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Abstract This paper proposes a new model for image
decomposition which separates an image into a cartoon, con-
sisting only of geometric objects, and an oscillatory compo-
nent, consisting of textures or noise. The proposed model is
given in a variational formulation with adaptive second-order
total generalized variation (TGV). The adaptive behavior pre-
serves the key features such as object boundaries and textures
while avoiding staircasing effect. To speed up the computa-
tion, the split Bregman method is used to solve the proposed
model. Experimental results and comparisons demonstrate
the proposed model is more effective for image decomposi-
tion than the methods of the state-of-the-art image decom-
position models.

Keywords Image decomposition · Cartoon · Texture ·
TGV · Split Bregman · Staircasing effect

1 Introduction

The task of decomposing a signal or an image into differ-
ent components is of great interest in many applications. For
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instance, a prominent practical problem is represented by
the separation of the speaker’s voice from the background
noise at a cocktail party. In general, a nature image con-
tains geometric parts and textural parts. Image decompo-
sition refers to the splitting of an image into two or more
components. In particular, much of this progress has been
made through the use of nonlinear partial differential equa-
tions to model oscillating patterns which represent texture or
noise.

The general variational framework for decomposing
image f into structure and texture is given in Meyer’s models
[1] as an energy minimization problem

inf
(u,v)∈X1×X2

F1 (u)+ λF2 (v), s.t. f = u + v, (1)

where F1, F2 ≥ 0 and u, v denote the geometric parts (car-
toon) and oscillatory parts (textures) of image f , respectively.
The constant λ is a tuning parameter. It is a key to determine
a good model that one can appropriately choose the space
X1, X2 for cartoon u and texture v such that F1 (u)� F2 (u)

and F1 (v) � F2 (v), such conditions would insure a clear
cartoon + texture separation; In other words, if u is only
cartoon, without texture, then texture components must be
penalized by F1, but not by F2, and vice-versa.

In [1], Meyer introduces the notion that image denoising
can be thought of as image decomposition for the application
of texture extraction. Furthermore, he introduces a variant of
the popular model by Rudin, Osher and Fatemi (ROF) [2]
based on a space called the G space for this very purpose.
The idea is to replace the L2 norm in the ROF model with a
weaker norm that better captures textures or oscillating pat-
terns. However, in practice, the model is difficult to imple-
ment, so the authors in [3] suggest to overcome this difficulty
using the following approximation model
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inf
u,g1,g2

∫

�

|∇u| dx + λ

∫

�

∣∣ f − u − ∂x g1 − ∂y g2
∣∣2 dx

+μ

⎡
⎣
∫

�

(√
g2

1 + g2
2

)p

dx

⎤
⎦

1
p

. (2)

In a subsequent work, Osher, Sole and Vese (OSV) [4] let
p = 2 and gave the another approximation model as follows.

inf
u

E (u) =
∫

�

|∇u|dx + γ

2
‖ f − u‖2H−1 . (3)

The H−1 norm is defined as ‖ f − u‖2H−1 =
∫
�

∣∣∇ (�−1
)

( f − u)|2 dx , and the definition of inverse Laplacian �−1

is in [4]. In the Euler-Lagrange variational framework, this
energy minimized by the solution of the following fourth-
order PDE:

∂u

∂t
= −�

(
div

( ∇u

|∇u|
))
+ γ ( f − u) (4)

with the boundary condition mentioned in [4]. Numerical
experiments show that the Eqs. (2) and (3) separate texture
from the object better than the ROF model, especially the
texture component contains much less cartoon information.
Compared with Eq. (2), the Eq. (3) has few parameter, so it is
easy to implement. However, a particular caveat of such TV
regularization is the staircasing effect. Generally speaking,
the staircasing effect severely impacts the quality of image
denoising and decomposition. Thus, ameliorating the stair-
casing effect should be considered a priority in image decom-
position problems.

There are many variational models about image denoising
and decomposition [5–11], such as the adaptive TV deter-
mined by a threshold parameter given in advance [5]; how-
ever, the threshed parameter is difficult to be chosen; another
way is that the higher-order variational model is introduced
in [7], but the higher-order equation can make the image
edges and texture blurry; though the non-convex model [9]
can obtain the better results, it has not the global minimal
solution.

Recently, a new mathematical framework of total gener-
alized variation (TGV) is proposed by Bredies, Kunisch and
Pock [12]. The main property of TGV regularization is that it
allows to reconstruct piecewise polynomial functions of arbi-
trary order (piecewise constant, piecewise affine, piecewise
quadratic, ...). As the TV regularizer, the TGV regularizer
has the nice property of being convex, this allows to com-
pute a globally optimal solution. Many good results have
been obtained about TGV in [12–15].

