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Abstract Salient object detection is a computer vision
technique that filters out redundant visual information and
considers potentially relevant parts of our visual field. In this
paper, we modify the Liu et al. model for salient object detec-
tion, which combines multi-scale contrast, center–surround
histogram and color spatial distribution with conditional ran-
dom fields. A combination of Symmetric Kullback–Leibler
divergence and Manhattan distance instead of chi-square
measure is employed to determine center–surround his-
togram difference. The modified Liu et al. model also uses a
less computational intensive color spatial distribution map.
To check the efficacy of the modified Liu et al. model,
the performance is evaluated in terms of precision, recall,
F-measure, area under curve and computation time. Exper-
iment is carried out on a publicly available image datasets,
and performance is compared with Liu et al. model and six
other popular state-of-the-art models. Experimental results
demonstrate that the modified Liu et al. model outperforms
Liu et al. model and other existing state-of-the-art methods
in terms of precision, F-measure, area under curve and has
comparable performance in terms of recall with Liu et al.
model.
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1 Introduction

Salient object detection [2,3,13,15] is an active area of
research which has drawn the attention of research commu-
nity of computer vision and image processing in recent past.
Visual saliency assists our ability to swiftly locate the vital
information in an image. Such information can be a pixel,
person or an object that stands out relative to its neighbors
and grabs greater attention. The outcome of the salient object
detection process is a map that contains the saliency value of
each and every pixel in the image. An attention filter is gen-
erated from the saliency map that segregates the interesting
information into a foreground object and ignores the irrele-
vant information that corresponds to the background object.
Salient object detection is used for automatic target detection
such as finding traffic signs [13,14] along the road or military
vehicles in a savanna [14], in robotics to find salient objects
in the environment as navigation landmarks, in image and
video compression [14] by giving higher quality to salient
objects at the expense of degrading background clutter, auto-
matic cropping/centering [21] of images for display on small
portable screens [4], finding tumors in mammograms [16],
advertising a design [14], image collection browsing [20],
image enhancement [7] and many more.

Various methods for obtaining visual attention have been
suggested in the literature, which are broadly classified into
two major categories [5,23]: bottom-up and top-down. A
bottom-up visual attention is driven by low-level features
(like intensity, color, orientation, etc.) in the scene. It extracts
visual features from the image at multiple scales and com-
bines them into a saliency map. Salient locations are identi-
fied using winner-take-all [13] and inhibition-of-return [13]
operations. On the other hand, the top-down models [23] are
task-dependent and exploit human observation behavior to
achieve specific goals. They are always integrated with the
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bottom-up models and use a priori knowledge of the visual
system to generate saliency maps for localizing objects of
interest.

Our work is motivated by the model proposed by Liu
et al. [18] which combined multi-scale contrast, center–
surround histogram and color spatial distribution with con-
ditional random fields. In the proposed model, we have
extended the work of Liu et al. [18]. In this work, we have
used a combination of Manhattan distance and symmetric
Kullback–Leibler divergence (KLD), an information theo-
retic approach, instead of chi-square measure to determine
center–surround histogram difference. Additionally, a less
computational intensive color spatial distribution map is also
used. To check the efficacy of the extended Liu et al. model,
the performance is evaluated in terms of precision, recall,
F measure, area under the curve and computation time.
The experiment is carried out on a publicly available image
datasets, and performance is compared with Liu et al. model
[18] and six other popular state-of-the-art models.

The paper is organized as follows. Section 2 includes the
state-of-the-art methods to obtain visually salient objects.
The Liu et al. model and its modifications are discussed in
Sect. 3. Experimental setup and results are included in Sect.
4. Conclusion and future work are presented in Sect. 5.

