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Abstract Biometric computing offers an effective appr-
oach to personal identification based on unique, stable
physical or behavioral characteristics. A reliable and robust
personal verification approach using palm vein patterns is
presented in this paper. This approach has lower computa-
tional and memory requirements and a higher recognition
accuracy than similar methods. In my work, a near-infrared
charge-coupled device camera is adopted as an input device
for capturing palm vein images, since it can provide low-
cost, non-contact imaging. In the proposed approach, two
finger-webs are automatically selected to define the region
of interest (ROI) in the palm vein images. Modified two-
directional two-dimensional linear discriminant analysis
((2D)2LDA), which performs an alternate two-dimensional
LDA (2DLDA) in the column direction of images in the
2DLDA subspace, is proposed to exploit the correlation
between rows and columns of palm vein features inside the
ROI. The major advantage of the method is that it requires
fewer coefficients for efficient palm vein image represen-
tation and recognition. A total of 4,140 palm vein images
were collected from 207 persons to verify the validity of the
proposed palm vein recognition approach. High accuracies
(>99 %) have been obtained by the proposed method, and the
speed of the method (response time <0.75 s) is rapid enough
for real-time recognition. Experimental results demonstrate
that the proposed approach is feasible and effective for palm
vein recognition.
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1 Introduction

Wherever security is required, whether to restrict access to
buildings or to computer systems, it is necessary to employ
an access control system. Traditional personal verification
methods rely heavily on the use of passwords, personal iden-
tification numbers (PINs), magnetic swipe cards, keys, smart
cards, etc. Each of these offers only limited security.

Many biometric recognition systems have been proposed,
based on various human physiological features or behav-
iors including facial images, hand geometry, fingerprints,
palm prints, retinal images, handwritten signature and gait
[1], to improve the security of personal verification. Each of
these systems has merits and demerits. In the case of fin-
gerprints, direct contact of the finger with the fingerprint-
image-extracting sensor causes degradation in performance,
especially in factories or construction sites where good qual-
ity fingerprints are hard to obtain due to oil from the fin-
ger, moisture, dirt, etc. Using a retinal scanner, users must
place their eye close to the scanner, causing an uncomfort-
able feeling of invasion of privacy. With hand-shape recogni-
tion devices, problems may arise with users who suffer from
arthritis or rheumatism, leading to poor performance. The
palm vein recognition system has been developed to resolve
these problems. Since it acquires a palm vein pattern image
without direct contact with the palm or with the vein pattern-
extracting sensor, there is no contamination. Using the palm
vein image, both user comfort and biometric recognition are
improved, producing a stable and reliable system.

123



230 SIViP (2015) 9:229–242

Palm vein recognition appeared in the 1990s [2] and has
been popular since 2000 because of the advantages it offers. A
vein pattern reveals the vast network of blood vessels under-
neath a person’s skin. Like fingerprints, though it has never
been proven in a strict scientific sense, the shapes of the
vascular patterns of different individuals are believed to be
distinctive [1–3] and stable over a long period of time. In
addition, as the blood vessels are hidden beneath the skin
and are mostly invisible to the human eye, vein patterns are
much harder for intruders to copy compared to other biomet-
ric features. The properties of uniqueness, stability and strong
immunity to forgery of the vein pattern make it a potentially
good biometric which offers secure and reliable features for
personal identity verification [4]. There is some evidence that
the pattern may not be totally unique. Based on an investiga-
tion done by the Fujitsu Company [5], the system had a false
rejection rate (FRR) of 1 % and a false acceptance rate (FAR)
of 0.5 %. Nevertheless, it is a feasible biometric feature for
a small population.

In this paper, an eigenspace-based palm vein recognition
method is described in detail. Experimental results on my
own near-infrared (NIR) palm vein image database, includ-
ing more than 200 individuals, have demonstrated that the
proposed method is feasible and effective for personal iden-
tification. The main steps in the proposed approach are shown
in Fig. 1. The solid boxes show the processed data at differ-
ent stages, and the dashed boxes denote the four different
processing steps. First, palm vein images are captured by
an NIR camera as the input data. Then, a median filter is
employed on the palm vein images to remove some noise,
and Otsu’s method is applied to select a suitable threshold
to segment the hand region. Two baseline data points are
found automatically, and a square region of interest (ROI)
is obtained. Next, modified two-directional two-dimensional
linear discriminant analysis ((2D)2LDA) is employed on the
vein pattern in the ROI to extract important discriminant
features. Finally, the minimum distance classifier (MDC) is
adopted to verify whether the template and testing samples
are captured from the same person.

After analyzing related work in Sect. 2, I will briefly intro-
duce the palm vein image collection device and process in
Sect. 3. A detailed description of the proposed method for

palm vein recognition is given in Sect. 4. Experimental results
are presented and discussed in Sect. 5, prior to conclusions
in Sect. 6.

