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Abstract In this paper, a new compression technique aim-
ing at reducing the size of storage of multispectral images and
maintaining at the same time the high-quality reconstruction
is presented. An optimal multispectral band ordering process
is applied before compression, and then, the dual-tree dis-
crete wavelet transform is used in the spectral dimension,
and the 2D discrete wavelet transform is used in the spa-
tial dimensions. Finally, a simple Huffman coder is used for
compression. Landsat ETM+ images are used for experimen-
tations. Experimental results demonstrate that the proposed
technique has better performance than JPEG, JPEG2000,
SPIHT, and JPEG2000 with a 3D dual-tree transformation.

Keywords Multispectral compression · Landsat · DDWT ·
DWT · Multispectral band ordering

1 Introduction

Satellite images are of interest for a large number of appli-
cations, such as geology, earth-resource management, pol-
lution monitoring, meteorology, and military surveillance.
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As a consequence, there is a constant growth both in the
number and in the performance of satellite image facilities,
which produce larger and larger amounts of data that have to
be transmitted, processed, and stored efficiently. Thus, it is
common to include data compression as a part of the distrib-
ution system for satellite imagery. The problem stems from
the size of the raw images considered, where the amount
of data to be managed further increases with the number of
bands. The result is a large amount of data organized in three
dimensions. Two dimensions are the spatial dimensions, and
the third is the spectral dimension indexed by λ.

A satellite image has both spatial and spectral resolutions.
Data with two spectral bands (or channels) per pixel are
called dual-band data. Data with three to several (perhaps
6–10) bands are termed multispectral data, and data with
more bands are termed hyper-spectral data [1–6].

Multispectral data are typically arranged as a 3D structure
as shown in Fig. 1. Each plane is a band, and it consists of
rows and columns of pixels. We can interpret each plane of
Fig. 1 as an image (pixels displayed in a spatial relationship
to one another) and each column as a spectrum (variations
within pixels as functions of wavelength).

Multispectral image compression is one of the important
fields that have useful applications in data storage and trans-
mission. It is necessary in any instance where images need
to be stored, transmitted, or viewed quickly and efficiently.
In this paper, an efficient multispectral image compression
technique is presented and compared with traditional com-
pression techniques. Landsat ETM+ multispectral images are
used for the validation of the proposed technique. The rest of
the paper is organized as follows. Traditional multispectral
compression techniques are discussed in Sect. 2. The pro-
posed technique is presented in Sect. 3. Experimental results
are presented in Sect. 4. Finally, conclusions are drawn in the
last section.
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Fig. 1 The 3D structure of multispectral data

2 Traditional multispectral compression techniques

Multispectral image compression needs the use of 3D trans-
formations to benefit from the relationship between bands.
The 3D compression techniques are generally extended
from their 2D counterparts. The techniques of particu-
lar interest that will be used in our investigation are the
Joint Photographic Experts Group 2000 (JPEG2000) which
is an extended version of the Joint Photographic Experts
Group (JPEG), the 3D Set Partitioning In Hierarchical Trees
(SPIHT) which is extended from the 2-D SPIHT, and the
dual-tree discrete wavelet transform (DDWT) [7–12].

2.1 JPEG compression

JPEG compression uses the 3D discrete cosine transform
(DCT). There are two classes of encoding and decoding
processes: lossy and lossless. Those based on the DCT [13]
are lossy, thereby allowing substantial compression to be
achieved, while producing a reconstructed image with high
visual fidelity to the encoder source image.

It was suggested in [1] that there is a possibility of extend-
ing the DCT to three dimensions as in Eqs. (1) and (2) [1]
and applying it to the compression of multispectral data. The
extension is straightforward. Simply partition a large set of
multispectral data into cubes of 8×8×8 pixels, apply the 3D
DCT to each cube, collect the resulting transform coefficients
in a zigzag sequence, quantize them, and encode the results
with an entropy coder such as the Huffman coder [14].
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Fig. 2 Tree structure used in the 3D SPIHT algorithm

and the inverse 3D DCT is
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for 0 ≤ x, y, z ≤ n − 1.

2.2 SPIHT compression

SPIHT is an embedded coding algorithm that performs bit-
plane coding of the wavelet coefficients [15]. In [9], two
implementations of SPIHT compression are proposed. In the
first, a 3D transform is taken and a simple 3D SPIHT is
used. In the second, after taking a spatial wavelet transform,
spectral vectors of pixels are vector quantized and a gain-
driven SPIHT is used.

