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Abstract Falls are one of the major health hazards among
the aging population aged 65 and above, which could poten-
tially result in a significant hindrance to their independent
living. With the advances in medical science in the last few
decades, the aging population increases every year, and thus,
fall detection system at home is increasingly important. This
paper presents a new vision-based fall detection technique
that is based on human shape variation where only three
points are used to represent a person instead of the conven-
tional ellipse or bounding box. Falls are detected by analyz-
ing the shape change of the human silhouette through the
features extracted from the three points. Experiment results
show that in comparison with the conventional ellipse and
bounding box techniques, the proposed three point–based
technique increases the fall detection rate without increasing
the computational complexity.

Keywords Fall detection · Analysis of human shape
variation · computer vision
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h R1 Height of region R1
h R2 Height of region R2
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wR1 Width of region R1
wR2 Width of region R2
wR3 Width of region R3
(gR1x , gR1y) Centroid coordinate of region R1
(gR2x , gR2y) Centroid coordinate of region R2
(gR3x , gR3y) Centroid coordinate of region R3
D1 Distance between P1 and P2
D2 Distance between P2 and P3
θ1 Orientation of the line formed by P1 and

P2
θ2 Orientation of the line formed by P2 and

P3
p Ratio of the distance D1 over D2
pt−1 Ratio of the distance at previous frame
pt Ratio of the distance at current frame
θr Reference angle
Dr Length reference
θN1 Orientation of the line formed by P1 and

P2 at the 10th frame after a possible fall
θN2 Orientation of the line formed by P2 and

P3 at the 10th frame after a possible fall
θD1 Orientation difference between θN1 and θr

θD2 Orientation difference between θN2 and θr

μθ Mean of the two orientation differences,
θD1 and θD2

Ddiff Change in sum of the length of the lines
after a possible fall

1 Introduction

Falling among the elderly has always been an important
healthcare issue. Each year, one in every three adults aged
65 years and above falls [1]. In Malaysia, population aged 65
and above has increased from 4.3 % in 2007 to 4.5 % in 2009
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and the elderly population is expected to increase to 7 % by
2020 [2,3]. As in other Western countries, this population
grows at a larger rate each year [4]. Since majority of the
elderly population live in private house, falls can be a major
risk for those who live alone as injuries from a fall can be
life threatening. Report shows that 2.2 million nonfatal fall
injuries among older adults in United States of America were
treated in emergency departments and more than 581,000 of
these patients were hospitalized in 2009 [5]. A serious fall at
home may lead to the risk of death or “post-fall syndrome”
if the person cannot call for help immediately after a fall. In
light of this, development of fall detection system has gained
attention in recent years as this system can alert paramedic
personnel in time after a fall has occurred in order to prevent
post-fall consequences and save the life of the elderly.

Fall detection systems available in the market are mostly
worn-sensor based [6,7], which are basically electronic
devices whereby the elderly need to wear or put in the pocket.
These wearable fall detectors normally use accelerometer or
manual help button as the sensor to detect a fall. However,
these wearable fall detectors have a few drawbacks. One of
the weaknesses for such detectors is that the elderly people
may forget to wear them and help buttons are useless if the
person is unconscious after falling down.

The recent advancements in computer vision technology
have brought together a new solution to overcome these draw-
backs. One of the main advantages of visual-based fall detec-
tion is that such system does not require a person to wear any-
thing, and it is less intrusive compared to the wearable sensor.
Moreover, computer vision system provides more informa-
tion on the behavior of a person compared with the normal
wearable sensors. With this, visual-based home monitoring
system is able to give information on falls and also other
activities of daily living behaviors which are useful for home
healthcare monitoring, such as medication intake, mealtime,
and sleep duration.

This paper is organized as follows. Section 2 presents top-
ics related to visual-based fall detection techniques with spe-
cial emphasis on techniques that are based on human shape
variation. Section 3 discusses the proposed simple visual-
based fall detection technique, in which a number of essential
points are used to model the human shape and the method-
ology to detect falls by analyzing the point features. Section
4 discusses the performance of the proposed techniques and
compares its performance with the conventional fall detec-
tion techniques. Finally, Sect. 5 provides a conclusion of our
work and discusses some possible future research directions.

2 Related work

In recent years, due to the advancements in computer vision
technology, some work has been done in visual-based fall

detection [6]. One of the main challenges for visual-based
fall detection system is how to maximize the fall detection
rate with minimal computational complexity. Although there
are complex algorithms [8,9] that can give very high accu-
racy in fall detection, these techniques normally require high
processing power for real-time video processing which may
not be practical for real-time practical deployment.

