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Abstract In this paper, the problem of dictionary learn-
ing and its analogy to source separation is addressed. First,
we extend the well-known method of K-SVD to incoherent
K-SVD, to enforce the algorithm to achieve an incoher-
ent dictionary. Second, a fast dictionary learning algorithm
based on steepest descent method is proposed. The main
advantage of this method is high speed since both coeffi-
cients and dictionary elements are updated simultaneously
rather than column-by-column. Finally, we apply the pro-
posed methods to both synthetic and real functional magnetic
resonance imaging data for the detection of activated regions
in the brain. The results of our experiments confirm the effec-
tiveness of the proposed ideas. In addition, we compare the
quality of results and empirically prove the superiority of the
proposed dictionary learning methods over the conventional
algorithms.

Keywords Adaptive step size · Blind source separation ·
Compressed sensing ·Dictionary learning · Steepest descent

1 Introduction

In dictionary learning (DL) framework, the aim is to find
a dictionary that can sparsely represent a signal or image
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subject to availability of a set of training data. This problem
is traditionally modeled by yi = Dxi + εi , where yi is the
i-th training vector, xi is the i-th sparse coefficient vector,
and D is the so-called dictionary. Furthermore, εi represents
the decomposition error. A dictionary is normally defined as
an overcomplete matrix (less rows than columns) in which
the columns (also called atoms) describe the features of the
given training signals/images. In signal processing, the term
sparse refers to signals with small number of nonzero sam-
ples. Numerous applications are benefited using this frame-
work some of which are compression [1], denoising [2], and
inpainting [3].

Majority of dictionary learning techniques are inspired by
the well-known sparse recovery problem and the recently
emerged field of compressed sensing [4,5]. One of the well-
established dictionary learning methods is called K-SVD [2]
which is an extension of K-means clustering and works based
on singular value decomposition (SVD). Method of opti-
mal directions (MOD) [6] is another method which finds the
dictionary using the pseudo-inverse of the training matrix.
There also have been reported maximum a porteriori estima-
tion (MAP)-based [7] and maximum likelihood (ML)-based
methods [8]. A dictionary learning method using LARS
sparse coding, coined “online dictionary learning”, has been
proposed in [9]. This method is based on stochastic approx-
imations designed for large datasets.

In general, it is of particular importance to learn a dictio-
nary that can sparsely represent the given (normally huge)
data within a reasonable time. More importantly, the dic-
tionary atoms are required to be incoherent meaning to be
nearly orthogonal. This property guarantees that the dictio-
nary is designed efficiently and encompasses maximum pos-
sible information of the training signals. There are several
existing works in the literature imposing incoherence into
the dictionary atoms. Ramirez et al. [10] define a universal
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DL model based on MAP estimation. They add a low mutual
coherence constraint in addition to the column normaliza-
tion constraint to the dictionary columns. In [11], the authors
attempt to exploit both mutual and cumulative coherence and
the Gram matrix norm to improve the efficiency and perfor-
mance of sparse coding algorithms. In another work [12], a
constraint is used to find a structured dictionary promoting
reduced correlation among the atoms. A clustering approach
based on sparse modeling and dictionary learning is proposed
in [13]. The authors use an incoherence penalty encouraging
dictionaries associated with different classes to be as inde-
pendent as possible. This procedure allows them to use their
method both in the supervised and unsupervised settings.
Very recently [14,15], a decorrelation strategy is proposed
which iteratively computes a dictionary close to a given one.
This procedure leads to a dictionary with incoherent atoms.

Viewing from a different angle, the problem of matrix
decomposition has been also studied in another well-known
framework called blind source separation (BSS). In BSS,
given mixtures of several sources, e.g., speech signals (yi ’s),
the aim is to estimate the mixing matrix (D) and sources
(xi ’s), subject to some a priori such as independency, spar-
sity, or non-negativity of the sources. BSS has various
applications in speech processing, communications, and bio-
medical signal and image processing [16,17]. One of the most
popular methods in BSS framework is independent compo-
nent analysis (ICA) [16] which takes advantage of statisti-
cal independency between the components as a criterion for
decomposition. A recent paper [18] has addressed the equiv-
alence between dictionary learning and blind source sepa-
ration to design fast and efficient probabilistic ICA-based
dictionary learning method for inpainting and denoising of
natural images. Nevertheless, many recent researches attempt
to exploit sparsity for BSS problems [17,19], revealing
encouraging results. Therefore, it would be reasonable and
beneficial to explore the performance of DL-based meth-
ods, which mainly exploit sparsity, for BSS problems. As an
example, we consider in this paper the problem of active-
region detection in functional magnetic resonance imaging
(fMRI). While ICA has been widely studied and applied
in this regard, recent preliminary results have revealed the
advantages of exploiting sparsity for this application [20,21].
In fact, it was shown that most hemodynamic effects in the
brain are hardly independent due to complicated structure and
strong neural connectivity in the brain. In contrast, biologi-
cal findings of sparse coding in the brain support the effec-
tiveness of sparsity compared to independency. This claim
can be validated by looking at the Olshausen et al. work [8]
showing that a set of receptive fields learned by maximizing
sparseness in the output of a neural network model is spa-
tially localized, oriented, and selective to spatial structure at a
specific scale, similar to cortical simple cells. In another rele-
vant work, a data-driven sparse general linear model (GLM)

