the value N should be a prime number, and the
chirp rate should be an integer (that is, the value should locate
on the divided lattice point). Otherwise, the peak in the chir-
pogram calculated by the DCFT will be unclear, which may
result in a sharp decline in detection performance.

Specific to this shortcoming, this paper employs MDCFT
to perform peak detection. MDCFT is defined as

XM (k, l)= 1√
N

N−1∑

n=0

x ′ (n)Wkn+(l/N )n2

N , 0≤k, l≤N−1,

(10)

where x ′ (n) = W
−(k0n+(l0/N )n2

)

N .
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Compared with DCFT, MDCFT reduces N times of
the search step length of the chirp rate and its estima-
tion range turns into k′ ∈ (0, 1, . . . , N − 1), and l ′ ∈
(0, 1/N , . . . , N − 1/N ), that is, k′ = k and l ′ = l/N . There-
fore, MDCFT increases the estimation accuracy of the chirp
rate, detects the adjacent peaks with smaller interval, and
weakens the “picket fence” effect. In addition, the MDCFT
has no limitation of the signal length.

In the parameter estimation problem of multi-component
chirp signals, frequency and chirp rate do not necessarily lie
in the divided lattice points, and the signal length is not nec-
essarily equal to prime. Thus, MDCFT is more suitable for
transforming the signal into the DCFT domain. Considering
that the mathematical model adopted in this paper includes
the center frequency and chirp rate, Eq. (10) is redefined as

X ′
M (k, l)

= 1√
N

N−1∑

n=0

x ′ (n)W
kn+ l

N

(
n−N−1

2

)2

N , 0≤k, l≤N−1.

(11)

2.4 Generic PMC methodology

PMC is an adaptive learning methodology that concurrently
implements multiple IFs and adaptively selects and adjusts
IFs in the iteration process according to each performance. As
a result, samples have a greater probability to occur around
the true value. In the initial stage of the PMC method, the
choice of IFs in the full-exploration parameter space con-
tributes to the rapid identification of parameter region of
interest. In the follow-up stage, the choice of IFs with better
local characteristics can contribute to a finer search of the
region adjacent to the true parameters.

The general procedure of the PMC is as follows [17,18,
26].

We assume that p (θ) is the objective function, whereas
q(t) (θ) is the IF in the t th iteration. When samples cannot
be directly drawn from p (θ), the alternative method is to
draw sample θ (i,t) from q(t) (θ). θ (i,t) denotes the i th sam-
ple in the t th iteration. The importance weight of the sam-

ple is ω̃(i,t) = p
(
θ (i,t)

)/
q
(
θ (i,t)

)
. Therefore, the random

observation χ =
{
θ (i,t), ω(i,t)

}R
i=1

derived from the samples

and importance weights can approximate the target function,
where ω(i,t) represents the normalized weight corresponding
to sample θ (i,t) for i = 1, . . . , R, and R denotes the total
number of samples.

In the initial stage of the method, D IFs g
(
θ; ξ1

)
, . . . ,

g
(
θ; ξ D

)
are selected. The overall IF constructed in the t th

iteration can be expressed as follows:

q(t) (θ) =
D∑

d=1

α
(t)
d g
(
θ; ξ

(t)
d

)
(12)

where
∑D

d=1 α
(t)
d = 1. d = 1, . . . , D; q(t) (θ) is a mixture

of D IFs; g
(
θ; ξ

(t)
d

)
and α

(t)
d , respectively, represent the dth

IF and its candidate probability in the t th iteration, that is,
α

(t)
d could be interpreted as frequency of using the dth IF for

sampling; ξ (t)
d represents the construction parameter of func-

tion g
(
θ; ξ

(t)
d

)
; and d(i,t) ∈ {1, . . . , D} denotes the index of

the IF used for sampling θ (i,t) and obeys multinomial distri-

bution M
(
α

(t)
1 , . . . , α

(t)
D

)
.