2 Related work

There are many different features in palm vein images, such
as the geometry, the principal line and the delta point. Fur-
thermore, hand veins show significant textural differences
and many minutiae, similar to the ridges and branches of
fingerprints. [6–8]. These features offer stable, unique and
reliable biometrics for personal identification [4]. Many ver-
ification technologies using biometric features of hand veins
have been developed over the past decade [6–18]. Lin et al. [9]
present personal verification results using palm dorsal images
acquired from a thermal infrared (IR) camera operating in the
3.4–5.0 µm wavelength range. Their approach is based on
the combination of multi-resolution images obtained from
pre-processed thermal vein images. Wang and Leedham
[10,11] present another approach for personal authentica-
tion using hand vein images acquired from thermal imaging.
They employed the Hausdorff distance to generate match-
ing scores between the extracted line patterns and illustrated
promising results. In another paper, Wang et al. [8] com-
pared shape- and texture-based methods for vein recogni-
tion, with shape similarity measured via Hausdorff distance
and Line Edge Map (LEM) and texture similarity measured
via Euclidean distance of Gabor magnitude features. In a
dataset of 100 persons, Hausdorff-, LEM- and Gabor-based
methods achieved accuracies of 58, 66, 80 %, respectively.
Wang et al. [12] proposed a multimodal personal identifica-
tion system where palmprint and palm vein modalities were
combined in a single image. Locality Preserving Projection
(LPP) was used to extract features of the fused images, which
they called “Laplacianpalm.” Kumar et al. [13] presented a
new approach to authenticate individuals using triangulation
of hand vein images and simultaneous extraction of knuckle
shape information. Wang et al. [14] proposed a hand-dorsal
vein recognition method based on Partition Local Binary
Pattern (PLBP) and assessed it using a similarity measure

Fig. 1 The main steps of the
proposed palm vein recognition
system
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obtained by calculating the Chi square statistic between the
feature vectors of the tested sample and the target sample.
Crisan et al. [15] focused on improving the two essential
parts of a vein-scanning device: the hardware lighting sys-
tem and the feature extraction algorithms. Ramalho et al. [16]
proposed a secure multimodal biometric recognition system
with a multi-level fusion architecture. They used four bio-
metric traits (i.e., palmprint, finger surface, hand geometry
and palm veins) and three different feature extraction tech-
niques (i.e., Orthogonal Line Ordinal Features, Competitive
Code and PalmCode) for biometric identification. Sanchit
et al. [17] presented a multimodal system that combines hand-
palm vein and hand-dorsal vein biometrics information at
the score level. Khan et al. [18] successfully used princi-
pal component analysis (PCA) to obtain eigenveins, which
is a low-dimensional representation of vein pattern features.
Fujitsu’s [5] palm vein verification product has high accuracy
(1 % FRR and 0.5 % FAR), but to the best of my knowledge
the features used have not been disclosed in any published
research articles.

Although these authors claim the features they use to
recognize the vein patterns can attain a high level of accuracy,
most of them used small datasets to evaluate the performance
of hand vein recognition, so the practical feasibility of these
algorithms has not been demonstrated. To demonstrate the
robustness of the proposed approach, I constructed my own
near-infrared (NIR) palm vein image database, comprising
207 participants and 4,140 palm vein pattern images. It is
based on a non-contact, non-invasive data acquisition method
and requires no injection of any agents into the blood ves-
sels. This is by far the best-known non-invasive option for
acquiring palm vein pattern images.

Currently, palm vein recognition methods can be clas-
sified into two types, geometric approaches and holistic
approaches. Geometric approaches extract local features
such as the locations and local statistics of the principal veins,
minutiae points, and ridge bifurcations. However, geomet-
ric features are difficult to extract, represent and compare,
while the discriminability of geometric features such as tex-
ture energy is not strong enough for palm vein recognition.
To overcome these problems, another set of methods called
holistic approaches, which extract data from the palm vein
image for identity recognition, are compared in this paper.
Holistic methods, which represent intrinsic attributes of an
image, can be extracted based on various algebraic trans-
forms and matrix decompositions.

PCA [19,20] and linear discriminant analysis (LDA)
[21,22] are two classical linear feature extraction and data
representation techniques widely used in the areas of pat-
tern recognition and computer vision. In the two holistic
methods, the two-dimensional image matrices must first
be transformed into one-dimensional image vectors column
by column or row by row. However, concatenating two-

dimensional matrices into one-dimensional vectors often
leads to a high-dimensional vector space, making it difficult
to evaluate the covariance matrix accurately due to its large
size and the relatively small number of training samples. Fur-
thermore, computing the eigenvectors of a large covariance
matrix is very time consuming. To overcome those problems,
in recent years, two-dimensional feature extraction meth-
ods, such as two-dimensional PCA (2DPCA) [23] and two-
dimensional LDA (2DLDA) [24,25], have been widely used.
Work on these has mainly focused on constructing the image
covariance matrix directly using the original image matri-
ces. In [26], the efficiency of 2DPCA and 2DLDA has been
demonstrated for many applications such as pattern recogni-
tion. In general, there has been a tendency to prefer 2DLDA
over 2DPCA because, as intuition would suggest, the former
deals directly with discrimination between classes, whereas
the latter deals with the data in its entirety for principal
components analysis without paying particular attention to
the underlying class structure. However, it is observed that
working either on a 2DLDA [25]-based approach along the
row direction of images or on the alternative 2DLDA [27]-
based approach along the column direction of images would
still require many coefficients for image representation. To
alleviate this problem, the concept of two-directional two-
dimensional linear discriminant analysis ((2D)2LDA) [27]
has been proposed specifically for face recognition problems.
Two-directional 2DLDA was developed by simultaneously
considering the row and column directions of the original
images.

In this paper, a feature extraction method of palm vein
recognition based on a holistic approach is proposed. Moti-
vated by the work of Noushath et al. [27], I present an
analogous model, called modified (2D)2LDA, to improve
the performance of the (2D)2LDA method for palm vein
recognition. The modified (2D)2LDA method has the three-
fold advantage of higher recognition rate, lower memory
requirements and better computing performance than the
standard PCA, LDA, 2D-PCA, 2D-LDA, (2D)2PCA [27], or
(2D)2LDA methods, as confirmed through extensive exper-
iments conducted on the palm vein database. The overall
system is reliable and robust, and the image quality is more
consistent and uniform.