framework based on a maximum likelihood (ML) estimation
is proposed [22,23]. The authors incorporate a dictionary
learning method (K-SVD [2]) to find the design matrices
(see [23] for more details) as a subset of atoms of the learned
dictionary.

In this paper, we first extend the standard K-SVD dic-
tionary learning to incoherent K-SVD (coined as IK-SVD)
by imposing incoherence of the atoms into the dictionary
learning procedure. Our proposed method here differs from
the method in [14,15] as we use a simple gradient descent
technique for decreasing the coherence. As our second con-
tribution in this paper, we propose a computationally inex-
pensive algorithm for learning overcomplete dictionaries. We
use a steepest descent strategy for updating both the coeffi-
cient matrix and the dictionary. The proposed method is fast
and does not require any prior knowledge about the level of
sparsity. Finally, due to the existing analogy between dictio-
nary learning and source separation, we aim to validate the
proposed approaches for BSS problems with sparsity con-
straint. Hence, we choose fMRI application to detect active
brain regions, known as Blood Oxygenation Level Depen-
dent (BOLD), admitting sparse events [20,21]. Our exper-
imental results and comparisons with relevant methods for
both real and synthetic signals confirm the effectiveness of
the proposed methods for the purpose of BOLD detection.

The rest of the paper is organized as follows. In the next
section, we first describe the K-SVD followed by the pro-
posed incoherent K-SVD algorithm. Then, a fast dictionary
learning algorithm using steepest descent technique is pro-
posed. In Sect. 3, the similarities between the two frame-
works, i.e., DL and BSS, are described. Section 4 is devoted
to analyzing the experimental results, and Sect. 5 concludes
the paper.

2 Dictionary learning problem

To mathematically express a generic DL problem, assume
that the signal y ∈ R

n can be represented as a linear combina-
tion of a few atoms {di }Ki=1 in dictionary D ∈ R

n×K such that
y = Dx. We normally consider overcomplete dictionaries in
which n < K . Assume that we are going to learn a dictionary
from N training signals. By slightly changing the notations,
vectors y and x are replaced with matrices Y = {yi }Ni=1 of
size n × N and X = {xi }Ni=1 of size K × N , respectively.
Therefore, the DL problem can be expressed as:

min
D,X
‖Y− DX‖2F s.t. ‖xi‖0 ≤ τ ∀ i ∈ [1 . . . N ]. (1)

Here and throughout the paper, xi denotes the i-th column of
X, xi indicates the i-th row, and xi j refers to the i j-th element
of it. Furthermore, ‖.‖2F is the Frobenius norm equivalent to
Tr(XT X), where Tr(.) denotes the matrix trace and (.)T is
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matrix transpose symbol. The term ‖.‖0 is �0-norm which
counts the number of nonzeros and indicates the level of
sparsity. τ is the maximum allowed number of nonzeros of
xi and should satisfy τ << K . Most of the DL techniques
tackle (1) by alternately estimating one of the variables while
keeping the other one fixed. This is called “alternating min-
imization” which is extensively discussed in the following
subsections.

2.1 Incoherent K-SVD

High incoherence between the dictionary atoms is desired
in almost all dictionary learning methods. This guarantees
that the atoms are as discriminative as possible. As a leading
dictionary learning method, we adopt K-SVD method. This
method by itself lacks the incoherence flavor, and hence,
we propose a remedy for that. We first briefly describe the
original K-SVD method and then propose the incoherent
K-SVD method.