To evaluate the performance of the dth IF g
(
θ; ξ

(t)
d

)
, the

sum of weights corresponding to all the samples generated
from the IF is utilized. q(t) (θ) is determined through all IFs
and candidate probability. Therefore, the sum of the weights
of samples generated in the true parameter region is large.
The formula is as follows:

α
(t)
d =

∑R
i=1 ω(i,t−1)�

g
(
θ;ξ (t)

d

)θ (i,t−1)

∑R
i=1 ω(i,t−1)

(13)

where �
g
(
θ;ξ (t)

d

)θ (i,t−1) is an indicator function taking

the value of 1 when sample θ (i,t−1) is generated from

IFg
(
θ; ξ

(t)
d

)
and is 0 otherwise.

R samples are drawn from the overall IF in each iteration.
Such samples and weights are used to approximate the dis-
tribution of random variables. When the times of iterations
are sufficiently large, the proposed method can accurately
estimate the target distribution.

3 Parameter estimation method based on the MDCFT
and the PMC

3.1 Idea of the proposed method

Researchers [16,27] have applied the PMC method to the
parameter estimation of multi-sinusoids. Thus, this paper fur-
ther solves the problem of joint model selection and parame-
ter estimation of multi-component chirp signals. To enable
the samples generated from the IFs to occur around the true
value with a greater possibility, IFs are elaborately chosen
through the MDCFT and are adaptively updated through the
PMC.

According to the characteristics of multi-component chirp
signals, this paper adopts the MDCFT for peak detection
in the DCFT domain. Compared with the conventional
DCFT, the MDCFT has the following advantages [24,25]:
(1) reduces the “picket fence” effect, (2) has no limit on the
signal length, and (3) reduces the number of mirror peaks [14]
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or local peaks and decreases the difficulty in peak detection.
Furthermore, the MDCFT utilizes the detected peaks to con-
struct IFs and then employs PMC to realize joint model selec-
tion and parameter estimation. In the PMC iteration process,
on one hand, IFs are constructed according to the samples
generated in the former iteration; on the other hand, samples
and weights are used to update IFs that will be used in the
next iteration. The whole iteration process can be stopped at
any time. This method can estimate not only the parameters
but also the posterior distribution of the observed data on
unknown parameters.

3.2 Proposed method

3.2.1 Construction of IFs

According to Eq. (11), MDCFT is used to transform data
into the chirpogram for peak detection. The detected peaks
are ranked from large to small based on their amplitudes. The
top L spectral peaks with larger amplitudes are retained, and
the parameter space of l th peak is assumed to have a bivariate
normal distribution, noted as ϕ (θ l), where θ l � ( fl , sl).
fl and sl , respectively, represent the central frequency and
chirp rate of the lth peak. The constructed bivariate normal
distribution is expressed as

ϕ (θ l) ∼ N
(
μl ,Σ l

)
, (14)

where μl and Σ l , respectively, denote the corresponding
mean and covariance of parameter θ l . Σ l =(

σ 2
fl

ρlσ flσsl
ρlσ flσsl σ 2

sl

)
; and σ 2

fl
, σ 2

sl , and ρl , respectively,

denote the variance of fl , the variance of sl in the Gaussian
distribution, and the correlation coefficient between two vari-
ances.

After obtaining the result of the detected peaks, greater
quantization error may exist if the corresponding parameter
of the peaks with the largest amplitude is directly taken as
the chirp signal parameter. In addition, the accuracy of para-
meter estimation is limited and the model order is unlikely
to be estimated. Thus, after obtaining the peaks through the
MDCFT, the PMC must be utilized to estimate the model
order and signal parameters.