3 Palm vein image collection

In visible light, the vein structure of the palm is not always
easily discernible. The visibility of the vein structure varies
significantly depending on such factors as age, level of sub-
cutaneous fat, ambient temperature and humidity, physical
activity and hand position. In order to perform a preliminary
analysis on the features of the palm vein pattern, a new NIR
palm vein image database was constructed. A charge-coupled
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device (CCD), a low-cost camera traditionally used for sur-
veillance (Sony XC711, costing about U.S. $1,500), was
employed as the non-contact image collection device to
acquire the vein images. The CCD is capable of detecting
near-infrared radiation up to a wavelength of approximately
1mm, but cost cameras have a filter in front of the sensor
since the main purpose of the camera is to see the maximum
amount of visible radiation. This filter must be removed in
order to gain access to the infrared part of the radiation spec-
trum.

Though principally designed for use in visible light, CCD
cameras are also sensitive to NIR wavelengths of the elec-
tromagnetic spectrum up to about 1,100 nm. This is within
the actinic IR range, which covers the NIR spectrum from
700 to 1,400 nm. In my work, LEDs producing near IR illu-
mination are located around the camera, producing a peak at
750 nm. This wavelength lies in the medical spectral win-

Fig. 2 Acquisition of palm vein images with a non-contact system

dow (700–900 nm) in which illumination penetrates deeper
into biological tissues [29]. The region of interest (ROI) is
irradiated by the LED infrared light sources. Since the LEDs
are focused on the ROI, a nearly black image surrounds the
palm image. It is quite obvious that there are no backgrounds
with the back of the palm facing the camera. In addition to the
LEDs, another important part of this system is an infrared fil-
ter. To eliminate the effect of visible light, an optical infrared
filter was mounted in front of the camera’s lens. For data col-
lection in this work, a Hoya RM80 IR filter was used. Since
there are no docking devices to constrain the participant’s
hand, either the right or left hand can be imaged. During the
collection of images for the database, I restricted the position
of participants’ hands above the camera. A distance between
the hand and the camera of approximately 20 cm gave the
best acquisition. At this distance, there is acceptable toler-
ance for positioning the palm within the specified region.
The acquisition of a typical non-contact palm vein image is
shown in Fig. 2.

Using the NIR light source and the IR filter, the CCD sen-
sor produces a high-quality image of the palm (each image
has a resolution of 320 × 240 in 8-bit grayscale per pixel.).
When seen on the computer monitor, the most distinguish-
able component in the image is the superficial vein tree pat-
tern. The color of the skin is immaterial: both a light skinned
Caucasian and a dark skinned African have vein patterns that
are clearly visually distinguishable in the images. Figure 3
shows several sample images from this database.

4 Proposed method for palm vein recognition

In this paper, a palm vein recognition algorithm is presented,
which includes four basic processes: (i) extraction of the ROI;
(ii) image enhancement; (iii) extraction of the palm vein

Fig. 3 Original gray-level
images of palm veins captured
from different persons by a
near-infrared CCD camera
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features; and (iv) matching. Detailed descriptions of these
four steps are introduced in the following sections.

4.1 Extraction of the ROI

Image segmentation is one of the most important steps in the
analysis of processed image data. Its main goal is to sepa-
rate the background from the components of the image that
have a strong relevance to the analysis. When a palm image
is obtained, the palm background is first segmented from
the image. Binarization is used to segment the image into
two levels: object (hand region) and background. For palm
image segmentation, Otsu’s thresholding is applied to the
palm image to estimate the palm region. Comparing the seg-
mented palm shapes with the original palm images, the two
are almost indistinguishable, as shown in Fig. 4a, b. This
shows that Otsu’s method is quite effective in determining
the threshold of palm images.

To increase verification accuracy and reliability, the prin-
cipal palm vein patterns extracted from the same region in
different palm vein images are compared. The region to be
extracted is known as the region of interest (ROI). For this
reason, it is important to fix the ROI in the same position
in different palm vein images to ensure the stability of the
principal extracted vein features. However, it is difficult to fix
the ROI at the same position in different palm vein images
without the use of a docking device to constrain the palm
position when acquiring palm vein images. The ROI for palm
vein recognition purposes is usually a square region in the
central part of the palm. Many algorithms [30–32] discuss
palm localization. The method of Sanches et al. [30] was
adopted to locate the ROI in this paper. Two data points were
employed (P1 and P2, as shown in Fig. 4d), to determine
the approximate (not absolute) immovable ROI. The follow-

ing processes determine the two data points in binary palm
vein images. First, the inner border tracing algorithm [33] is
employed to find the palm border. Figure 4c shows an exam-
ple illustrating how the extracted border of a palm image
perfectly matches the original palm contour. Then for each
point on the palm contour, the distance between this point
and the mid-point of the wrist is calculated. Figure 4f shows
the distance distribution diagram. As can be seen, there are
five local maxima and four local minima. The pattern in the
diagram is quite similar to the geometric shape of a palm
(see Fig. 4a), which also has five tips (local maxima) and
four finger-webs (local minima). Experimenting on a wide
variety of palm vein images, I found that the four local min-
ima locations in the distance distribution diagram are the
same as finger-web locations and the match between the two
locations is very close. Finally, two valley points, P1 (the
valley point between the small finger and ring finger) and
P2 (the valley point between the middle finger and the index
finger), are selected as the two key data points, as shown in
Fig. 4d. These two data points (P1 and P2) are then employed
to locate the ROI. The procedure is described as follows.