In [16], the Karhunen–Loéve transform (KLT) is used to
decorrelate the data in the spectral domain, followed by a
2D DCT in the spatial domain. After the transform, a 3D
hierarchical structure is defined to run the SPIHT algorithm.
Based on some preliminary experiments, the structure shown
schematically in Fig. 2 was selected.

2.3 JPEG2000 compression

JPEG2000 is the new ISO/IEC still-image compression stan-
dard [7,8]. It not only provides better compression perfor-
mance over DCT-based JPEG, it also has other good features
such as progressive transmission, region of interest (ROI)
encoding, and error resilience.

The JPEG2000 encoder consists of four main stages:
DWT, scalar quantization, and two tiers of block coding [17].
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Fig. 3 a Original bands for a
multispectral image. b
Reshaping the 2D image band A
to a vector a

Fig. 4 a–e The interchanges between bands. f Optimal multispectral band ordering

JPEG2000 supports the 9/7 floating point and the reversible
5/3 integer wavelet transforms. The 5/3 integer wavelet trans-
form is based on the lifting scheme [18].

The scalar quantization is implemented with the quan-
tization step size possibly varying for each sub-band.
The Embedded Block Coding with Optimized Truncation
(EBCOT) has two tiers. The first tier employs a context-based
adaptive arithmetic coder called the MQ coder on each block
of the sub-bands. The second tier is used for rate distortion
optimization and quality layer formation. In [19], JPEG2000
is used for multispectral image compression. Fig. 5 Analysis FB for the DDWT
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Fig. 6 a Block diagram for the
proposed compression
technique—encoder. b Block
diagram for the proposed
compression
technique—decoder

2.4 Compression with the 3D DDWT

The DDWT [12] is a relatively recent enhancement to the
DWT with important additional properties. It is nearly shift-
invariant and directionally selective in two and higher dimen-
sions. It achieves this with a redundancy factor of only 2D
for D-dimensional signals, which is substantially lower than
that of the undecimated DWT. The multidimensional (M-D)
DDWT is non-separable, but it is based on a computation-
ally efficient, separable filter bank (FB). The compression of
spectral images with the 3D DDWT was discussed in [20]. To
make the image spectral dimension even in the 3D transform,
a new zero band (band #8) has to be added. The resulting

DDWT sub-bands are arranged in four separate transform
combinations with each combination having the same sub-
band organization as would a 3D DWT of the original data
has but with each combination containing sub-bands of dif-
ferent orientations.

3 Proposed multispectral compression technique

In this section, we present an efficient multispectral image
compression technique with high-quality reconstruction
based on a multispectral band ordering, 3D DDWT in the
spectral domain, and 2D DWT in the spatial domain.
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Fig. 7 a Original multispectral images (bands 2, 3, and 4)—White Sands. b Original multispectral images (bands 2, 3, and 4)—Los Angeles

Fig. 8 a White Sands image (Gray scale band #6) compression (CR ∼
2.9)—original image band. b White Sands image (Gray scale band #6)
compression (CR ∼ 2.9)—compressed band using JPEG. c White Sands
image (Gray scale band #6) compression (CR ∼ 2.9)—compressed band
using SPIHT. d White Sands image (Gray scale band #6) compression

(CR ∼ 2.9)—compressed band using JPEG2000. e White Sands image
(Gray scale band #6) compression (CR ∼ 2.9)—compressed band using
JPEG2000 with 3-D DDWT. f White Sands image (Gray scale band #6)
compression (CR ∼ 2.9)—compressed band with the proposed tech-
nique
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Fig. 9 a Los Angeles image (Gray scale band #2) compression (CR ∼
3.2)—original image band. b Los Angeles image (Gray scale band #2)
compression (CR ∼ 3.2)—compressed band using JPEG. c Los Ange-
les image (Gray scale band #2) compression (CR ∼ 3.2)—compressed
band using SPIHT. d Los Angeles image (Gray scale band #2) compres-

sion (CR ∼ 3.2)—compressed band using JPEG2000. e Los Angeles
image (Gray scale band #2) compression (CR ∼ 3.2)—compressed
band using JPEG2000 with 3D DDWT. f Los Angeles image (Gray
scale band #2) compression (CR ∼ 3.2)—compressed band with the
proposed technique

3.1 Multispectral band ordering

The proposed ordering heuristic uses the correlation coeffi-
cient to examine inter-band similarity. When a 3D image is
split into a set of 2D bands, the inter-band similarity can be
measured with the correlation coefficient due to its simplic-
ity [6,21,22]. The correlation function takes two vectors as
inputs and computes a real number in the range [−1.0,1.0],
where 1.0 indicates that the input vectors are totally identical.