When initializing the method, we assume the selected D

IFs g
(
θ; ξ

(0)
1

)
, . . . , g

(
θ; ξ

(0)
D

)
, where θ � {f , s}. Each IF

is composed of the corresponding bivariate normal distribu-
tion of n (n ≤ L) different peaks in the DCFT domain, and
the components of each IF are different. The dth IF can be
expressed as the product of n bivariate Gaussian distribution
as follows:

g
(
θ; ξ

(0)
d

)
= p
(
ϕ
(
θ (0)
c1

))
· · · · · p

(
ϕ
(
θ (0)
cn

))
, (15)

where {c1, . . . , cn} denotes the index number of the peak

that constitutes IFs g
(
θ; ξ

(0)
d

)
, 1 ≤ c1 < · · · < cn ≤ L ,

and n ≥ 1. ξ
(0)
d represents the mean and covariance of all

bivariate Gaussian distributions of IF g
(
θ; ξ

(0)
d

)
, that is,

ξ
(0)
d =

(
μ

(0)
c1 ,Σ

(0)
c1 , . . . ,μ

(0)
cn ,Σ

(0)
cn

)
. The overall IF con-

structed according to Eq. (12) can be expressed as q(0) (θ) =
∑D

d=1 α
(0)
d g
(
θ; ξ

(0)
d

)
and α

(0)
d = 1/D for d = 1, 2, . . . , D.

3.2.2 Update of IFs

According to the general flow of the PMC method in Sect. 2.4,

g
(
θ; ξ

(t)
d

)
represents the dth IF in the t th iteration, which

can be expressed as

g
(
θ; ξ

(t)
d

)
= p
(
ϕ
(
θ (t)
c1

))
· · · · · p

(
ϕ
(
θ (t)
cn

))
, (16)

where ξ
(t)
d =

(
μ

(t)
c1 ,Σ

(t)
c1 , . . . ,μ

(t)
cn ,Σ

(t)
cn

)
. According to

Eq. (12), the overall IF can be constructed as

q(t) (θ) =
D∑

d=1

α
(t)
d g
(
θ; ξ

(t)
d

)
. (17)

The i th weight of the sample drawn from the IFs in the
t th iteration are calculated as follows:

ω̃(i,t) = p
(
θ (i,t)

)
/q
(
θ (i,t)

)
. (18)

The IF parameters are updated as follows (Please refer to
the literature [26,28,29] and see the detailed derivation in
“Appendix 2”):

α
(t+1)
d =

R∑

i=1

ω(i,t)hd
(
θ (i,t);α(t), ξ (t)

)
(19)

μ
(t+1)
d =

∑R
i=1 ω(i,t)θ (i,t)hd

(
θ (i,t);α(t), ξ (t)

)

α
(t+1)
d

(20)

Σ
(t+1)
d

=
∑R

i=1 ω(i,t)
(
θ (i,t) − μ

(t+1)
d

) (
θ (i,t) − μ

(t+1)
d

)T
hd
(
θ (i,t); α(t), ξ (t)

)

α
(t+1)
d

(21)

where hd
(
θ (i,t);α(t), ξ (t)

)
= α

(t)
d g
(
θ (i,t);ξ (t)

d

)

∑D
d=1 α

(t)
d g
(
θ (i,t);ξ (t)

d

) , and ω(i,t)

denotes the normalized weight of the i th sample in the t th
iteration.

As a typical AIS methodology, the PMC method has
shown superior performance in solving high-dimensional
problems, which has been proven theoretically and exper-
imentally. In the PMC method, samples are drawn according
to the importance weight in each iteration, such that the con-
vergence problem is resolved [17,18].
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3.2.3 Joint model selection and parameter estimation

In case the number of chirp components in the data is a priori
unknown, the idea in the literature [18] was employed in this
paper to realize the joint model selection and parameter esti-
mation. We assume that θ ∈ SK , SK denotes the parameter
space of MK . The total parameter space Ω is assumed as
Ω � ∪Kmax

K=0 {K } × SK , where Kmax denotes the maximum
number of the chirp components. We adopted the Bayesian
inference strategy. The marginal maximum a posterior esti-
mate of K is given by

K ∗ = arg max
K

{p (K |y)}

= arg max
K

⎧
⎪⎨

⎪⎩

∫

θ∈SK
p (K , θ |y) dθ

⎫
⎪⎬

⎪⎭

= arg max
K

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

(
K̃ ,θ
)
∈Ω

∏

K

(
K̃
)
p
(
K̃ , θ |y

)
dθ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(22)

where the indicator function
∏

K

(
K̃
)

takes the value of 1

when K̃ = K and is 0 otherwise.