First, the straight line P1 P2 is formed by the points of
P1 and P2 as shown in Fig. 4d. To eliminate the influences
of palm rotation and define the coordinates of ROI more
conveniently, the palm image is rotated by the angle θ (Eq. 1)
between line P1 P2 and the horizontal line.

θ = tan−1(YP2 − YP1)/(X P2 − X P1), (1)

where (X P1, YP1) is the coordinate of P1 and (X P2 , YP2) is
the coordinate of P2.

This makes the direction of line P1 P2 horizontal. Next,
PC is defined as the middle point between P1 and P2 on
line P1 P2, as shown in Fig. 4e. A square region RC1C2C3C4

whose corners are C1, C2, C3 and C4 is located and denoted

Fig. 4 Location of ROI defined
inside a palm vein image:
a Original palm vein image,
b palm region segmented by
Otsu’s method, c palm border
(white pixels) extracted by the
inner border tracing algorithm,
d two data points P1 and P2 are
selected and the palm image is
rotated an angle θ between line
P1 P2 and the horizontal line,
e based on P1 P2, a square
region is located and denoted as
the ROI, f distance distribution
diagram of the palm border
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Fig. 5 Demonstration of the
effects of the proposed scheme
to automatically define the ROI.
Each set of images, a1–a4,
b1–b4, c1–c4 and d1–d4, is
extracted from different palm
vein images captured from one
person and covers nearly the
same region

as the ROI. The upper side of RC1C2C3C4 , C1C2 is of the
same length and parallel to line P1 P2. RC1C2C3C4 lies directly
beneath P1 P2 at a distance one sixth of the length of P1 P2

below P1 P2, as shown in Fig. 4e. Finally, the upper-left
point C1 of the ROI is defined as the origin coordinate (0,0).
Figure 5 depicts the original palm images and different ROIs
captured from the same person. The results show that the
ROIs are nearly identical. Using this procedure, a docking
device is not necessary for acquiring the palm vein images,
and high verification accuracy can simultaneously be main-
tained.

4.2 Image enhancement

Figure 6 depicts sample image enhancement results from the
palm vein database. After extraction of the ROI, as shown in
Fig. 6a, the problems of low contrast and non-uniform illumi-
nation in palm vein images need to be mitigated. The method

proposed by Lee et al. [34] to eliminate background bright-
ness is used in the current paper. First, the palm vein image
is divided into non-overlapping 16 × 16 blocks. The mean
grayscale value constitutes a coarse estimate of the back-
ground illumination for individual blocks. By using bicubic
interpolation, each estimated mean value is expanded to the
whole region of its own 16 × 16 block. An example of the
estimated background illumination is displayed in Fig. 6b.
Each template block can then be converted to a uniform light
condition by subtracting the background illumination from
each original template, as shown in Fig. 6c.

4.3 Extraction of palm vein features based on modified
(2D)2LDA

In this section, a straightforward image projection technique
for feature extraction, called modified (2D)2LDA, is pre-
sented. Standard (2D)2LDA methods [25] work in the row
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Fig. 6 Intermediate results of
feature enhancement: a Original
ROI image, b estimated local
average intensity, c result after
eliminating the local average
intensity

and column direction of the original images. I propose an
alternate 2DLDA which works in the column direction of
images in the low-dimensional 2DLDA subspace. The mod-
ified (2D)2LDA method is defined in Sect. 4.3.2, after an
overview of the standard approach.

4.3.1 Overview of the (2D)2LDA approach

As in LDA, the goal of 2DLDA is to extract features that can
best approximate the data. 2DLDA [25] works in the row
direction reflecting the information between rows of images
to learn an optimal matrix X from a set of training images,
and then projects an m ×n image A onto X , yielding an m by
d matrix Y = AX . Suppose that there are N training image
samples in total, and the j th training image is denoted by
an m × n matrix A j ( j = 1, 2, . . . , N ), which contains C
classes, and the i th class Ci has ni samples (

∑C
i=1 ni = N ).

2DLDA attempts to seek a set of optimal discriminating vec-
tors to create a transform Xd = {x1, x2, . . . , xd} by max-
imizing the two-dimensional Fisher criterion [24], denoted
as

J (X) = X T Gb X

X T Gw X
(2)

In Eq. (2), T denotes a matrix transposition, while Gb

and Gw are between-class and within-class scatter matrices,
respectively:

Gb = 1

N

C∑

i=1

ni (Ai − A)T (Ai − A), (3)

Gw = 1

N

C∑

i=1

∑

j∈Ci

(A j − Ai )
T (A j − Ai ), (4)

Ai and A denote the means of the i th class and the whole
training set, respectively. A j is the j th image in the class Ci .
The goal of the 2DLDA scheme is to find the optimal discrim-
inating vectors Xopt in order to maximize J (X). Obviously,
the optimal discrimination vectors Xopt are the eigenvector
corresponding to the dominant eigenvalues of eigenstructure
G−1

w Gb. It has been proved that the optimal value for the

discriminating vectors Xopt is composed of the orthonormal
eigenvectors x1, x2, . . . , xd of G−1

w Gb corresponding to the
d largest eigenvalues. Given an image Am×n , all the projec-
tions of the image matrix in the d-directions make up an m×d
dimensional vector, which is the 2DLDA feature vector.