Updating process for X (while keeping D fixed) is known
as sparse coding due to sparsity constraint on X. Sparse cod-
ing can be cast as applying one of the common sparse recov-
ery algorithms such as orthogonal matching pursuit (OMP)
[24], basis pursuit (BP) [25], or FOCUSS [26] to all {yi }Ni=1,
independently, and recovering {xi }Ni=1. Here, we assume that
τ is known and apply OMP to solve1:

min
xi
‖yi − Dxi‖2 s.t. ‖xi‖0 ≤ τ. (2)

The second step is updating D. In K-SVD, both sparse coef-
ficients and dictionary columns are updated at the same time.
The dictionary update step is carried out column-by-column
for {di }Ki=1. By expanding the Frobenius norm in (1), we
reach to:

‖Y− DX‖2F =
∥
∥
∥
∥
∥
∥

⎛

⎝Y−
∑

j �=k

d j x j

⎞

⎠− dkxk

∥
∥
∥
∥
∥
∥

2

F

=
∥
∥
∥Ek − dkxk

∥
∥
∥

2

F
. (3)

where Ek is the error incurred by all columns of D and all
rows of X except dk and xk . In order to minimize (3), Aharon
and Elad [2] apply SVD to Ek and simultaneously update dk

and xk using the strongest eigenvector and eigenvalue of Ek .
This process should be applied after removing the dictionary
atoms corresponding to zero coefficients in X (full details
can be found in [2]). This alternating update of dictionary
and sparse coefficients are repeated until reaching to a local
minimum.

1 Note that some of the sparse recovery techniques, such as FOCUSS,
uses a relaxed version of (1) by replacing �0-norm with �1-norm defined
as ‖x‖1 =

∑

i |xi |. This can convexify the cost function.

Standard K-SVD method does not include any constraint
to achieve incoherent atoms, and thus, we modify it with
the aim of adding incoherence. A suitable tool for evaluat-
ing the coherence between the atoms is Gram matrix which is
defined as G = DT D. Matrix G is K×K and symmetric with
unit diagonal elements (note that D is column-normalized).
The absolute values of off-diagonal elements of G represent
the degree of coherence between any pair of atoms in D and
therefore are desired to be very small. In order to decrease the
coherence among the updated atoms in original K-SVD algo-
rithm, we shall design a method to enforce the off-diagonals
of G to zero. Next, we define a cost function toward this goal
and then suggest to apply a simple steepest descent method
to minimize it. We call this new algorithm IK-SVD, stand-
ing for incoherent K-SVD, and can be described as follows.
Assume that D is the updated dictionary at one iteration of
original K-SVD. In order to decrease the coherence between
the columns of D, the following minimization problem is
proposed2:

D̂ = arg min
D
‖ DT D− I ‖2F . (4)

Here, I is the identity matrix of size K × K . In order to
minimize the above problem, we first take the gradient of
F =‖ DT D− I ‖2F which is computed as:

∇DF = 4D
(

DT D− I
)

. (5)

Then, inserting (5) into D← D− ξ∇DF results in:

D(k+1) = D(k) − γ D(k)(DT
(k)D(k) − I), (6)

where γ = 4ξ > 0 is the step size controlling the conver-
gence behavior of the algorithm, and k is the iteration counter
of the incoherence constraint stage. The above update should
be executed for several times after each update of D in the
standard K-SVD algorithm. We consider a fixed number of
iterations as the stopping criterion of this step. Moreover, we
chose a variable step size with respect to the number of iter-
ations, k, based on γk = γ0

1−α
1−αk for γ0 = 0.1. A smaller α

causes faster changes of γk and vice versa. We have found
α = 0.1 an appropriate choice in our experiments. Further-
more, as the iterations proceed (increasing k), the value of γk

decreases.
After updating all dictionary columns in the original

K-SVD, the above update rule is applied to optimize the dic-
tionary. The columns of D are also normalized to one, after
implementing (6). The pseudo-code of the proposed method
is given in Algorithm 1.

Regarding the convergence of both K-SVD and IK-SVD,
we shall state that it highly depends on the performance of the
sparse coding step, as mentioned in [2]. In fact, both algo-
rithms are suboptimal and may get stuck in local minima.

2 See [27] for a detailed discussion on this method.
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However, since the dictionary update step reduces (3), it is
always observed that a successful sparse coding (using OMP,
here) leads the algorithms to converge. Successful sparse
coding means correct recovery of all nonzero coefficients. We
empirically observed that IK-SVD converges to local min-
ima when γ is chosen appropriately. The above described
variable γ has shown to be an appropriate strategy based on
our experiments. Furthermore, we select a fixed number of
iterations as stopping criterion for both loops in Algorithm 1.