2 Related work

Itti et al. [13] proposed a neurobiological model that incorpo-
rated the center–surround difference of intensity, color and
orientation features at multiple scales. It works on local fea-
tures and not on the image as whole. Harel et al. [9] modeled
the bottom-up visual attention by employing graph theoretic
ideas to determine activation maps from the raw features.
The model gives high saliency values to the nodes which are
at the center of the image. However, the use of a fully con-
nected directed graph for every feature map makes the model
more complex. Han et al. [8] integrated the Itti et al. model
with Markov random field and region growing techniques to
extract attention objects. Le Meur et al. [19] employed vis-
ibility, perception and perceptual grouping in their model.
However, the model considered the achromatic structure in
general and gave unclear boundaries. Yu and Wong [22] used
a real-time clustering algorithm for image segmentation at the
grid cell level. The model gives good initial centers of the
clusters in lesser number of iterations but highly depends on
the image segmentation accuracy. In Liu et al. [18] model,
a generic salient object is separated from the image back-
ground. The features are extracted at the local, regional and
global level. The local feature is obtained by computing the
contrast information of a pixel in a given neighborhood at
different levels of details. The regional feature is made up
of a center–surround histogram map. The global feature is

represented in terms of a color spatial distribution map using
Gaussian mixture models (GMM). To combine these fea-
tures into a saliency map, linear weights are determined
using conditional random field (CRF) learning under maxi-
mum likelihood (ML) criteria. Gao and Vasconcelos [6] used
the discriminant saliency concept which is based on center–
surround mechanism to detect salient object. Klein and Frin-
trop [17] computed the KLD distance between the center
and surround regions of an image for different feature chan-
nels and then fused them into the saliency map. Hou and
Zhang [11] extracted the spectral residual of an image by
analyzing its log-spectrum. Achanta et al. [1] computes the
saliency map by subtracting the Gaussian blurred version of
the image from the mean pixel value of the image. Hou and
Zhang [12] used the incremental coding length to measure
the perspective entropy gain of each feature channel to detect
salient object. Itti and Baldi [15] gave the notion of Bayesian
surprise theory and computed the difference between the pos-
terior and prior beliefs to locate the surprising items. Zhang et
al. [23] combined the position, area and intensity saliencies
using Bayesian framework and Gaussian mixture models.
The model can detect objects even if the image segmentation
results are not accurate. The model fails when the intensity
difference between the object and background is less. Bruce
and Tsotsos [3] proposed a visual saliency model based on
information maximization.

3 Modified Liu et al. model

Liu et al. [18] proposed a model which involves image seg-
mentation or binary labeling where salient object is to be sep-
arated from the image background. The primary objective of
their work was to detect a generic salient object instead of a
specific object category. To achieve this, a set of features at
the local, regional and global levels were incorporated in the
model. Dyadic Gaussian image pyramids [13] were formed
which gives the contrast information at different levels of
details ranging from the finer to the coarser details. These
details were linearly combined into a multi-scale contrast
feature map [18] that depicts the object at the local level and
is defined as

fc (x, I ) =
L∑

l=1

∑

x ′∈N (x)

∥∥∥I l (x) − I l (
x ′)

∥∥∥
2

(1)

where x is the pixel in the image I , N (x) is a 9 × 9 neigh-
borhood, I l is the l-th level image in the dyadic Gaussian
pyramid and L is set to 6.

Regional feature includes the computation of a center–
surround histogram [18] map. In the center–surround his-
togram each and every pixel is enclosed by a center rectangle
Rc. Then, a surrounding rectangle Rs having the same area
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is constructed around Rc. The size range of these rectan-
gles [18] is set to [0.1, 0.7] × min (W, H), where W is the
width and H is the height of the image. A set of aspect ratios
{0.5, 0.75, 1.0, 1.5, 2.0} is used to select the most distinct
rectangle at each pixel. This can be achieved by employing
chi-square distance between the histograms of a center rec-
tangle Rc and surrounding rectangle Rs given by

χ2 (Rc, Rs) = 1

2

b∑

i=1

(Rc (i) − Rs (i))2

Rc (i) + Rs (i)
(2)

where Rc(i) and Rs(i) are the histograms of RGB color for
center and surround rectangles respectively, b = 1000 is the
number of bins. Now, the difference between the histograms
of the two rectangles will give the amount of dissimilarity.
The higher is the difference, the higher is the dissimilarity,
and the more is that pixel salient with respect to its surround-
ings. So for every pixel x in the image, the most distinct
rectangle Rc