The correlation coefficient rA,B between image bands A
and B is calculated as follows [21]:
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where M is the number of rows and N is the number of
columns in the image; A and B denote the mean values of
the bands A and B computed for every Dth pixel, respec-
tively. Each Dth pixel in the spatial directions is used for
the computation of the correlation coefficients. If D equals

1, the exact value of the correlation between the two image
bands is computed; otherwise, Eq. (3) results in a correlation
estimate. The larger the D, the faster the reordering phase
of the algorithm; however, at the same time, the estimation
accuracy is reduced.

The proposed compression algorithm will be applied on
Landsat ETM+ image with 7 bands. In the first step of this
algorithm, the data of bands are reshaped to vectors as shown
in Fig. 3. In the second step, Eq. (3) is applied for the image
bands. The correlation coefficient between band #1 and band
#2 is estimated as r1,2, the correlation between band #1 and
band #3 is estimated as r1,3, and so on to obtain a vector of 21
values as [r1,2, r1,3, . . . , r1,7, r2,3, r2,4, . . . , r2,7, . . . , r6,7].

In the third step, the absolute values of the correlation vec-
tor are sorted in a descending order to determine the bands
of the highest correlation bands. Finally, the bands are inter-
changed according to the correlation results to achieve the
optimal band ordering for the multispectral image. For exam-
ple, if we have the ordered values from the previous three
steps as r1,6, r1,3, r1,5, r6,7, r3,5, r3,4 and r2,7, then band #1
and band #6 are conjugated as shown in Fig. 4a. After that,

123



SIViP (2015) 9:769–778 775

Fig. 10 Snapshot for the Mulispec software that shows the thematic
colors (blue–green–red) (color figure online)

band #1 and band #3 are conjugated as in Fig. 4b. The value
r1,5 is omitted, because band #1 has the highest two correla-
tions with bands #6 and #3. For r6,7, band #6 and band #7 are
conjugated as shown in Fig. 4c. Similarly, band #3 and band
#5 are conjugated as in Fig. 4d. The value of r3,4 is omit-
ted, because band #3 has the highest two correlation values
with band #1 and band #5. Finally, Fig. 4e shows that band
#2 and band #7 are conjugated. After band ordering, a data
rotation step is performed to make the spectral dimension on
the x-axis.

3.2 Wavelet transformation

The wavelet transform comes in several forms. The critically
sampled form of the wavelet transform provides the most
compact representation; however, it has several limitations.
For example, it suffers severe shift dependence due to aliasing
in down-samplers and the poor directional selectivity [20–
27]. For these reasons, the DDWT is used in this paper as an
alternative in the spectral dimension. Figure 5 illustrates the
analysis FB for the DDWT. We apply the 2D DWT for the
spatial dimension of the multispectral images, namely with
Daubechies 9–7 filters [27].

3.3 Quantization and coding

After applying the DDWT on the spectral dimension and the
DWT on the spatial dimension, a quantization process simi-

lar to that of the JPEG2000 standard is performed followed
by Huffman coding [7,8,28,29]. Figure 6 shows the block
diagram for the proposed compression technique.

4 Experimental results

We have implemented the proposed compression technique
on two multispectral image sets available on [30]; “White
Sands, New Mexico May 9, 2000,” “Los Angeles, California,
September 20, 1999”, Fig. 7.

We compared the proposed technique with JPEG, SPIHT,
JPEG2000, and JPEG2000 with the 3D DDWT on different
multispectral images.

Two experiments have been conducted and the results are
shown in Figs. 8 and 9. In the former figure, band #6 is shown
in gray scale for the White Sands image with different com-
pression methods. Figure 9 shows band #2 in gray scale for
the original Los Angeles image with different compression
methods.

The thematic colors with blue–green–red representation
are shown in Fig. 10 using the specific multispectral analysis
software [31]. Figure 11 shows Los Angeles band #5 com-
pressed with different compression techniques.

The performance of the compression methods has been
studied and distortion metrics such as the mean square error
(MSE) and the peak signal-to-noise ratio (PSNR) are con-
sidered.