Algorithm 1: Incoherent K-SVD (IK-SVD).
Input: Y, τ , α, γ0.
Output: D, X.
Initialize D to a column-normalized random matrix.
repeat

for i=1 to N do
Solve (2): xi ← O M P(yi , D, τ );

end
column-by-column dictionary update using K-SVD;
for k = 1 to kmax do

γ ← γ0
1−α
1−αk ;

D← D− γ D(DT D− I);
normalize all columns of D to one;

end
until stopping criterion is met;

2.2 Fast incoherent dictionary learning (FIDL)

Although K-SVD is shown to be a leading DL method, it
is computationally expensive for learning large dictionaries,
that is, because of involving SVD, which is a complex opera-
tion, and also the column-by-column operation for updating
D, which is time consuming in large-scale scenarios. Addi-
tionally, our extended IK-SVD method, proposed in previous
section, incurs more complexity to the original K-SVD which
makes it inappropriate for large-scale problems. In what fol-
lows, we propose a fast incoherent dictionary learning algo-
rithm, called FIDL. As its name implies, it is designed to be
fast and at the same time exploits the incoherence of atoms.
In order to do this, the following cost function is defined:

J (D, X) =
P(D,X)

︷ ︸︸ ︷

‖Y− DX‖2F + μ‖DT D− I‖2F +
Q(X)

︷ ︸︸ ︷

λ‖X‖1 . (7)

which has to be minimized (we will talk about P and Q
later). Note the differences between the problem (7) and
(1). Firstly, we use �1-norm of the entire matrix X defined
as ‖X‖1 =

∑

i
∑

j |xi j |, instead of forcing individual vec-
tors {xi } to be sparse. This allows us to update the coeffi-
cients, simultaneously rather than column-by-column. More-
over, the sparsity bounds of all {xi }Ni=1 are not necessarily
the same. Secondly, replacing �0-norm of X with �1-norm
makes the problem convex in X. Finally, the incoherence

constraint on D is also added to the cost function, where
the regularization parameters μ and λ control the trade-off
between decomposition error and effects of penalty terms.
It is noteworthy to mention that problem (7) has been pre-
viously studied in [28] with non-negativity constraint and
also in [29] without incoherence constraint. However, we do
not impose the non-negativity constraint here and propose a
Gradient descent-based approach (different from [29]) which
alternately updates X and D to minimize (7).

2.2.1 Coefficient update (sparse coding)

If we assume D to be fixed, then, problem (7) will be convex
with respect to (w.r.t.) X. We aim at using gradient descent
method as a fast approach for solving it. However, prob-
lem (7) is non-smooth w.r.t. X, and hence, standard steepest
descent cannot be directly applied. To resolve this issue, we
use a proximal step called fowardbackward (FB) splitting
algorithm [30,31]. Consider the cost function (7), split into
the sum of a smooth and a nonsmooth sub-cost function, rep-
resented by P and Q, respectively. We define two following
steps:

– Gradient descent step:

X̃(k)=X(k)−β∇XP(X(k))=X(k)−2βDT (

DX(k)−Y
)

,

(8)

where scalar β > 0 is the step size, and k indicates the
k-th iteration.

– Proximal step:

X(k+1) = ProxβQ(X̃(k)) := min
X(k)

Q(X(k))

+ 1

2β

∥
∥
∥X(k) − X̃(k)

∥
∥
∥

2

F
. (9)

The proximal function here is defined using soft-thresholding
(Shrink{.}) due to �1-norm in (7), which ultimately leads to:

X(k+1) = ProxβQ(X̃(k)) = Shrink{X̃(k), βλ}

= max

{

0, 1− βλ

|x̃i j (k)
|

}

X̃(k). (10)

where |x̃i j (k)
| denotes absolute value of each element of X̃(k).

Updating X, using (8) and (10), should be alternately exe-
cuted with dictionary update stage, which will be described
shortly. It is important to note that the step size should sat-
isfy β < 2/‖DT D‖2, as the stability condition of the algo-
rithm. We found out based on our experiments that choosing
β 	 1/‖DT D‖2 leads the algorithm to perform well.
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2.2.2 Dictionary update

Now we aim at updating the dictionary elements while keep-
ing X fixed. In contrast to the previous section, the gradient
descent approach can be directly applied here. That is due
to the fact that (7) is convex and smooth w.r.t. D. Taking the
gradient of (7), w.r.t. D, leads to:

∇DJ (D, X) = 2(DX− Y)XT + 4μD(DT D− I). (11)