One of the conventional methods of detecting a fall from
the surveillance video is to analyze the person’s bounding
box in a single image [10,11]. The bounding box method is
simple and easy to implement. However, this method works
effectively only when the surveillance camera is placed side-
ways or at the same level as the human object. The accuracy
of this technique depends on the relative position of the per-
son and the field of view of the camera and can fail due to
occluding objects. Tao et al. [12] used the aspect ratio of the
bounding box to detect a fall and placed two cameras at dif-
ferent heights in a room to test the accuracy of their system.
All simulated falls were detected for the camera placed at
the table while only some of the falls were detected for the
camera mounted on the wall.

Some researchers mounted the surveillance camera on the
wall instead of placing it at the same level as the human
object to have a larger field of view and less occluding objects
[13,14]. Since bounding box could not efficiently discrimi-
nate “fall-down” from “fall-like” activities under an oblique
setting of camera, ellipse features were later introduced with
improved results [13,14]. Rougier et al. [13] and Chen et
al. [14] combined human shape analysis with other analyses,
namely motion analysis and posture estimation analysis in
their approaches to detect falls. In their human shape analy-
sis, they represent the human in the video by using ellipse
shape. In comparison with the bounding box method, ellipse
shape–based approach in [13,14] gives a better representa-
tion of human shape and good accuracy in fall detection, but
some lure activities like sitting down brutally and squatting
down brutally in parallel with the camera optical axis are still
detected as fall. Moreover, ellipse features alone are not suffi-
cient to reduce the false alarm rate to an acceptable range [14].
Therefore, combination of other analysis was used to increase
the specificity of the system at the expense of increased com-
putational complexity [13,14].

To address this problem, we propose a novel visual-based
fall detection technique that is based on human shape analy-
sis. Our proposed technique represents the person in the video
sequence by using three points instead of the conventional
ellipse or bounding box. From the three points, two lines
are formed and features extracted from these lines are used
to detect a fall. The main contribution of this paper is a
low computational complexity algorithm for human shape
analysis to reduce the execution time required to process one
frame of video while still maintaining high fall detection
accuracy.
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3 Our approach

Human shape is one of the simple features used by many
algorithms in detecting a fall by using surveillance video.
When a person falls, the human shape will change rapidly
while during normal routine daily activities, the human shape
will change slowly, and this is the principle used by our pro-
posed technique. Due to the weaknesses of the bounding box
and the approximate ellipse mentioned in Sect. 2 above, we
chose to model the human shape by a number of essential
points. Extraction of human body points from video frame
is simple and less complicated, in comparison with the con-
ventional ellipse technique. The point representation used
in our approach can provide good information on the ori-
entation and the height proportion of a person. Background
subtraction method is used to detect the person in the video
sequence. From the foreground detected, three points that
represent different regions of a human body, namely the head,
body, and legs, are computed. Based on the computed three
pointes, features such as change of orientation, sum of the
heights, and ratio of heights are then derived and used to ana-
lyze shape change of the human. Figure 1 shows the general
block diagram of the proposed technique.

3.1 Human detection

Our background subtraction approach is based on median
filtering method [6]. The background of the scene and the
moving person is detected by finding the difference between
the incoming frames with the background model. In com-
parison with background subtraction by using mixture of
Gaussian [6], our approach of using median filtering method
has lower computational complexity and provides relatively
good object detection.

3.2 Our proposed three-point human shape representation

The foreground detected is represented by three different
points, which are the centroids of three different regions of
the foreground region, as shown in Fig. 2. The bounding
box of the foreground blob is first computed, after which the
bounding box of the blob is divided into three portions with
the ratio of 30:40:30 %, as depicted in Fig. 2. The ratio of
30:40:30 % is a preliminary estimate to distinguish between
the upper, mid-, and lower body parts. Let these regions be
R1, R2, and R3. The heights, h R1, h R2, h R3, and the widths,
wR1, wR2, wR3, of R1, R2, and R3 are calculated as:

h Ri =
{

(0.4i − 0.1i2)H if H > W
H otherwise

WRi =
{

W if H > W
(0.4i − 0.1i2)W otherwise

(1)

Fig. 1 General block diagram of our approach

where i = 1, 2, 3. H and W are the height and the width of
the bounding box, respectively.