R denotes the sample size. The samples
{(

K (i), θ (i)
)}R

i=1
can be drawn from the IF q (θ), and the normalized weights
ω(i) can be calculated. According to the principle of the IS
approach, a Monte Carlo integration can be performed by
drawing R samples from the IF to approximate the integral
in Eq. (22) with the sample average [18]

K ∗ = arg max
K

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

(
K̃ ,θ
)
∈Ω

∏

K

(
K̃
)
p
(
K̃ , θ |y

)
dθ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= arg max
K

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

(
K̃ ,θ
)
∈Ω

∏

K

(
K̃
) p
(
K̃ , θ |y

)

q (θ)
q (θ) dθ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

� arg max
K

⎧
⎨

⎩
1

R

R∑

i=1

∏

K

(
K (i)
)

·
p
(
K (i), θ (i)|y

)

q
(
θ (i)
)

⎫
⎬

⎭

= arg max
K

{
1

R

R∑

i=1

∏

K

(
K (i)
)

· ω(i)

}
(23)

As R goes to infinity, the result in Eq. (23) approximates
the true posterior by the law of large numbers [29]. In the
parameter estimation, the sum of sample weights approach-
ing the true values usually has a large value λ. When the
value λ is less than a specific threshold value (for example,

1e−2), the IF belongs to an unreasonable prior and can be
abandoned. Therefore, after several iterations, the IF with the
largest λ can be determined and its model order is the true
value K̂ = K .

The t th iteration in the proposed method comprises two

steps. Multinomial distribution M
(
α

(t)
1 , . . . , α

(t)
D

)
is used

to denote the candidate probability of IFs, which is usu-
ally determined by the sum of all sample weights gener-
ated from some IF. One step is to select the IF according

to M
(
α

(t)
1 , . . . , α

(t)
D

)
, whereas the other is to draw samples

from the selected IF.
If the model order is a priori known, the detection process

above can be skipped and the signal parameter can be
directly estimated using Eqs. (16)–(21). In the aforemen-
tioned model, order estimation method, the pre-detection
estimation method first detects peaks according to the chir-
pogram transformed using the MDCFT method and then con-
structs IFs. The PMC method is used to estimate the model
order and signal parameters at the same time. The method
performance is closely related to IF selection. By utilizing
the characteristics of chirp signals, the proposed method effi-
ciently selects IFs and the generated samples occur around
the true value with a great possibility. The method adapts
low SNR and has high estimation accuracy in case of a small
sample size. Therefore, the proposed method has efficient
detection and parameter estimation performance.

3.3 Flow of the proposed method

Considering the detailed description of the principles and
implementation procedures of the proposed method, the flow
chart of the MDCFT–PMC method is shown in Fig. 1.

The specific implementation process of the proposed
method is shown in Table 1. The estimation process of the
model order will be given as supplementary explanation.

4 Numerical results

To validate the parameter estimation performance of multi-
component chirp signals based on the MDCFT–PMC method,
this section performs simulations in case of changing SNR
and sample size and compares the results with that of the
MCMC [12–14] and Gibbs–MPMC methods [17,20]. This
section also uses simulations to indicate the convergence of
the proposed method.

The parameters of the simulations are set as follows: In
the Bayesian model of multi-component chirp signals, the
hyper-parameter of the prior noise variance is υ0 = 2, γ0 >

0. The iteration times of the Gibbs–MPMC and MDCFT–
PMC methods are both 10. The size of the samples drawn
in each iteration is R. In the initialization of the method, the
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No

Yes

Yes

Observed data

Calculate the Chirpogram through 
MDCFT and detect peaks

Initialization and construct 
multiple IFs

Select IFs, draw samples and 
calculate the weights of samples

Update the IF parameters and 
candidate probability

End the iteration
Estimate model order, 

complex amplitude 
and noise variance

Estimate signal 
parameter

Result

Fig. 1 Flow chart of the MDCFT–PMC method

variances of the center frequency and chirp rate of IFs are 0.01
and 0.001, respectively. The correlation coefficient between
both variances is 0.1. The setting of the MCMC method is
consistent with the literature [12]. The selected length of the
Markov chain is 10×R when comparing the performance. In
each simulation realization, W simulations are implemented.
When evaluating the parameter estimation accuracy of each
method, the variances of the center frequency and chirp rate
of each chirp are taken as the criterion, which is defined as