The update rule for D can then be obtained as:

D← D− 2η(DXXT − YXT + 2μD(DT D− I)). (12)

Scalar η is the step size which should satisfy 0 < η <

2/‖XXT ‖2 to guarantee the convergence. Hence, we choose
η = 1/‖XXT ‖2 which has empirically shown to lead to sta-
ble results. In addition, a column normalization is applied to
all columns of D, after executing (12), to preserve the column
norms of the dictionary. Although direct column normaliza-
tion is applied in several dictionary learning algorithms [6,8],
it may increase the mean square error (MSE). This issue does
not significantly affect the performance and is negligible.
However, it can be further investigated by adding a column-
norm-constraint penalty term to the cost function which we
leave it for future work. The pseudo-code of the proposed
algorithm is shown in Algorithm 2.

Regarding the convergence of the proposed method, we
shall state that here we minimize the cost function first with
respect to D and then to X which includes a FB-splitting
step. Dictionary update step follows a gradient descent which
is guaranteed to reduce the cost function in overall, but
not necessarily to a global minimum. Here, the functions
with respect to X are convex and non-smooth, and thus,
the convergence behavior follows the results of [32, Lemma
3.1 and Theorem 4.1(b)], as also seen in related works
such as [9,33]. In fact, under the assumptions stated in
[9], convergence to a stationary point is guaranteed. Algo-
rithm 2 illustrates a pseudo-code of the proposed FIDL
method.

2.2.3 Selection of regularization parameters

While we consider a fixed μ, the sparsity regularization para-
meter, i.e., λ, should be selected with care. Manual selection
of a fixed λ is not an optimal choice as it is independent of the
actual sparsity level of S which is assumed to be unknown.
Instead, a variable (decreasing) λ has shown to yield better
results in several previous works [33,34]. Here, we consider a
more advanced strategy and that is adaptively varying λ while
minimizing (7). To estimate an appropriate λ, at every itera-
tion of Algorithm 2, the following gradient descent method
[35,36] is adopted:

λ(l+1) = λ(l) − ρ
∂J (X(l+1), D(l+1))

∂λ(l)
, (13)

where ρ is a small constant chosen manually. Index l refers
to the iteration counter for the outer loop in Algorithm 2. For
clarity, we note that X(l+1) and D(l+1) indicate, respectively,
the values of X and D at (l + 1)-th iteration, and after full
execution of both inner loops in Algorithm 2. The same rules
apply for X(l) and D(l) as well. In order to determine the dif-
ferentiation in (13), we first modify (7) by replacing (10) into
it and obtain:

∂J (X(l+1), D(l+1))

∂λ(l)

= ∂

∂λ(l)

[∥
∥
∥Y− D(l+1)

(

X̃(l) − β(l)λ(l)sgn(X̃(l))
)∥
∥
∥

2

F

+λ(l)

∥
∥
∥X̃(l) − β(l)λ(l)sgn(X̃(l))

∥
∥
∥

1

]

. (14)

Note that since the learning rule for D(l+1), i.e., (12), does
not depend on λ we did not expand D(l+1) in (14) to keep the
notations simple. For the same reason, the term μ‖DT D−I‖2F
does not appear in (14) as its derivative w.r.t. λ is zero. In addi-
tion, we considered the fact that max{0, 1 − β(l)λ(l)

|x̃i j(l) | }X̃(l) =
X̃(l)− β(l)λ(l)sgn(X̃(l)), in deriving (14), where sgn(.) is the
element-wise signum function. Then, by dropping all sub-
scripts (l) (for notational simplicity), and after appropriate
manipulations, we reach to:

∂J (X(l+1), D(l+1))

∂λ(l)

= 2βTr
(

sgn(X̃)T DT
(

Y− DX̃
))

(15)

+2β2λTr
(

sgn(X̃)T DT Dsgn(X̃)
)

+
∑

i

∑

j

sgn
(

x̃i j − βλsgn(x̃i j )
) · (x̃i j − 2βλsgn(x̃i j )

)

.

Algorithm 2: Fast Incoherent Dictionary Learning
(FIDL).