Since h R1, h R3, wR1, wR3, the starting point and the end
point of the bounding box, are known, pixels in the blob
that lie between these points can be used to calculate the
centroids in these regions. The coordinates of the centroids
are computed by:

gRix = 1

NRi

NRi∑
l=1

xl , i = 1, 2, 3 (2)

gRiy = 1

NRi

NRi∑
l=1

yl , i = 1, 2, 3 (3)
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Fig. 2 Illustration of the proposed three-point human body shape rep-
resentation

where NRi is the number of foreground pixels in the region
Ri. The centroids are points (gR1x , gR1y), (gR2x , gR2y), and
(gR3x , gR3y) for the regions R1, R2 and R3, respectively.

From the three centroids, we consider two lines, one from
P1 to P2 and another from P2 to P3, as shown in Fig. 2.
Since each line represents half portion of the foreground,
any changes in the distance and the orientation of the lines
can indicate a change in the shape of the person in the image.
The distances and orientations of each line are then computed
for shape analysis. The distances, D1 and D2, between the
points are given as:

D1 =
√

(gR1x − gR2x )
2 + (

gR1y − gR2y
)2 (4)

D2 =
√

(gR2x − gR3x )
2 + (

gR2y − gR3y
)2 (5)

The angle between the horizontal axis x and the line formed
gives the orientation of line can be computed as follows:

θ1 = arctan

(
gR1y − gR2y

gR1x − gR2x

)
(6)

θ2 = arctan

(
gR2y − gR3y

gR2x − gR3x

)
(7)

where θ1 and θ2 are the orientations of the line formed by P1
and P2 and the line formed by P2 and P3, respectively.

3.3 Fall recognition based on human shape analysis and
inactivity period

Our approach in fall recognition is based on the fact that
different changes in human posture, such as a change from
standing to sitting down or a change from standing to falling,
will have different changes between the upper portion and
the lower portion of the human body, as shown in Fig. 3.
By analyzing the shape change in these two portions of a
person, we can distinguish a fall from normal daily activities.
For this purpose, we compute the ratio of the distance, p =
D1/D2, and the difference between the line orientations, θ1

and θ2. Figure 4 shows the pseudocode of the fall recognition
algorithm of our proposed technique.

As the shape of the upper portion and the lower portion
of human body does not change much in most of the daily
activities, the value of the ratio, p, will be 1 at most of the
time. By computing the ratio of the distance, p, for several
video sequences consisting of daily activities and simulated
falls, we have Fig. 5, in which the value of the ratio will only
change from value 1 to other values during a fall and some
normal daily activities like squatting down, crouching down,
and walking. Thus, we consider there is a possible fall if the
ratio of the distance, p, suddenly changes from value 1 to
another value.

The upper and the lower parts of the human body will
have similar orientation for standing and lying poses. Since
the shape of a falling person will change from standing to
lying, the difference between the line orientations themselves
before a fall and after the fall will be small. Therefore, we
check the difference between θ1 and θ2 for each frame. θ1 and
θ2 are considered to be similar to each other if the difference
between them is less than 10◦(�θ < 10◦).

First, ratio of the line distance from the previous frame,
pt−1, is compared with the ratio of line distance of the current
frame, pt . If there is no possible fall (�p = 0) and the line
orientations are similar, θ1 is stored as a reference angle, θr ,
and the sum of D1 and D2 is stored as length reference, Dr .
Whenever there is a possible fall (�p > 0), we will search
for line orientations, θ1 and θ20, that are similar to each other
at the 10th frame after the possible fall and store them as θN1

and θN2, respectively. Ten frames are used as a time interval
for fast movement in our test videos. Other number of frames
can be set to cope with frame rate of the video sequences. We
then compute the difference between each of the most recent
stored line orientations with the reference angle, as follows:

θD1 = |θN1 − θr | (8)

θD2 = |θN2 − θr | (9)
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Fig. 3 Example of change of
orientations and shape
dimensions at the upper portion
and lower portion of a person
during posture change: a from
standing to sitting down, b from
standing to falling down

where θD1 is the orientation difference between θN1 and θr

while θD2 is the orientation difference between θN2 and θr . To
overcome the problem of mapping two portions of the human
body before a fall and after a fall, the mean of these two
orientation differences, μθ , is computed. We then consider a
fall detected if μθ is more than 30◦.