Let 0 ≤ g(i, j, k) ≤ g f s denote an N -pixel digital image
in band k for a multispectral image (N × M × λ), g f s is the
largest pixel and let g(i, j, k) be its possibly distorted version
obtained by compressing g(i, j, k) and decompressing the
output bit stream, the M SE and the P SN R are defined as:

MSE = 1

N M

λ∑
k=1

N−1∑
i=0

M−1∑
j=0

[g(i, j, k) − ḡ(i, j, k)]2 (4)

PSNR = 20

λ

λ∑
k=1

log10
g f s√
M SEk

(5)

where λ is the number of bands and MSEk is the MSE for
band k.

Spectral distortion metrics such as the spectral angle map-
per (SAM) and the spectral information divergence (SID)
are also considered for the comparison purpose [32]. Given
two spectral vectors V and Ṽ both having L components, let
V = {v1, v2, . . . , vL} be the original spectral pixel vector
vl = gl(i, j) and Ṽ = {ṽ1, ṽ2, . . . , ṽL} its distorted version
obtained after compression and decompression. Analogous
to the radiometric distortion metrics, spectral distortion met-
rics may be defined.
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Fig. 11 a Los Angeles image
(Thematic band #5)
results—original image band. b
Los Angeles image (Thematic
band #5) results—the
compressed band with
JPEG2000. c Los Angeles
image (Thematic band #5)
results—the compressed band
with SPIHT. d Los Angeles
image (Thematic band #5)
results—the compressed band
with the proposed technique

Table 1 MSE and PSNR values
for the two images with and
without band ordering and 3D
rotation

Image Without band ordering
and 3D rotation

With band ordering
and 3D rotation

CR MSE PSNR (dB) CR MSE PSNR (dB)

Image1: White Sands 2.8 20.70 43.54 2.8 19.48 43.95

3.3 33.44 41.50 3.4 32.00 41.85

4.2 57.07 39.22 4.2 50.52 39.90

5.0 76.97 37.91 5.1 72.69 38.32

Image2: Los Angeles 2.8 19.59 43.82 3.2 16.65 44.55

3.4 35.72 41.22 3.8 27.53 42.48

4.3 61.89 38.86 4.6 44.56 40.53

5.1 84.58 37.52 5.9 75.75 38.28

SAM denotes the absolute value of the spectral angle
between the couple of vectors calculated as [6]:

SAM(V, Ṽ) = arccos

(
〈V, Ṽ〉

||V||2 · ||Ṽ||2

)
(6)

in which 〈·, ·〉 stands for scalar product.
The SID is derived from information-theoretic concepts

as [32]:

SID(V, Ṽ) =
L∑

l=1

(pl − ql) log

(
pl

ql

)
(7)

where

pl = vl

||V||1 , and ql = ṽl

||Ṽ1||
(8)

Table 1 tabulates the MSE and PSNR values for the pro-
posed compression technique with and without band ordering

123



SIViP (2015) 9:769–778 777

Table 2 MSE and PSNR values
for the two images compressed
with different compression
techniques

Methods Image1: White Sands Image2: Los Angeles

MSE PSNR (dB) MSE PSNR (dB)

JPEG 79.74 38.71 98.37 37.86

SPIHT 181.28 34.80 303.36 32.58

JPEG2000 26.04 42.89 33.01 41.47

JPEG2000 with 3-D DDWT 34.71 41.41 52.37 39.58

Proposed 19.48 43.95 16.65 44.55

Table 3 SAM and SID values
for the images compressed with
different compression
techniques

Methods Image1: White Sands Image2: Los Angeles

SAM SID SAM SID

JPEG 0.923 0.27E−3 1.832 0.17E−2

SPIHT 1.266 0.59E−3 2.978 0.30E−2

JPEG2000 0.592 0.97E−4 1.163 0.52E−3

JPEG2000 with 3-D DDWT 0.592 0.26E−3 1.451 0.71E−3

Proposed 0.317 0.75E−4 0.775 0.25E−3

and 3D rotation. The results in this table are in favor of band
ordering and 3D rotation. Table 2 shows the MSE and PSNR
values for the different compression techniques including the
proposed one. The results in the table are in favor of the pro-
posed technique. Table 3 shows the SAM and SID values for
the different compression techniques. These results also are
in favor of the proposed compression technique.

5 Conclusion

An efficient multispectral image compression technique with
optimal band ordering has been proposed in this paper. It is
based on the multispectral band ordering, the 3D DDWT, the
2D DWT, and a simple Huffman coder. We take full advan-
tage of the multispectral bands in the step of band ordering
and in the transformation by using the DDWT on the spectral
dimension and the DWT on the spatial dimension. From the
subjectivity and objectivity, we can conclude that the pro-
posed compression technique is more effective than other
traditional compression techniques.
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