Input: Y, ε, μ, λ.
Output: D, X.
Initialize D to a random matrix with �2 normalized columns.
Set the iteration counter l = 1, and η0 = 0.001.
repeat

for k = 1 to kmax do
D← D− η(DXXT − YXT + 2μD(DT D− I));
normalize all columns of D to one;

end
β ← 1/‖DT D‖2;
for k = 1 to kmax do

X← ProxβQ (

X− 2βDT (DX− Y)
) ;

end
η← 1/‖XXT ‖2;
update λ using (13);
l ← l + 1;

until ‖Y− DX‖F ≤ ε;
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The above equation should then be plugged into (13), giv-
ing the update rule for λ, which should be executed within
Algorithm 2. In general, λ is initialized with a large value,
e.g., λ(0) ∈ [0.5 0.9], which then adaptively varies as the
iterations proceed.

3 Analogy to blind source separation

The analogy of DL to BSS has already been pointed out in
few researches [18,37]. However, we believe that there are
still rooms to study and recognize those DL methods which
can be successfully utilized in source separation applica-
tions. This analogy is quite straightforward; in instantaneous
blind source separation, we are given n observations {yi }ni=1
which are linear mixtures of K unknown sources {xi }Ki=1.
The desire is to decompose Y into D and X with smallest
error and possibly subject to some constraints on D or X. If
the sources are assumed to be sparse in time/pixel domain,
then the source separation problem can be described similarly
as the aforementioned dictionary learning problems. Particu-
larly, the incoherence penalty would be effective for applica-
tions where orthogonality (or at least near-orthogonality) of
the mixing matrix is crucial [38,39], such as in MIMO com-
munications [40]. Therefore, the techniques which solve (1)
or minimize (7) can be used for source separation, as well.
However, if the sources are assumed to be sparse in a different
domain, then techniques such as morphological component
analysis (MCA) [33,34] can be used. In the result section,
we apply the proposed methods to synthetic and real audi-
tory fMRI data and show that they can successfully detect
the BOLD regions in the brain.

Beside the similarities between the two frameworks, there
are some differences in the interpretations of Y, D, and X
which are listed in Table 1. We also note that in dictionary
learning framework, D is normally considered as a complete
(n = K ) or an overcomplete (n < K ) matrix, while in blind
source separation, the case of n > K is also considered. This,
however, does not affect the above problem formulations, and
the DL methods are still valid even for (n > K ).

Table 1 Differences in terminology between DL and BSS

DL

Y N training signals of length n as column vectors

D Dictionary

X N sparse coefficient vectors of length n

BSS

Y n mixtures of length N as row vectors

D Mixing matrix

X K sparse sources of interest

4 Results

Extensive experiments have been conducted to examine the
performance of the proposed methods in both synthetic and
real scenarios.

4.1 Simulated data

4.1.1 Experiment 1

In the first experiment, we generated a set of artificial mix-
tures based on the under-determined model Y = DX, with
(n < K ). The nonzero entries of the 20× 1,000 sparse matrix
X were generated randomly (from Gaussian distribution). D
was selected as a random overcomplete full-rank matrix of
size 15×20 with all columns normalized to one. We applied
the proposed IK-SVD and FIDL algorithms to estimate D
and X. The parameters of IK-SVD were γ0 = 0.1, α = 0.1,
kmax = 20, and 50 iterations as stopping criterion. For FIDL,
we selected kmax = 20, ρ = 10−7, μ = 0.1, λ(0) = 0.5, and
ε = 0.001. This experiment was repeated for 1,000 random
ensembles of D and X while varying sparsity level of X. We
varied the number of nonzeros of each column of X from 1 to
10. For comparison purposes, three other algorithms, namely
original K-SVD,3 INK-SVD,4 and Ramirez’s method5 were
also involved in this experiment. We used 50 number of itera-
tions for these methods. Quantitative results are given in Fig.
1. The average correlation between the recovered sources and
the original ones (i.e. {xi }Ki=1) is shown in Fig. 1a. The same
measure for dictionary columns (i.e. {di }Ki=1) is depicted in
Fig. 1b. Note that these results are obtained after multiplying
the recovered matrices with a proper scaling and permutation
matrix. According to Fig. 1, FIDL has the best performance
among all other methods. IK-SVD shows weaker behav-
ior than FIDL and yet better than INK-SVD and Ramirez’s
method. Moreover, based on Fig. 1, the average correlation
of recovered sources and dictionary atoms using IK-SVD,
at 6 number of nonzeroes, are 0.9566 and 0.9783, respec-
tively. However, we observed that if a fixed γ = 0.1 is used,
these values are 0.8921 and 0.9003 respectively. This is an
indication of improvement when variable γ is used.