MSE =
W∑

w=1

K∑

k=1

(
θ̂

(w)

k − θ
(w)
k

)2/
WK , (24)

where W denotes the simulation times in a certain simulation
realization. θ (w)

k and θ̂
(w)

k , respectively, correspond to the true
and estimated values of the chirp parameter of the kth com-
ponent in the wth simulation. Accordingly, the CRLB [30],
which is used to compare performance, also takes the mean
square error of the CRLB of each chirp component.

4.1 Example

With the aid of simulation in typical realization, the imple-
mentation process of the proposed method is illustrated. This
subsection provides a comparison of the chirpograms based
on the DCFT and MDCFT methods.

Similar to the simulation realization in [16,20], two chirp
components with SNR = 10 dB are assumed in the envi-
ronment. The normalized center frequencies are 0.302 and
0.328; the normalized chirp rates are 0.001 and 0.002; the
complex amplitudes are 1; the number of observed data
is 50; the calculation formula of the SNR is SNR =
10 log 10

[
A2

1/σ
2
ε

]
; the observation noise σ 2

ε obeys complex
Gaussian distribution; and the components in the real and
imaginary parts are independent and satisfy Gaussian dis-
tribution N

(
0, σ 2

ε /2
)
. In single simulation experiment, the

divided lattice space based on the MDCFT is 100 × 100.
The iteration times based on the PMC method are 10, and
the size of the samples drawn in each iteration is 1,000. The
estimation outputs of the center frequency and chirp rate of
two chirp components are shown in Fig. 2.

In Fig. 2, the MDCFT–PMC method can guarantee that
the generated samples will occur around the true value with
great probability and can reach very high estimation accu-
racy after 10 iterations. After the relatively acute fluctuation
of the center frequency and chirp rate, the estimation value
can stabilize around the true value and can reach very high
estimation accuracy after 10 iterations. The estimated value

Table 1 Implementation procedures of the MDCFT–PMC method

Parameter estimation based on the MDCFT–PMC method

Step 1. Initialization. In view of the observed data, utilize Eq. (11) to calculate chirpogram and perform peak detection, retain top L spectral
peaks with the largest amplitudes. According to Eq. (15), construct D IFs and note the candidate probability αd as 1/D for d = 1, 2, . . . , D

In t th iteration:

Step 2. Draw the index numbers of IFs from multinomial distribution M
(
α

(t)
1 , . . . , α

(t)
D

)

Step 3. According to the IFs appointed by the index numbers, draw samples and calculate weights according to Eq. (18)

Step 4. After all samples are completely generated, calculate the normalized weights

Step 5. According to Eq. (19) to (21), update the parameters and candidate probability of IFs

Repeat Steps 2–5 until the end of iteration, obtain the signal parameters and model order of multi-component chirp, and estimate the complex
amplitudes and noise variance at the same time

Note If the model order of chirp signals is known, the estimation of model order in the implementation procedure can be omitted
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Fig. 2 Iteration estimation
results of the center frequency
and chirp rate (up), and the
samples histogram after the 10th
iteration (down)
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Fig. 3 Chirpogram calculated by the DCFT (left) and the MDCFT (right)

can accurately reflect the true value. The iteration process of
the MDCFT–PMC method can be interrupted at any time,
and an increase in iteration times can improve the parameter
estimation accuracy.

Figure 3 shows the chirpogram of the signals calculated
by the DCFT and MDCFT. The divided lattice space is 100×
100. Thus, the center frequency and chirp rate both do not
lie in the divided lattice point. Figure 3 (left) shows that the
chirpogram calculated by the DCFT is affected by the “picket

fence,” and the true peak is submerged in numerous peaks in
the DCFT domain. Consequently, the detection accuracy of
peaks decreased. Figure 3 (right) shows that the MDCFT can
avoid the “picket fence” effect and easily detect the correct
peaks.