Similarly, the alternative 2DLDA [27] learns the optimal
projection matrix Z reflecting information between columns
of images, and then projects A onto Z , yielding a q by n
matrix B = Z T A. The optimal projection in the column
direction Zopt = (z1, z2, . . . , zq) is obtained by the trans-
posed space matrix. The (2D)2LDA treats the feature matrix
A j both in row and column directions by projecting the m
by n image A j onto Zopt and Xopt simultaneously, yielding
a q by d matrix S:

S j = Z T
opt A j Xopt. (5)

In this scheme, the resulting feature matrix S j is used to
represent image A j for classification.

4.3.2 Proposed modified (2D)2LDA

(2D)2LDA works simultaneously in the row and column
directions of the original images. Although it is efficient
for image representation and recognition, it is possible to
improve the recognition rate and reduce computation time
by modifying (2D)2LDA. In (2D)2LDA, the optimal projec-
tion matrix Z (described in Sect. 4.3.1) works in the col-
umn direction, capturing information between columns of
images. In contrast, modified (2D)2LDA, which works in the
column direction of images in the low-dimensional 2DLDA
subspace, can reduce the number of coefficients in the fea-
ture matrix. The idea of modified (2D)2LDA is described
as follows: (1) The image matrix performs 2DLDA within
rows (as described in Sect. 4.3.1) and reflects the information
between row of images to find the optimal image matrices
Y = AX . (2) Then image matrix Y performs 2DLDA in
the column direction in the 2DLDA subspace. Ultimately,
the discriminant information of the whole image is packed
into the upper-left corner of the image matrix. This method,
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which has been used efficiently in palm vein recognition, is
described below:

Given a training set {A1, A2, . . . , AM } , M is the number
of the training images and the size of each image matrix
is m × n. The i th training image is denoted by matrix Ai

(i = 1, 2, . . . , M), and the average image of all training
samples is denoted by A.

(1) After the first 2DLDA transform in the rows direction,
the feature matrix Y of sample A is obtained using Y =
AX (as discussed in Sect. 4.3.1).

(2) Constructing the image between-class and within-class
scatter matrices Hb and Hw based on Y T yields

Hb = 1

M

C∑

i=1

Mi (Y i − Y )(Y i − Y )T (6)

Hw = 1

M

C∑

i=1

M∑

j=1

(Y i
j − Y i )(Y

i
j − Y i )

T (7)

where Y i
j = Ai

j X, Y i = A
X
i , and Y = AX . It can be

observed that Hb and Hw in Eqs. (6) and (7) are obtained
in this new formulation as the outer products of column
vectors, unlike Gb and Gw (Eqs. 3, 4) in the case of the
original 2DLDA.

(3) We next find the optimal projection matrix Vopt so that
the total scatter of the projected samples of the training
images is maximized. For this purpose, Fisher’s criterion
[24] is employed, given by

J (V ) = V HbV T

V HwV T
(8)

Similarly, the eigenvectors of H−1
w Hb are computed and

then q eigenvectors v1, v2, . . . , vq corresponding to the
first q largest eigenvalues of H−1

w Hb are chosen.
(4) Projecting Y T onto V , yields CT = Y T Vopt. The mod-

ified (2D)2LDA feature matrix of Y is given by

Ci = V T
optYi = V T

opt Ai Xopt. (9)

The resulting feature matrix Ci is a q ×d matrix, which
is smaller than the (2D)2LDA feature matrix S j and
the original image A. A comparison of (2D)2LDA with
modified (2D)2LDA is illustrated in Fig. 7.

4.4 Matching

After feature extraction, it is essential to choose an appro-
priate method of similarity measurement for the matching of
feature matrices. The aim of palm vein recognition is to match
the unknown vein image with those known vein classes in the
database0 and determine whether the unknown individual is
authentic or an impostor. In my experiment, ten images of
each palm vein class are chosen randomly to constitute the
training samples, and the remaining images of each class
are used as testing samples. The minimum distance classi-
fier (MDC) is adopted for classification in a low-dimensional
feature space.

m = arg min
1≤i≤c

d( f, fi ),

d( f, fi ) =
∑

j

(
f j − f j

i

)2
(10)

where f and fi are the feature matrix of an unknown sample
and the i th class, respectively. f j and f j

i are the j th compo-

Fig. 7 Comparison of the
feature extraction process:
a (2D)2LDA, b modified
(2D)2LDA
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nent of the feature matrix of the unknown sample and that of
the i th class, respectively. c is the total number of classes, and
d( f, fi ) denotes the Euclidean distance measure. The feature
matrix f is classified into the mth class by searching for the
lowest distance value using the similarity measure d( f, fi ).

5 Experimental results

To evaluate the effectiveness of the proposed method for palm
vein recognition, experiments were conducted in two modes:
identification (one-to-many matching) and verification (one-
to-one matching). In identification mode, if the test sample
and the identified template are from the same class, this is
a correct recognition. Therefore, in identification mode, the
algorithm can be measured by the correct recognition rate
(CRR), the ratio of the number of samples being correctly
classified to the total number of test samples. In verification
mode, assuming that a test sample is from a specified sub-
ject, a one-to-one comparison is made to verify whether the
test sample is from the specified subject. Such comparisons
result in two independent error rates, false match rate (FMR)
and false non-match rate (FNMR). The FMR (sometimes
called false positive rate) is the probability that a test sample
of an impostor is falsely declared to match the template of
an authorized subject and the FNMR (sometimes called false
negative rate) is the probability that a test sample of an autho-
rized subject is falsely declared not to match his template. By
adjusting the matching threshold, a receiver operating char-
acteristic (ROC) curve can be created. The ROC curve is a
plot of genuine match rate (1-FNMR) against false match
rate for all possible matching thresholds and shows the over-
all performance of an algorithm. The ideal ROC curve is a
step function at the zero false match rates. The equal error
rate (EER) is the point where the FMR and the FNMR are
equal in value. The smaller the EER, the better the algorithm.
In these experiments, the measures described above are used
for performance evaluation. The following subsections detail
the experiments and results.