4.1.2 Experiment 2

In the next experiment, we learned an overcomplete dictio-
nary of size 64 × 256 over 14,000 noisy image patches of
size 8 × 8 extracted from Barbara image. The variations in
SNR of the denoised images (using the same procedure as

3 http://www.cs.technion.ac.il/~ronrubin/software.html.
4 http://code.soundsoftware.ac.uk/embedded/incoherentdl/SMALL$_
$incoherentDL.html.
5 SMALLbox: http://small-project.eu/software-data/smallbox/.
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Fig. 1 Recovery performance: average correlation of recovered a sources and b dictionary atoms versus the number of nonzeros
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Fig. 2 Signal to noise ratio at different coherence levels. The
dashed line shows minimum possible mutual coherence calculated via√

(K − n)/n(K − 1)

in [2]), based on dictionaries with different coherence levels,
are shown in Fig. 2. The mutual coherence in this figure is cal-
culated using μ = maxi �= j

∣
∣gi j

∣
∣, where gi j stands for entries

of the Gram matrix. As seen from Fig. 2, K-SVD gives the
best SNR at μ = 0.94, however, INK-SVD, IK-SVD, and
FIDL show maximum SNRs at μ = 0.88, μ = 0.81, and
μ = 0.74, respectively. This indicates that FIDL can find a
suitable dictionary at a smaller coherence level.

4.1.3 Experiment 3

In the next experiment, the aim was to investigate the robust-
ness of the proposed methods against variations in the input
noise. We considered noisy model Y = DX + V, where
V was Gaussian noise with zero mean. All matrices were
drawn randomly (from Gaussian distribution) with n = 15,
K = 20, and N = 1,000. The number of nonzeros at each
column of X was set to five. For IK-SVD, we chose γ0 = 0.1,
α = 0.1, kmax = 20, and 50 iterations. For FIDL, we
selected kmax = 20, ρ = 10−7, μ = 0.1, λ(0) = 0.5, and
ε = 0.001. K-SVD, INK-SVD, and Ramirez’s method were
run for 50 iterations. After applying different methods, the
SNR of X̂ (estimated matrix after considering scaling and
permutation) was calculated using 20 log10 ‖X‖F/‖X−X̂‖F .
The same evaluation was carried out for the estimated dic-
tionary. The average SNRs over 1,000 trials at different
input noise levels are shown in Fig. 3. As seen from Fig.
3, FIDL outperforms other methods for all noise levels.
Also, the performance of IK-SVD is comparable with that
of INK-SVD in Fig. 3a, whereas it outperforms INK-SVD
in Fig. 3b.
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Fig. 3 Average SNR of a the estimated source matrix and b dictionary, against changes in input noise level
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Fig. 4 The separated source
images from synthetic fMRI
mixtures: a original images,
results of applying b
K-SVD-based method [23], c
IK-SVD, d FastICA, and e FIDL
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SNR=22.268 dB

(e)

SNR=11.944 dB

Table 2 The overall execution time (in seconds) for different methods
at different dictionary dimensions

5× 10 20× 40 80× 160 320× 640 500× 1,000

K-SVD 2.095 5.31 18.86 71.37 105.34

IK-SVD 2.58 6.125 21.06 98.565 140.22

FIDL 0.015 0.04 0.3 9.095 29.575

INK-SVD 2.835 6.395 19.255 110.66 145.315

Ramirez’s method 0.06 0.47 3.335 54.44 108.345

4.1.4 Experiment 4

In another experiment, we set up a simulation for evaluating
the computational cost of the proposed methods and com-
paring these methods with other well-known algorithms. The
parameters for the algorithms were similar to the first experi-
ment. However, we increased the dictionary size from 5×10
to 500×1,000 for a fixed level of sparsity τ = 2. The fol-
lowing algorithms were applied: original K-SVD, IK-SVD,
FIDL, INK-SVD, and Ramirez’s method. A laptop computer
with a Core i7 2.7 GHz and 6 GB of RAM was used for this
experiment. The overall computation time for all algorithms
for total 50 iterations was recorded. Table 2 shows these val-

ues in second. It is seen from the table that FIDL algorithm
performs significantly faster than other methods. This indi-
cates that FIDL can be a suitable approach for large-scale
problems.