Therefore, when constructing the IFs of the PMC method
with the information provided by the peaks in the chirpogram,
the detection results can include the true peak with more
retained peaks in the chirpogram calculated by the DCFT,
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which undoubtedly increases the processing difficulty and
computational complexity of the follow-up method. By con-
trast, the chirpogram calculated by the MDCFT evidently
increases the detection rate of the real peaks and better con-
structs more reasonable IFs using the detection results.

4.2 Estimation performance of the MDCFT–PMC method
on the model order

The estimation performance of the MDCFT–PMC method in
terms of the model order of multi-component chirp signals is
verified through simulation. The variation range of the SNR
falls between [−5, 10] dB, and the variation range of the
sample size falls between [600, 1,000], with a step length of
200. The other simulation parameters are similar to those in
Sect. 4.1. The simulation experiments are repeated 50 times.
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Fig. 4 Estimation accuracy of the MDCFT–PMC method on the model
order in case of different SNR

The estimation accuracy of the MDCFT–PMC method on the
model order is shown in Fig. 4.

Figure 4 shows that in terms of different sample sizes,
the MDCFT–PMC method does not have approximately the
same SNR threshold. When the sample size is 1,000, the
estimation accuracy of the MDCFT–PMC method can reach
95 % or more in case of −2 dB. When the sample size is 600
or 800, the estimation accuracy of the MDCFT–PMC method
can reach 95 % in case of −1 dB. An increase in sample size
can improve the estimation accuracy of the MDCFT–PMC
method in terms of the model order and enable the method to
have the adaptive capacity for low SNR and to adapt to the
follow-up processing requirements.

4.3 Convergence of the MDCFT–PMC method

The MDCFT–PMC method adopts the strategies based on
the PMC and has good convergence. By the aid of the sim-
ulation experiments in typical simulation realizations, the
method is illustrated in detail. The simulation in Sect. 4.1
was repeated for 50 times, and the update speed of the cen-
ter frequency and chirp rate in 10 iterations was obtained

as
∑W

w=1

∥∥∥θ̂k+1 − θ̂k

∥∥∥
2

/∥∥∥θ̂k
∥∥∥

2
/W . Figure 5a corresponds

to the center frequency parameters, whereas Fig. 5b corre-
sponds to the chirp rate parameters.

Figure 5a, b shows that the convergence of the estimation
of the MDCFT–PMC method on the center frequency and
chirp rate is good. The convergence rate is initially rapid.
After four iteration processes, the sample results of the center
frequency and chirp rate quickly converged. In the follow-
up iteration processes, the convergence rate tends to be sta-
ble. During method initialization, the constructed IFs tend to
select IFs with a larger search parameter space. Significant
randomness exists during sample generation. In the follow-
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up stage, the MDCFT–PMC method adaptively selects and
adjusts IFs in the iteration process. In this manner, the IFs
with better local character are likely to be selected and the
sample can occur around the true value with greater possi-
bility.

4.4 Parameter estimation performance
of the MDCFT–PMC method

The parameter estimation performance of the MDCFT–
PMC method on multi-component chirp signals is veri-
fied. To prevent the influences of other factors, the model
order of chirp signals is assumed as known. This section
investigates the MDCFT–PMC method performance along
with the SNR and sample size variation and compares
this method with the classical MCMC and Gibbs–MPMC
methods.

4.4.1 Performance comparison in noisy environment

To verify the robustness of the MDCFT–PMC method in
a noisy environment, this subsection evaluates the para-
meter estimation performance of the proposed method
through simulation experiments and compares with the
MCMC and the Gibbs–MPMC method. We assume that
the SNR variation range of chirp signals falls between [−2,
10] dB. The simulation experiments are repeated 100 times,
whereas the other parameters are the same as those in
Sect. 4.1. The parameter estimation performance chart of
the center frequency and chirp rate based on the MCMC,
Gibbs–MPMC, and MDCFT–PMC methods is shown in
Fig. 6.