∗ is computed as

Rc
∗ (x) = argmaxRc(x)χ

2 (Rc (x) , Rs (x)) (3)

Finally, the center–surround histogram feature [18] is given
by

fh (x, I ) ∝
∑

{x ′|x∈Rc
∗(x ′)}

wxx ′ . χ2 (
Rc

∗ (
x ′) , Rs

∗ (
x ′))

(4)

where wxx ′ = exp(−0.5σ−2
x ′ ‖ x − x ′ ‖2

) is the Gaussian
falloff weight with variance σ 2

x ′ set to one-third the size of
Rc

∗ (x).
Color spatial distribution [18] is used as a global feature.

For this, an image is initially clustered into C colors (clusters)
using k-means algorithm. These colors are then represented
by Gaussian Mixture Models (GMMs)

{
ωc, μc,

∑
c

}C
c=1

whose weight, mean and covariance matrix are estimated by
the Expectation Maximization algorithm. Experimentally, C
is set to 6. The probability of a pixel x to be assigned to the
c-th color component is given by

p(c|Ix ) = ωcℵ(Ix |μc, �c)∑
c ωcℵ(Ix |μc, �c)

(5)

The color spatial distribution feature map [18] is calculated
as

fcsd (x, I ) ∝
∑

c

p (c | Ix ) . (1 − V (c)) . (1 − D (c)) (6)

where V (c) is the spatial variance [18] in both horizontal
as well as vertical direction, D (c) = ∑

c p (c | Ix ) dx is the
weight and dx is the distance between the pixel x and the
central pixel.

These three features were normalized to [0,1] and linearly
combined using conditional random field (CRF). The block
diagram of Liu et al. model is shown in Fig. 1. A few basic

Fig. 1 Block diagram of the Liu et al. model

modifications have been done in the model suggested by Liu
et al. [18]. These modifications are discussed underneath.

3.1 Center–surround histogram feature based
on combination of Manhattan distance
and Kullback–Leibler divergence

Liu et al. [18] employed chi-square test to compute the dif-
ference between center and surround histograms. It is well
known that the chi-square test is sensitive to sample size of
pixels. It is also sensitive to small expected frequencies in
one or more of the intervals in the histogram. Hence, the chi-
square test does not give much information about the strength
of the dissimilarity. In the literature, many distance measures
or metric have been suggested to capture the dissimilarity
between the two tuples or data distributions. Among them,
Manhattan distance (or L1 norm) and L2 norm are most com-
monly used. Both Manhattan distance [10] and L2 norm [10]
satisfy triangular inequality. However, Manhattan distance is
more robust to outliers than L2 norm. Also, Manhattan dis-
tance is effective when the data are highly sparse. The limita-
tion of Manhattan distance and L2 norm is that a high value
in a single histogram bin dominates the distance between
two histograms. In the literature, KLD [10], an information
theoretic approach, is successfully used in many applica-
tions as a dissimilarity measure. It is an information diver-
gence and measures the difference between two probability
distributions. KLD does not satisfy symmetric and triangu-
lar inequality properties. However, KLD has the following
unique properties [10]: (i) invariant to the permutation of the
order in which the components of the vector are arranged, (ii)
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amplitude scaling, (iii) monotonic nonlinear transformation,
(iv) less sensitive to noise, (v) generalizes easily to the multi-
variate case where equivalence on more than one parameter is
required and (vi) applicable over a wide range of distributions
of the response variable. Both Manhattan distance and KLD
have their own advantages and disadvantages. The combina-
tion of Manhattan distance and KLD may bring advantages
of both and thus can be a suitable choice to measure dissim-
ilarity between the center and surround histograms.