However, there are falls where the value of μθ can be
less than or equal to 30◦. Therefore, under this condition, we
check the difference between the total line length at the 10th
frame after a possible fall and the length reference, Dr . Based
on our observations, the height of the person will reduce
drastically during a fall in the field of view of the camera, as
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Fig. 4 Pseudocode of the shape analysis algorithm of our proposed
technique

depicted in Fig. 6. The change in sum of the length of the
lines after a possible fall, Ddiff , is given by:

Ddiff = |Dr − (D1 + D2)| (10)

A fall is detected if Ddiff is larger than 40 % of the length ref-
erence, 0.40*(Dr ) pixels. If the line orientations, θ1 and θ2,
are not similar to each other at the 10th frame after the possi-
ble fall, the system considers it as no fall is detected. Figure 7
shows some examples of daily activities and simulated falls
with their corresponding changes in p, θ1 and θ2.

A fall will end with an inactivity period if the person is
immobilized or unconscious after the fall. The last verifica-

tion of our approach is to check whether there is any move-
ment of the person after a possible fall. A fall is confirmed if
the following condition is fulfilled:

1. Change in distance moved by the centroid, P2, is smaller
or equal to 5 pixels for 5 s. For testing purpose, 5 s was
chosen to be the duration of the inactivity period in our
approach. A longer duration of the inactivity period can
be used to ensure the person is completely unconscious
after a fall.

4 Experiment results

Our system was implemented using MATLAB on a PC using
Intel Core i3 2.13 GHz CPU with 4 GB RAM. All test video
data were acquired from an uncalibrated IP camera (Dlink
DCS-920) through Wi-Fi connection in MJPEG format at a
resolution of 320 × 240.

Our test video data consist of video sequences of 30 daily
activities such as walking, sitting down, crouching down,
and squatting down, and 21 simulated falls such as back-
ward falls, forward falls, sideway falls, and falls due to loss
of balance. Our fall video data set is available at http://
foe.mmu.edu.my/digitalhome/FallVideo.zip. Figure 8 shows
that our proposed technique is able to track the human cor-
rectly in the presence of other moving objects by setting a
minimum area threshold to differentiate human from other
moving objects, for example, pets, with the fact that the
size of a normal adult is always larger than the sizes of the
pets.

Table 1 shows the experiment results of our proposed fall
detection technique. Two fall incidents were not detected
because the human body of the person was in a straight line
during these falls, as shown in Fig. 9. Thus, the ratio of the
distances, p, remained as 1 (�p = 0), and the system consid-
ered there is no possible fall. On the other hand, two brutally
crouch-down activities were detected as fall because of the
sudden change in the ratio of the distances, p, from 1 to 2,
and due to the change in the mean of orientation difference
is greater than the predefined threshold value (μθ > 30◦).
Overall, our proposed system can achieve high accuracy in
fall detection with a detection accuracy of 90.5 % and false
alarm rate of 6.7 %. The operating characteristics of the pro-
posed technique are tabulated in Table 2. The threshold values
for mean orientation difference, μθ , and post-fall total length
difference, Ddiff , from Sect. 3.3 above are defined based on
the result in Table 2. Instead of 40◦ or 50◦, 30◦ is chosen
as the threshold value for μθ because a smaller angle differ-
ence gives a bigger chance of detecting falls which are almost
parallel to the camera optical axis.

We compare our proposed technique with the bound-
ing box ratio analysis approach [10], ellipse shape analy-
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Fig. 5 Example of change in
the ratio of the distances, p,
during: a falling, b walking, and
c crouching-down event

Fig. 6 Changes in the total
distance of the human body
during some fall events.
Example of the change in the
total distance of the human body
during a fall which is parallel to
the camera optical axis

sis approach [13], and Chen’s approach [14] in terms of
time complexity. The time complexity of our proposed tech-
nique is similar to the time complexity of the bounding box

ratio analysis approach [10] and the ellipse shape analysis
approach [13], which is O(n) complexity where n is the pixel
resolution of one video frame. The time complexity of Chen’s
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Fig. 7 Examples of daily activities and simulated fall with their corre-
sponding changes in p, θ1, and θ2. a Example of detecting a fall where
the difference between the line orientations before the fall and after the
fall is greater than 10◦, followed by no movement of the person after
5 s. b No possible fall is detected for sit-down activity as the ratio of

the distances is still 1 throughout the activity. c Similar case with (b)
where no possible fall is detected for squat-down activity. d Example
of error detection where a fall is detected due to the change in the mean
of orientation difference is greater than the predefined threshold value
during crouch-down activity