Figure 6 shows that the parameter estimation accuracy
of the three methods to reach the CRLB differs in terms of
the SNR thresholds. The MCMC and Gibbs–MPMC meth-
ods adopt the DCFT method to calculate the chirpogram and
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Fig. 6 Parameter estimation performance of the MCMC, Gibbs–
MPMC, and MDCFT–PMC methods along with the variation of SNR

perform spectral peak detection. Compared with the MDCFT
method, the chirpogram calculated using the DCFT method
does not have evident peaks, which results in a decrease
in detection performance. The MCMC method performance
depends on the proposal distribution of the initial selection.
If the selected proposal distribution is not ideal, the perfor-
mance will exhibit a sharp reduction. The Gibbs–MPMC
method selects spectral peaks according to the chirpogram
calculated using the DCFT method and constructs the IF to
generate samples. Resampling is adopted to approach the true
parameters constantly. The performance of this method can
be easily affected by the SNR. The estimation accuracy of the
center frequency and chirp rate of the MDCFT–PMC method
can reach the CRLB in case of 0 dB, whereas those of the
Gibbs–MPMC method can reach the CRLB in case of 2 dB.
The effect of the SNR is greater on the MPMC method. In the
case of low SNR, the proposed method has better parameter
estimation performance.

4.4.2 Performance comparison in case of changing sample
size

A simulation in case of changing sample size is performed.
Only the Gibbs–MPMC and MDCFT–PMC methods are con-
sidered. The variation range of the sample size falls between
[100, 1,400], with the step length of 100. The simulation is
repeated 100 times. The chart of the parameter estimation
performance of the center frequency and chirp rate based on
the Gibbs–MPMC and MDCFT–PMC methods is shown in
Fig. 7.

Figure 7 shows that when the sample size is 400, the para-
meter estimation accuracy of the MDCFT–PMC method can
reach the CRLB. When the sample size is 700, the parameter
estimation accuracy of the Gibbs–MPMC method can reach
the CRLB. The high quality of the samples generated in the
parameters’ importance region of the Gibbs–MPMC method
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Fig. 7 Parameter estimation performance of Gibbs–MPMC and
MDCFT–PMC methods with varied sample size
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is appropriate to the true parameters. In other words, a larger
size of samples results in a greater possibility of involving the
true value. Therefore, the performance of the Gibbs–MPMC
method is significantly affected by the sample size. In the
iteration process of the MDCFT–PMC method, the samples
with high quality are utilized to update the IFs, which are
used to generate samples in the next iteration. In this way,
even in the case of a small sample size, the parameter and
target function of multi-component chirp signals can be esti-
mated. In conclusion, the proposed method exhibits better
parameter estimation performance in case of a small sample
size.

5 Conclusion

Through the combination and development of the previ-
ous achievements on the MDCFT and PMC methodolo-
gies, this paper applied the relevant progress into the joint
Bayesian model selection and parameter estimation of multi-
component chirp signals with white Gaussian noise. To
enable the samples drawn from the IF to occur around the
true value with a greater possibility, this paper adopted the
MDCFT to calculate the chirpogram and detect peaks in the
DCFT domain and constructed multiple IFs on the basis of
peaks. Meanwhile, this paper used the PMC method to update
the IFs with an adaptive learning process. This method can
estimate not only the signal parameters but also the posterior
distribution of the observed data on unknown parameters.

The simulation results show that compared with two exist-
ing methods based on the Monte Carlo concept, the proposed
method exhibits better performance in case of lower SNR
or small sample size and good convergence. The proposed
method also has strong significance in solving related prob-
lems in spectral analysis, wideband radar imaging field, and
so on.
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6 Appendix 1

The posterior distribution of
(
α, f , s, σ 2

ε , K
)

can be expressed
as follows according to the likelihood function of y given in
Eq. (3) and the a priori of each parameter given in Eqs. (6)
and (7):

p
(
α, f , s, σ 2

ε , K |y
)
∝ p
(
y|α, f , s, σ 2

ε , K
)
p
(
α|f , s, σ 2

ε , K
)