In order to compute the dissimilarity between the his-
tograms of the two rectangles Rc and Rs , the proposed
distance measure (CSKLMD) which is a combination of
symmetric KLD and Manhattan Distance can be used which
is given by

DCSKLMD(Rc, Rs) = 1

2

b∑

i=1

(Rc(i) − Rs(i)) log

(
Rc(i)

Rs(i)

)

+
b∑

i=1

|Rc(i) − Rs(i)| (7)

where b = 1000 is the number of bins and as per convention
0log(0) = 0 and 0log(0/0) = 0. Figure 2 shows the center
and surround rectangles for some images with their corre-
sponding center–surround histogram feature maps. Figure 3
shows the comparison of center–surround histogram feature
map for some images using chi-square and CSKLMD.

3.2 Area concept integrated color spatial distribution
feature

Liu et al. [18] model involves computation of the color spatial
distribution map by taking the weighted sum of the all col-
ormaps generated by the Gaussian mixture models (GMM).
However, it does not consider the fact that in general the
salient object or region of interest in the image with the max-
imum area is sufficient to describe the color spatial distribu-
tion map. Rest of the connected components has lower color
spatial distribution saliency values and is just an overhead to
the computational cost.

Fig. 2 a Center and surround rectangles for different objects with their
CSKLMD distance. b Original images with their corresponding center–
surround histogram maps

Fig. 3 a Original image. b Center–surround histogram map by chi-
square measure. c Center–surround histogram map by CSKLDM

From Eq. (5), we get C colormaps. These colormaps
undergo a two-stage post-processing. In first stage, the holes
are filled by using morphological operation. A hole is a set
of background pixels that lie within the object and can be of
any size. Then, a number of connected components are deter-
mined using 8-pixel connectivity and are labeled, with label 0
as the background, label 1 for object 1, label 2 for object 2 and
so on. We have discarded the component labeled 0 as it is the
background. Now, we are left with object 1, object 2, etc. In
the second stage, we chose only that colormap which contains
the connected component having the maximum area. Here,
area is the number of pixels used to constitute an object. In
most of the images, background covers approximately half of
the image area. After the background is removed, we are left
with many small objects. We pay more heed to object that has
the maximum area among them. This is done to avoid those
connected components that have very low saliency values. So
instead of combining all the C colormaps, we only chose that
colormap which contains the connected component with the
maximum area to represent as color spatial distribution map.
The results of color spatial distribution map for the modified

123



SIViP (2015) 9:427–435 431

Fig. 4 a Original image. b Color spatial distribution feature map of Liu
et al. method. c Color spatial distribution feature map of the proposed
method (color figure online)

Liu et al. model and the Liu et al. [18] method can be seen
in Fig. 4.

4 Experimental setup and results

In order to check the efficacy of the modified model of Liu et
al., we compared its performance with Liu et al. [18] method
and six other state-of-the-art methods. We modified the Liu et
al. model in two ways. The first model (Modified_model_1)
employs CSKLMD instead of chi-square distance measure
to compute center–surround histogram feature map. While in
the second model (Modified_model_2), the modifications are
done both in terms of distance measure (CSKLMD instead
of chi-square) and color spatial distribution map.

4.1 Salient object database

The MSRA SOD (Microsoft Research Asia Salient Object
Database) database1 has been used to evaluate these eight
models, both subjectively and objectively. The database con-
tains high-quality images of various object categories and
scene types. The MSRA salient object database includes two
datasets: MSRA SOD image set A which contains 20843
color images in 71 subfolders with their ground truth man-
ually labeled by three users and MSRA SOD image set B
which contains 5000 color images in 10 subfolders with their
ground truth manually labeled by nine users. All the images
are of size 400 × 300 or 300 × 400 having intensity values
[0,255]. Three thousand images are randomly chosen from
image set A for training and 5000 images of image set B
for testing. The test dataset is used for performance evalu-
ation. All the experiments are carried out using Windows 7
environment over Intel(R) Xeon(R) processor with a speed
of 2.27 GHz and 4 GB RAM.

The saliency maps are generated after combining the
multi-scale contrast, center–surround histogram and color
spatial distribution feature maps according to our proposed
modifications. Then, a threshold is used to obtain attention
masks from the saliency maps as shown in Fig. 5. The com-
parison of the attention masks of the Modified_model_2 with
other state-of-the-art models is shown in Fig. 6. The objects
chosen differ in size, shape, color, texture, etc.