5.1 Palm vein database

A near-infrared CCD camera was used to acquire palm vein
images. It has the benefits of easy availability, uniformity,
low-cost and consistently high image quality. In this work,
the camera used to acquire palm vein images was a digital
noise reduction (DNR) DSP Camera, shown in Fig. 2. The
captured palm vein images are 8-bit gray images with a res-
olution of 320×240. The reason for using such a low spatial
resolution is that both the data amount in palm vein images
and noise sensitivity can be reduced while the features of
palm veins can still be preserved. To obtain high verification
accuracy, it is important to construct an objective verification

template library. Therefore, 207 volunteers were enrolled in
my study, and palm vein images were captured from their
right hands at two different times after an interval of at least
1 month. Ten palm vein images were acquired each time
for each person, so this database includes 4,140 palm vein
images. A database constructed in this way includes possi-
ble variations of palm vein images under various conditions.
The database includes several racial groups, including Chi-
nese, African and Caucasian. The age range of the volunteers
was between 18 and 60 years, and their occupations ranged
from university students, professors and technicians to man-
ual workers such as cleaners and electricians. No distinction
was made between male and female when the samples were
collected.

So far, only small datasets have been used to evaluate
recognition performance for palm vein recognition for most
methods. To demonstrate the robustness of the proposed
approach, the current work includes more than 200 sub-
jects. In the future, I hope to make the database available
for free download for biometric verification research. The
experiments conducted below were run on a 3.2 GHz PC
with 2 GB RAM using Matlab 7.0.

5.2 Performance evaluation of the proposed method

In order to evaluate the recognition accuracy, a large number
of images from the palm vein database were collected (as
described in Sect. 5.1). In this section, two experiments were
conducted to demonstrate the performance of the proposed
method for palm vein recognition. The first analyzes the rela-
tionship between recognition accuracy and different reso-
lution ROI images. The second investigates the number of
modified (2D)2LDA eigenvectors selected for the proposed
scheme and further evaluates the recognition performance of
modified (2D)2LDA.

To investigate the relationship between the recognition
accuracy and the resolution of palm vein images, each
ROI image is decomposed into different levels of resolu-
tion (128 × 128, 64 × 64, 32 × 32 and 16 × 16) and the
images are tested at each level. Therefore, there are four
levels, the image with 128 × 128 resolution being the 1st

1st Level

2nd Level

3rd Level
4th Level

(a) (b) (c) (d)

Fig. 8 Different resolutions of the palm vein image
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Fig. 9 FMR and FNMR distributions at each level of resolution: a 1st level (128 × 128), b 2nd level (64 × 64), c 3rd level (32 × 32), d 4th level
(16 × 16)

level and 16 × 16 resolution being the 4th level (as shown
in Fig. 8). The feature vector of each testing vein image is
matched against each stored template at each level. A total of
428,490 (10×207×207) comparisons are performed at each
level, of which 2,070 (10 × 207) comparisons are genuine
matches. FMR and FNMR for a given decision threshold t
are displayed for the genuine and impostor score distribu-
tions; FMR is the percentage of non-matching pairs whose
matching scores are greater than or equal to t , and FNMR
is the percentage of matching pairs whose matching scores
are less than t . The FMR and FNMR distributions at differ-
ent resolution are plotted in Fig. 9. There are two curves in
each figure for each different resolution, one curve being gen-
uine matching and the other impostor matching. When the
decision threshold is set as the intersection of genuine and
impostor distribution curves, the total error reaches a mini-
mum, and the corresponding threshold and FNMR values at a
fixed FMR of 1 % in each level are listed in Table 1. Accord-
ing to Fig. 9, the EERs of the 1st and 2nd level are much lower
than those of other levels. In other words, palm vein images

Table 1 FNMR values at a fixed FMR of 1 % for each level

Level 1st 2nd 3rd 4th

Distance threshold 0.68 0.58 0.49 0.37

FNMR (%) 2.51 1.9 3.4 3.7

with resolutions of 128 × 128 and 64 × 64 are more suit-
able for feature extraction–based palm vein recognition than
lower resolutions. Because the difference between the EERs
at the 1st and 2nd level is very small (<0.02), it is difficult
to decide which level is optimal for identity recognition.