×p (f , s|K ) p
(
σ 2

ε

)
p (K )

∝ 1
(
πσ 2

ε

)N exp

{
− 1

σ 2
ε

(y−Dα)H (y−Dα)

}

×
∣∣DHD

∣∣
(
πδ2σ 2

ε

) exp

{
− 1

δ2σ 2
ε

αH
(
DHD

)
α

}

×
(

1

2

)K

×σ 2(−υ0−1)
ε exp

[−γ0

σ 2
ε

]
× 1

K
(25)

Referring to the literature [12,13,18], the expression after
integrating terms relevant to amplitudes α in Eq. (25) is given
as

p
(
α, f , s, σ 2

ε , K |y
)

∝
∣∣DHD

∣∣
(
πδ2σ 2

ε

) exp

{
− 1

σ 2
ε

(α − mα)H Σ−1
α (α − mα)

}

× 1
(
πσ 2

ε

)N exp

{
− 1

σ 2
ε

yHPy
}

×σ 2(−υ0−1)
ε exp

[−γ0

σ 2
ε

]
× 1

K · 2K
(26)

where

Σ−1
α = DHD

(
1 + δ−2

)
(27)

mα = ΣαDHy (28)

P = IN − D
(
DHD

)−1
DH/(1 + δ−2

)
(29)

Equation (26) has a Gaussian function of α and inverse
Gamma function of σ 2

ε . After the integration of these two
variables in (26), the posterior distribution of the observed
data y on K , f , and s is

p (f , s, K |y) ∝
(
γ0 + yHPy

)−(N+υ0) ×
(
1 + δ2

)

K · 2K
(30)

7 Appendix 2

We assume that p (θ) is the target function;q(t) (θ) represents
the IF in the t th iteration; and θ represents the unknown para-
meters. When applying the PMC methodology to the para-
meter estimation problem, whether the adopted IF can be
approximated to the target function is important. Our objec-
tive is to minimize the Kullback divergence, which can be

expressed as K
(
p||q(t)

) = ∫ log
(

p(θ)

q(t)(θ)

)
p (θ) dθ .

Assume hd (θ;α, ξ) = αd g(θ;ξd)∑D
d=1 αd g(θ;ξd)

. In t th iteration,

the intermediate quantity is constructed as

L(t) (α, ξ)

=
∫ D∑

d=1

hd
(
θ;α(t), ξ

(t)
d

)
log
(
α

(t)
d g
(
θ; ξ

(t)
d

))
p (θ) dθ

(31)

The derivation in [26,28,29] indicates that for any α and
ξ , when the intermediate quantity (31) increases, the target
function also increases. The maximum L(t) (α, ξ) canobtain
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a closed solution. In the multivariate Gaussian distribution,
the parameters include mean value and covariance matrix.
The intermediate quantity can be expressed as

L(t) (α, ξ)

=
∫ D∑

d=1

hd
(
θ; α(t), ξ

(t)
d

){
log
(
α

(t)
d

)

−1

2

[
log
∣∣∣Σ (t)

d

∣∣∣+
(
θ−μ

(t)
d

)T (
Σ

(t)
d

)−1 (
θ−μ

(t)
d

)]}
p (θ) dθ

(32)

up to terms that do not depend on α, ξ .
When the above formula reaches the minimum, the fol-

lowing equations are satisfied:

α
(t+1)
d =

∫
hd
(
θ;α(t), ξ

(t)
d

)
p (θ) dθ (33)

μ
(t+1)
d =

∫
θ (t)hd

(
θ (t);α(t), ξ

(t)
d

)
p (θ) dθ

αt+1
d

(34)

Σ
(t+1)
d

=

∫ (
θ (t)−μ

(t+1)
d

) (
θ (t)−μ

(t+1)
d

)T
hd
(
θ; α(t), ξ

(t)
d

)
p (θ) dθ

αt+1
d

(35)

In practice, the numerator and the denominator are inte-
gral. By utilizing the samples and weights in each iteration
for approximation, Eqs. (19)–(21) can be obtained.
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