The following observations regarding the attention masks
can be drawn from Fig. 6:

• Itti et al. [13] method gave disappointing results as it
considered the local features and neglected the global
one.

• Harel et al. [9] method which is an extended work of Itti
et al. gave better saliency maps but the shape information
was poor.

• Han et al. [8] used the concept of region growing, and the
seed determination may not be done correctly, so it gave
unsatisfactory results.

• Le Meur et al. [19] method was far better than the above
three bottom-up models, but it missed the finer shape
details. Their model provides smooth contours and lacked
detailed information of object silhouettes.

• Yu and Wong [22] model depends on the accuracy of
image segmentation. A bad segmentation furnished inad-
equate results.

• Zhang et al. [23] saliency results were very close to the
Liu et al. but it fails when the intensity difference between
the object and the background is low.

1 http://www.research.microsoft.com/en-us/um/people/jiansun/
salientobject/salient_object.htm.
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Fig. 5 a Original image.
b Multi-scale contrast map.
c Center–surround histogram
map. d Color spatial distribution
feature map. e The resultant
attention mask (color figure
online)

Fig. 6 Comparison of the proposed method with state-of-the-art methods based on their attention masks generated after thresholding the saliency
maps
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• Liu et al. [18] method gave better saliency results but it
bestowed superfluous information of the object that was
not required.

• The Modified_model_2 gave the best saliency results.
The shape information is clear and fine.

4.2 Ground truth construction and quantitative evaluation

In order to get an objective evaluation, the performance of the
proposed method is also evaluated quantitatively. The qual-
itative measures used are precision, recall, F-measure, area
under curve (AUC) and computational time. Since the ground
truth is represented as rectangular region in the database, so
the processed salient object must also be enclosed within a
rectangle. Using the ground truth rectangle G and the detec-
tion results rectangle R, precision, recall and F-measure are
calculated as

Precision = TP

TP + FP
Recall = TP

TP + FN

Fα = (1 + α) × Precision × Recall

α × Precision + Recall
(8)

where α = 1 and

TP =
∑

G(x,y)=1

R(x, y) FP =
∑

G(x,y)=0

R(x, y)

FN =
∑

R(x,y)=0

G(x, y) (9)

where

TP (true positives) is the number of salient pixels that are
detected as salient object.
FP (false positives) is the number of background pixels
that are detected as salient object.

FN (false negatives) is the number of salient pixels that
are detected as background objects.

The results of the nine users are averaged. A receiver oper-
ator characteristic (ROC) curve is drawn to compute AUC.
Figure 7 shows the ROC curve between the true positive rate
(TPR) and the false positive rate (FPR). TPR and FPR are
given by

TPR = TP∑
(x,y) G(x, y)

FPR = FP

W × L − ∑
(x,y) G(x, y)

(10)

In methods [9,13,18,19] and [23] and the proposed
method, a threshold is used on the saliency map to obtain
an attention mask. This threshold is adjusted to depict the
ROC plots. For method [8] the parameter δ and for [22] ε is
tuned to plot the ROC. AUC is calculated to measure the effi-
ciency of the different models. Table 1 shows the qualitative
performance evaluation of the proposed method in compari-
son with the other state-of-the-art methods. The best results
are shown in bold. We observed the following from Table 1
and Fig. 7:

• The performance of Modified_model_1 is improved in
terms of precision, F-measure and AUC and deteriorated
in terms of recall in comparison with Liu et al. model.

• The performance of Modified_model_2 is slightly
improved in terms of precision, recall, F-measure and
AUC in comparison with Modified_model_1.

• The Modified_model_2 gave the highest precision
because the shape information was fine and did not con-
sider additional information of the object like shadow or
some neighboring portion of the object’s background.