Further analysis of the images at the two levels (1st and
2nd) can be done by considering their ROC curves, which
plots FMR against FNMR. Figure 10 plots the ROC curves of
the 1st and 2nd level. From this figure, although the curve of
the 2nd level is not always better than the 1st level, the CRRs
of the 1st and 2nd levels are 99.18 and 99.41 %, respectively.
Hence, the ROI images of palm vein at the 2nd level are better
than those at the 1st level in the proposed method. Therefore,
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Fig. 10 ROC curves for the 1st and 2nd level of resolution

Table 2 Recognition rate of seven methods with varying numbers of
training samples

Methods Number of training samples per class

4 6 8 10

PCA 77.58 85.67 92.08 94.19

LDA 78.27 84.15 93.66 95.46

2DPCA 86.14 91.15 93.96 98.07

2DLDA 88.31 92.71 94.85 98.59

(2D)2PCA 91.57 95.46 98.07 98.86

(2D)2LDA 92.18 94.12 98.15 99.18

Proposed 93.56 96.21 98.22 99.41

Bold value indicates the best recognition rate when each class is exactly
10 training samples

ROI images at the 2nd level (64 × 64 resolution) are opti-
mal for this palm vein recognition system. The experimental
results demonstrate that image resolution will affect recogni-
tion accuracy. A higher image resolution may be affected by
noise and a lower image resolution may lose detailed infor-
mation of the image.

Table 2 shows the recognition accuracy obtained by dif-
ferent methods for varying numbers of training samples.
It reveals that the proposed modified (2D)2LDA method is
comparable to PCA, LDA, 2DPCA, 2DLDA, (2D)2PCA and
(2D)2LDA methods in terms of recognition accuracy. Due to
the fact that images in the palm database were obtained under
varying conditions, a lower number of training samples did
not achieve encouraging results in palm vein recognition. As
the number of training samples per class increased, the gain
relative to other methods becomes more apparent. Exper-
imental results demonstrate that my method can compete
favorably with (2D)2LDA.

In the second test, the effect of parameter values on the
recognition performance of the modified (2D)2LDA is eval-

Table 3 The effect of drow and qcol on the CRR obtained using the
modified (2D)2LDA

drow qcol

2 4 6 8 10 15 25

2 36.81 46.94 83.75 90.54 95.58 94.47 94.25

4 61.64 75.21 92.45 95.84 97.52 96.81 94.21

6 68.25 93.45 95.71 97.33 96.38 97.18 96.06

8 71.48 95.87 99.41 99.27 99.52 98.92 98.93

10 73.77 93.61 96.15 98.83 98.15 99.02 98.44

12 74.21 94.24 95.49 97.41 97.58 97.79 96.23

Bold value indicates description of the feature vector dimensions

Table 4 Recognition accuracy, feature vector dimensions, and match-
ing time for seven methods

Method Recognition
rate (%)

Feature vector
dimensions

Matching
time (ms)

PCA 94.19 100 –

LDA 95.46 206 –

2DPCA 98.07 64 × 7 2.23

2DLDA 98.59 64 × 6 2.12

(2D)2PCA 98.86 8 × 8 0.46

(2D)2LDA 99.18 8 × 8 0.45

Proposed 99.41 6 × 8 0.41

Bold value indicates the best recognition rate associating with the least
feature vector dimensions and matching time

uated. The modified (2D)2LDA introduces two parameters,
the number of row eigenvectors drow and the number of col-
umn eigenvectors qcol. In this experiment, ten images of each
class are selected randomly to constitute the training set, and
the remaining images of each class are treated as the test
set. Table 3 depicts the effect of drow and qcol on the CRR
obtained using the modified (2D)2LDA. As Table 3 shows,
the maximum CRR (99.41 %) is obtained when drow = 8,
while the number of column eigenvectors qcol > 6, qcol has
little effect on the CRR of the modified (2D)2LDA. Although
the accuracy for qcol = 10 and drow = 8 is only slightly bet-
ter than that for qcol = 6 and drow = 8, the 6 × 8 feature
matrix is faster in terms of matching time. In my experiment,
I chose the value that corresponds to the best performance
on my database, qcol = 6 and drow = 8. Table 4 shows
a comparison of several methods on recognition accuracy,
corresponding dimensions of the feature vector (for PCA and
LDA) or feature matrices (for the other methods) and match-
ing times. It can be seen from Table 4 that the recognition
accuracy of proposed modified (2D)2LDA method is higher
than other methods despite having a smaller feature matrix.
Furthermore, the selected optimal value (8×8) in (2D)2LDA
is slightly larger than the optimal value (6 × 8) using
modified (2D)2LDA. Finally, Table 4 shows that modified
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(2D)2LDA methods consume the least matching time among
all the methods. The experimental results show that the pro-
posed palm vein representation is effective and the proposed
approach can extract promising features from each palm vein
image and accomplish the task of palm vein recognition.

5.3 Comparison and discussion

The experimental results presented in Sect. 5.2 reveal that the
proposed method is an effective scheme for feature extraction
from palm vein images and achieves a CRR up to 99.41 %
for this palm vein database. The approaches of PCA, LDA,
2DPCA, 2DLDA, (2D)2PCA and (2D)2LDA are well-known
existing schemes for pattern recognition. Table 4 shows the
results, comparing the current method with six other known
approaches, using the 207 classes of the database. The num-
ber of eigenvectors are repeated 25 times by varying projec-
tion vectors d (where d = 1, 2, 3, . . ., 20, 25, 30, 35, 40,
45). Since d, the number of projection vectors, has a consid-
erable impact on different algorithms, I chose the value that
corresponds to the best classification result on the image set.
As shown in Table 4 and Fig. 11, the proposed method can
meet the demand of high accuracy necessary for very high
security environments. Figure 11 displays the ROC curve
of the seven methods. Experimental results demonstrate that
the proposed method is much better than the four methods
of PCA, LDA, 2DPCA and 2DLDA and compares favorably
with the other two approaches, (2D)2PCA and (2D)2LDA.
Although the (2D)2PCA and (2D)2LDA curves are a little
better than the modified (2D)2LDA curve locally, it can be
seen that modified (2D)2LDA outperforms (2D)2PCA and
(2D)2LDA overall. Table 5 shows the clock time for differ-
ent stages of the proposed method and the total time. The
whole process should take only about 0.72 s, which is fast
enough for real-time verification. Compared with (2D)2PCA
and (2D)2LDA, modified (2D)2LDA is faster in terms of the
matching time. The reason is that the modified (2D)2LDA
method uses 6 × 8 feature matrices, obtaining the same or
better recognition accuracy compared to the (2D)2PCA and
(2D)2LDA methods (which uses 8×8 feature matrices). This
advantage is important in the case of verification.