approach [14] is O(n log n). Table 3 compares the total num-
ber of primitive operations required to extract the features
for shape analysis in one video frame for those approaches
that have the order of n time complexity, O(n). Other than
comparing the time complexity of these techniques, Table
4 compares our proposed technique with other four human
fall detection approaches in terms of fall detection rate, false

alarm rate, and execution time. Results for the bounding box
ratio analysis approach [10] and the ellipse shape analysis
approach [13] in Table 4 were obtained through simulation
from the same video data used in testing our proposed tech-
nique, while the results for Chen’s approach [14] and Bio-
mechanics approach [7] were obtained from their original
paper.
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Fig. 8 Example of the correct
tracking of human in the
presence of other moving object
during: a walking and b falling.
In this case, the moving robot on
the ground can be treated as a
pet

Table 1 Fall detection results of our proposed technique

Incidents Falls
detected

Falls not
detected

Accuracy

Falls 19 2 Fall detection 90.5 %

Daily activities 2 29 False alarm 6.7 %

It can be observed from the time complexity of each
approach and Table 3 that our proposed technique has lower
computational complexity compared to Chen’s approach
[14], which has high accuracy in fall detection and low false
alarm rate due to the combination of two different analyses
used, but having nearly the same computational complexity
as the bounding box ratio analysis approach [10] and ellipse

shape analysis approach [13]. Despite having the same time
complexity with the two shape analysis approaches [10,13],
our proposed method, as shown in Table 4, can achieve bet-
ter performance in terms of detecting falls and distinguishing
a fall from normal daily activities. As compared to Chen’s
approach [14], our proposed technique results in similar per-
formance in terms of fall detection rate and false alarm rate,
but with a lower computational cost. Table 4 also summa-
rizes that the accuracy of using biomechanics approach [7]
to detect typical falls still surpasses the accuracy given by
visual-based human fall detection approaches. Furthermore,
biomechanics approach does not have the issues of occlusion
and varying illumination. However, visual-based fall detec-
tion system can be treated as the complement to the existing

Fig. 9 Example of the no changes in the ratio of the distances (�p = 0) during a fall
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Table 2 Operating characteristics of our proposed technique

μθ > Ddiff > 20 % of Dr Ddiff > 40 % of Dr Ddiff > 60 % of Dr

True-positive
rate (%)

False-positive
rate (%)

True-positive
rate (%)

False-positive
rate (%)

True-positive
rate (%)

False-positive
rate (%)

10◦ 90.5 10.0 90.5 10.0 81.0 10.0

20◦ 90.5 10.0 90.5 10.0 76.2 10.0

30◦ 90.5 10.0 90.5 6.7 76.2 6.7

40◦ 90.5 10.0 90.5 6.7 76.2 6.7

50◦ 90.5 10.0 90.5 6.7 76.2 6.7

Table 3 Comparison of the total
number of primitive operations
executed for approaches having
O(n) time complexity

n pixel resolution of one video
frame

Approaches Number of primitive
operations per frame

Our proposed technique 8n + 64

Bounding box ratio analysis approach [10] 5n + 24

Ellipse shape analysis approach [13] 8n + 67

Table 4 Comparison of our proposed technique with four human fall detection approaches in terms of fall detection rate, false alarm rate, and
execution time

Metrics Our proposed
technique

Bounding box
ratio analysis
approach [10]

Ellipse shape
analysis approach
[13]

aChen’s approach
[14]

aBiomechanics
approach [7]

Fall detection rate (%) 90.5 66.0 85.7 90.9 100.0

False alarm rate (%) 6.7 26.7 20.0 6.25 0.0

Execution time per frame (s) 0.19 0.12 0.18 4.21 –

a Results provided by original authors

fall alert products to overcome the weaknesses that fall alert
products have, which is the elderly might forget to wear the
fall detection sensor.

5 Conclusions

In this work, we presented an improved visual-based fall
detection technique with high detection accuracy. Our pro-
posed technique simplifies the ways to represent human
shape by using three centroids of different regions of the
human body instead of the conventional bounding box or
an ellipse. This method is able to give information on the
changes in the upper portion and the lower portion of the
human body. Experiment results indicate that our proposed
technique can achieve high accuracy for human fall detection
in real-time indoor video sequences.

In our future work, we will look into ways to improve the
accuracy of our proposed technique in varying lighting con-
dition and methods to cope with occlusion. We will explore
the possibility of reducing the false alarm rate of our system

by adding low computational head tracking algorithm in our
proposed technique.
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