4.2 Synthetic fMRI data

In this experiment, we investigate the performance of the
proposed methods in separating the sources from a set of
artificially generated fMRI mixtures. The synthetic data for
this experiment were taken from MLSP-Lab [41] which have
been created using the basic knowledge of the statistical char-
acteristics of the underlying sources involving in the activa-
tion procedure in the brain. The simulations started by form-
ing X of size 5× 3,600 using five vectorized source images
of size 60 × 60 (Fig. 4a). Then, the mixtures were gener-
ated by multiplying column-normalized D of size 100 × 5
(Fig. 5a) by X. We applied FastICA [42] (with Gauss non-
linearity), IK-SVD, FIDL, and the relevant K-SVD-based
method proposed in [23] to separate the sources and the cor-
responding mixing matrix. For IK-SVD, we chose γ0 = 0.1,
α = 0.1, kmax = 20, and 50 iterations. For FIDL, we selected
kmax = 10, ρ = 10−7, μ = 0.1, λ(0) = 0.5, and ε = 0.001.
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Fig. 5 The estimated mixing matrix columns of synthetic fMRI data: a original columns, results of applying b K-SVD based method [23], c
IK-SVD, d FastICA, and e FIDL
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Fig. 6 Decomposition error: ‖Y− DX‖F (left), and evolution of adaptive λ (right), versus number of iterations

The estimated sources and mixing matrix columns are given
in Figs. 4 and 5, respectively. It is seen from the figures that
both IK-SVD and FIDL are able to recover the sources and
mixing matrix columns with higher SNRs. Enforcing spar-
sity to the entire matrix X leads FIDL to perform better than
other methods (Fig. 4e, third row). However, one can still see
some low-SNR spurious sources in Figs. 4 and 5. A solution
to improve these results can be adding extra constraints (if
available) about the sources of interests (e.g., prior knowl-
edge in the form of a template or a reference signal) to the
original cost function.

Also, in order to demonstrate the effect of adaptive λ for
FIDL, the convergence curves of this experiment are plotted

in Fig. 6. It is seen from this figure that λ is evolved in a way
to stabilize the convergence trend and leads to a very small
decomposition error.

4.3 Real fMRI data

A real auditory fMRI dataset was considered for this exper-
iment. This dataset was taken from [43] and contains brain
images acquired by a 2 Tesla scanner (more details about
the dataset is available on the website [43]). We applied
different methods to the fMRI data and chose K = 35
sources to be separated, which was already shown to be
a suitable choice [21]. For IK-SVD, we chose γ0 = 0.1,
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Fig. 7 Detected BOLD regions and their corresponding time-courses using a FIDL, b IK-SVD, c KSVD-based method [23], d FastICA,
e �p-norm-based method [44], and f SPM

α = 0.1, kmax = 50, and 100 iterations. Also, we considered
denoising-based IK-SVD which assumes no prior knowl-
edge of underlying sparsity level. For FIDL, we selected
kmax = 50, ρ = 10−8, μ = 0.05, λ(0) = 0.5, and ε = 0.01.

For FastICA, tanh nonlinearity was used. For the method
in [23], the sparsity level τ = 2 was used as suggested in
the paper. As another relative method, we considered the
�p-norm NMF factorization method proposed in [44] for this
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experiment.6 In this method, we set p = 0.5 and δ = 0.5. All
the results in Fig. 7a–e are based on data-driven methods that
estimate both BOLD regions and time-courses. The result of
Fig. 7f is obtained using model-based method of statistical
parameter mapping (SPM) [43]. Since the canonical hemo-
dynamic response function (HRF), i.e., the periodic curve
in Fig. 7f, is a ground truth for time-course we calculated
the correlation of the estimated time-courses with it. These
values are given at the top of each time-course in Fig. 7. It
can be seen that the proposed FIDL and IK-SVD achieved
the highest correlations among other methods. This value is
very similar for IK-SVD and the method in [23] as expected
(Fig. 7b, c).

5 Discussions and conclusions

In this paper, the problem of dictionary learning and its anal-
ogy to blind source separation was discussed. Two different
dictionary learning methods were proposed: an extension of
K-SVD with the objective of learning incoherent atoms and a
fast gradient based dictionary learning suitable for large-scale
problems. The proposed FIDL method has the advantage of
updating both the dictionary and sparse coefficients simulta-
neously rather than column-by-column. These methods and
other well-established techniques were applied to both syn-
thetic and real data. The results of our experiments confirmed
the superiority of the proposed methods. In another part of the
paper, we stated the similarities between the two frameworks
of dictionary learning and blind source separation, and then
applied the proposed dictionary learning methods to a set
of auditory fMRI mixtures. The results of BOLD detection
revealed that the proposed techniques are capable of being
used for blindly separating sparse sources, even for noisy
data such as fMRI. However, further research is to be carried
out to extend the proposed methods for other applications
and more complicated data.
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