Fig. 7 Comparison of ROC
curve of proposed method with
existing state-of-the-art methods
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Table 1 Quantitative performance of the proposed method and the state-of-the-art methods

Itti [13] Harel [9] Han [8] Le Meur [19] Yu [22] Zhang [23] Liu [18] Modified_ model_1 Modified_ model_2

Precision 0.672 0.800 0.688 0.686 0.745 0.785 0.674 0.792 0.806

Recall 0.614 0.692 0.751 0.860 0.721 0.733 0.889 0.829 0.874

F-measure 0.642 0.742 0.718 0.763 0.733 0.758 0.767 0.810 0.817

AUC 0.6627 0.6976 0.6754 0.7413 0.6686 0.7983 0.8019 0.8145 0.8403

Time (in seconds)
per image

1.70 59.8 12.4 1.90 1.60 4.31 25.7 25.4 21.6

• With the perfect shape information, the detection rectan-
gle for some images becomes smaller than the ground
truth rectangle. This resulted into a slightly lower recall
of the Modified_model_2 in comparison with Liu et al.
[18] method.

• Maximum value of F-measure is obtained for the Mod-
ified_model_2 which is the weighted harmonic mean of
precision and recall.

• It is well known that the model that covers the maximum
area under the ROC curve is better in terms of perfor-
mance. The Modified_model_2 gave the highest AUC
value.

• The use of information theoretic approach makes the
Modified_model_2 computationally more expensive than
the other models but is better than Liu et al. [18] method
and Harel et al. [9] method.

5 Conclusion and future work

In this paper, we proposed two modifications of Liu et al.
[18] model for salient object detection, which combined
multi-scale contrast, center–surround histogram and color
spatial distribution with conditional random field. The Mod-
ified_model_1 uses the combination of symmetric KLD
and Manhattan distance instead of chi-square measure to
determine the center–surround histogram difference. The
Modified _model_2 also uses a less computational inten-
sive color spatial distribution map. To check the efficacy
of the Modified_ model_2, the performance is evaluated
in terms of precision, recall, F-measure, AUC and com-
putation time. The experiment is carried out on a pub-
licly available image datasets, and performance is compared
with Liu et al. model and six other popular state-of-the-art
models. Experimental results demonstrate that the proposed
model (Modified_model_2) outperforms Liu et al. model and
other existing state-of-the-art methods in terms of precision,
F-measure, AUC and gives comparative performance in
terms of recall with Liu et al. model. However, the Modified_
model_2 is found computationally more expensive than the
other models but is better than Liu et al. [18] method and
Harel et al. [9] method.

One of the most challenging tasks is to examine the inter-
action between attention and object recognition. A system
can profit from the combination of an attentional front-end
and a recognition back-end. Foreground items can be por-
trayed by means of geometrical models that take into con-
sideration the chromatic and structural characteristics of the
items. In future, nonlinear combination of the features can
be investigated to evaluate the performance. The model with
non-rectangular regions can also be investigated to improve
the detection. The work needs to be extended to detect any
number of salient objects or no salient object at all. Multi-
level observation models need to build for complex scenes
incorporating the face detection and human skin detection
framework.

Acknowledgments The authors are indebted to the reviewers for their
constructive suggestions which significantly helped in improving the
quality of this paper. In addition, the first author expresses his gratitude
to the University Grant Commission (UGC), India, for the obtained
financial support in performing this research work.

References

1. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-
tuned salient region detection. In: Proceedings of International
Conference on Computer Vision and, Pattern Recognition, pp.
1597–1604 (2009)

2. Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a bench-
mark. In: Proceedings of the European Conference on Computer
Vision, pp. 414–429 (2012)

3. Bruce, N., Tsotsos, J.: Saliency, attention, and visual search: an
information theoretic approach. Proc. J. Vis. 9(3), 1–24 (2009)

4. Chen, L., Xie, X., Fan, X., Ma, W., Shang, H., Zhou, H.: A visual
attention model for adapting images on small displays. Technical
report, Microsoft Research Redmond(2002)

5. Frintrop, S., Rome, E., Christensen, H.I.: Computational visual
attention systems and their cognitive foundations: a survey. Proc.
ACM Trans. Appl. Percept. 7, 1–39 (2010)