Compared with the other eigenspace techniques surveyed
[18–28] for palm vein classification or verification, this
approach applies a modified (2D)2LDA, which requires
fewer coefficients to extract principal vein features. The mini-
mum distance classifier (MDC) is adopted to match the tem-
plates and testing samples. Table 4 summarizes the results
generated by this approach with other techniques [18–28],
with reference to our database. As shown in the Table 4, the
new approach compares very favorably with other methods.

Among existing methods for palm vein recognition, those
proposed by Lin et al. [9], Kumar et al. [13] and Sanchit et
al. [17] are the best known. Moreover, they characterize local
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Fig. 11 ROC curves of seven eigenspace methods of palm vein recog-
nition

Table 5 Clock time for different stages of the proposed method

Preprocessing (s) Feature extraction (s) Matching (ms) Total (s)

0.51 0.21 0.41 0.72

details of the palm vein from different viewpoints, that is, a
multi-resolution representation method, a geometric-based
approach and a texture-based approach. To further prove
the effectiveness of the proposed method, detailed compar-
isons were conducted between the proposed method and the
above three methods on the new palm vein database. Compar-
isons show that my experimental results for each algorithm
are consistent with the published results for each. Table 6
illustrates that the CRR of each algorithm is greater than
90 %, demonstrating the high accuracy of these methods.
Figure 12 illustrates the ROC curves on the new palm vein
database for the four algorithms compared, namely, multiple
multi-resolution filters (MRFs), minutiae feature points, two-
dimensional Gabor filter and the proposed method. Based on
the results shown in Table 6 and Fig. 12, the proposed method
has best performance, followed by the methods described in
Sanchit et al. [17], Lin et al. [9] and Kumar et al.[13]. The
main reason is that the eigenspace method can effectively

Table 6 Performance of several well-known methods on our palm vein
database

Methods Correct recognition rate (%) Equal error rate (%)

Lin et al. [9] 98.31 1.24

Kumar et al. [13] 96.38 2.74

Sanchit et al. [17] 99.22 0.63

Proposed 99.41 0.34
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analyze global variations of the intensity signals, which can
reflect most of the random shape information of the palm
vein and thus achieve better performance.

Failure of verification can occur in some palm vein images.
The reason for the failure can be categorized into three main
groups by carefully observing these palm vein images.

(1) In preprocessing, two data points are employed to find
the ROI automatically. Although the palm vein images
are located in almost the same region, there are still a
few instabilities in preprocessing, such as translation or
rotation. These may result from either misplacement of
hands during palm vein acquisition or imperfect pre-
processing. The proposed method is resistant to both
translation and rotation, but it is not robust to extreme
rotation or translation.

(2) Sometimes the palm vein images captured by the image
collection device will result in noise (such as moles,
scars, and pigmentation). Too few principal vein fea-
tures extracted for verification will result in verification
failure as well.

(3) Since the thickness of the vein will be affected by sea-
sonal change, some principal vein features inside the
ROI region may be lost as a result. Moreover, the bound-
ary of the regions could form pseudo principal vein fea-
tures. These issues might lead to match difficulties, but
only in rare and extreme cases.

The conditions mentioned in (1)–(3) above cannot be
avoided and lead to difficulties in distinguishing palm vein
images using the proposed approach. This problem can be
alleviated by utilizing other methods to extract vein features
or combination with other biometric verification methods.

6 Conclusions

In this paper, a reliable and robust biometric-based verifi-
cation approach using palm vein images is proposed. There
are two main advantages of the proposed approach. The first
is that a non-contact image collection device can be used to
acquire palm vein images. The low-cost NIR charge-coupled
device (CCD) camera is a complete, compact system that
provides uniform and consistent image quality due to con-
sistency of the light source and sensor. The second advan-
tage is that a modified (2D)2LDA method is proposed to
extract the principal vein features. The modified (2D)2LDA,
which works in the column direction of images in the low-
dimensional 2DLDA subspace, can increase the recognition
rate while reducing the coefficients of the feature matrix. The
main advantage of modified (2D)2LDA over (2D)2LDA and
(2D)2PCA is that fewer coefficients are needed for palm vein
representation and recognition, saving computing time.

We used the method of Sanches et al. [30] to locate the
ROI in this paper. Under normal conditions, the ROIs should
cover almost the same region in different palm vein images.
Within the ROI, obvious principal vein features are extracted
by applying the modified (2D)2LDA method. Vein features
are then matched with those from the template library by the
minimum distance classifier (MDC) to verify the identity of
the person. Experimental results demonstrate that the pro-
posed approach can obtain acceptable verification accuracy.
Such an approach can be applied in access control systems.
The proposed algorithms are also compared with other pub-
lished algorithms and the performance found to be suitable
for real-time applications. Therefore, the proposed system is
a novel and efficient method for personal identification using
palm vein images.
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