6. Gao, D., Vasconcelos, N.: Bottom-up saliency is a discriminant
process. In: Proceedings 11th International Conference on Com-
puter Vision, pp. 1–6 (2007)

7. Gasparini, F., Corchs, S., Schettini, R.: Low quality image enhance-
ment using visual attention. Proc. Opt. Eng. 46(4), 040502-1–
040502-3 (2007)

8. Han, J., Ngan, K.N., Li, M.J., Zhang, H.J.: Unsupervised extrac-
tion of visual attention objects in color images. Proc. IEEE Trans.
Circuits Syst. Video Technol. 16(1), 141–145 (2006)

123



SIViP (2015) 9:427–435 435

9. Harel, J., Koch, C., Perona, P.: Graph based visual saliency. Proc.
Adv. Neural Inf. Proces. Syst. 15, 545–552 (2007)

10. Haykin, S.: Neural Networks: A Comprehensive Foundation. Pear-
son Prentice Hall, Englewood Cliffs, NJ (2005)

11. Hou, X., Zhang, L.: Saliency detection: a spectral residual
approach. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–8 (2007)

12. Hou, X., Zhang, L.: Dynamic visual attention: searching for coding
length increments. Proc. Adv. Neural Inf. Process. Syst. 21, 681–
688 (2008)

13. Itti, L., Koch, C., Niebur, E.: A model of saliency based visual
attention for rapid scene analysis. Proc. IEEE Trans. Pattern Anal.
Mach. Intell. 20(11), 1254–1259 (1998)

14. Itti, L.: Models of bottom up and top down visual attention. Ph.D.
dissertation, California Institute of Technology, Pasadena (2000)

15. Itti, L., Baldi, P.: Bayesian surprise attracts human attention. Proc.
Visi. Res. 49(10), 1295–1306 (2009)

16. Karssemeijer, N.: Detection of stellate distortions in mammograms.
Proc. IEEE Trans. Med. Imaging 15, 611–619 (1996)

17. Klein, D.A., Frintrop, S.: Center-surround divergence of feature
statistics for salient object detection. In: Proceedings of the Inter-
national Conference on Computer Vision, pp. 2214–2219 (2011)

18. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum,
H.Y.: Learning to detect a salient object. Proc. IEEE Trans. Pattern
Anal. Mach. Intell. 33, 353–366 (2011)

19. Meur, O.L., Callet, P.L., Barba, D., Thoreau, D.: A coherent compu-
tational approach to model bottom up visual attention. IEEE Trans.
Pattern Anal. Mach. Intell. 28, 802–817 (2006)

20. Rother, C., Bordeaux, L., Hamadi, Y., Blake, A.: Autocollage. In:
Proceedings of ACM SIGGRAPH, pp. 847–852 (2006)

21. Santella, A., Agrawala, M., Decarlo, D., Salesin, D., Cohen, M.:
Gaze based interaction for semi automatic photo cropping. In: Pro-
ceedins of the Conference on Human Factors in Computing Sys-
tems, pp. 771–780 (2006)

22. Yu, Z., Wong, H.S.: A rule based technique for extraction of visual
attention regions based on real time clustering. Proc. IEEE Trans.
Multimed. 9, 766–784 (2007)

23. Zhang, W., Wu, Q.M.J., Wang, G., Yin, H.: An adaptive computa-
tional model for salient object detection. Proc. IEEE Trans. Mul-
timed. 12, 300–315 (2010)

123


	Combination of Kullback--Leibler divergence and Manhattan distance measures to detect salient objects
	Abstract 
	1 Introduction
	2 Related work
	3 Modified Liu et al. model
	3.1 Center--surround histogram feature based  on combination of Manhattan distance  and Kullback--Leibler divergence
	3.2 Area concept integrated color spatial distribution feature

	4 Experimental setup and results
	4.1 Salient object database
	4.2 Ground truth construction and quantitative evaluation

	5 Conclusion and future work
	Acknowledgments
	References