In this paper, we propose a new image decomposition
model based on the adaptive second-order TGV. In the new
model, an edge indicator function is introduced to the second-
order TGV. So the new model can take advantage of the

properties of the second-order TGV to extract the texture
while reducing the noise; meanwhile, the edge indicator func-
tion can adaptively preserve the key features such as object
boundaries. To solve the proposed model, the split Bregman
method and primal-dual approach are used in the numeri-
cal algorithm. Experimental results show that the proposed
model can achieve a better trade-off between noise removal
and image decomposition while avoiding the staircase
effect.

This paper is organized as follows. In Sect. 2, we briefly
introduce the mathematical framework used in this paper.
In Sect. 3, the proposed model and the corresponding algo-
rithm are given. In Sect. 4, the numerical discrete method is
discussed. In Sect. 5, some numerical experiments are given
to test the proposed algorithm. At last, the conclusions are
drawn out in Sect. 6.

2 Mathematical framework

This section is mainly devoted to the introduction of the def-
inition of TGV and some of its basic properties [12–15].

Definition 1 Let � ⊂ Rd be a be a bounded domain, k ≥ 1
and α0, . . . , αk−1 > 0. Then, the TGV of order k with weight
α for u ∈ L1

loc (�) is defined as the value of the functional

TGVk
α (u)

= sup

⎧⎨
⎩
∫

�

u divkφ dx : φ ∈ Ck
c

(
�, Symk

(
Rd
))

,

∥∥∥divlφ

∥∥∥∞ ≤ αl , l = 0, . . . , k − 1

⎫⎬
⎭ , (5)

where Ck
c

(
�, Symk

(
Rd
))

and Symk
(
Rd
)

denote the space
of continuously differentiable symmetric k-tensors and sym-
metric k-tensors in �, respectively. The l-divergence of a
symmetric k-tensors field is a symmetric (k−l)-tensors field,

which is given by
(
divlv

)
β
=∑

v∈Ml
l!
γ !

∂lvβ+γ

∂xγ for each com-
ponent β ∈ Mk−l , where Mk are the multi-indices of order

k, that is, Mk =
{
β ∈ N

d
∣∣∣∑d

i=1 βi = k
}

.

Definition 2 The space BGVk
α (�) = {

u ∈ L1 (�)
∣∣TGVk

α

(u) <∞}, equipped with the norm ‖u‖BGVk
α
= ‖u‖1 +

TGVk
a (u), is called the space of functions of bounded gener-

alized variation of order k with weight α. In particular, when
k = 2, BGV2

α (�) coincides with the BV (�) (bounded vari-
ation space), in the topological sense.

From the above definition 1, we can see that when k = 1
and α = 1, Eq. (5) corresponds to the dual definition of
the TV semi-norm, that is, TGV is indeed a generalization
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of the TV regularizer. Using the Legendre-Fenchel duality,
the problem (5) can be transformed to its primal formulation
[12]:

TGVk
α (u) =

inf
ul∈Ck−l

c
(
�,Syml(Rd)

)
l=1,...,k−1, u0=u, uk=0

k∑
l=1

αk−l

∫

�

|ε (ul−1)− ul | dx, (6)

where ε (ul−1) denotes the symmetrized gradient operator

ε (ul−1) = ∇ul−1 + (∇ul−1)
T

2
.

From Eqs. (5), (6), we can see that this representation has con-
verted functional (5) which depends on higher-order deriva-
tives into a functional of recursive expression depending only
on first-order derivatives. Using this representation, one can
intuitively assess how the TGV is working. That is, TGVk

α (u)

automatically balances the first- and higher-order derivatives
instead of using any fixed combination. In particular, when
k = 2, it corresponds to the second-order TGV. Different
from the usual TV, TGV2

α as a regularizer does not lead to the
staircasing effect. Moreover, TGV2

α has many good proper-
ties, such as it is proper, convex and lower semi-continuous
on each L p (�) , 1 ≤ p < ∞, and it is a semi-norm on
BV (�), etc (see Ref. [12,13]). These properties have been
widely applied to the image processing.

3 The proposed model and algorithm

Motivated by the TGV, we modify the TGV2
α and propose an

adaptive image decomposition model

min
u

E (u) = � (u)+ β

2

∥∥∥∇
(
�−1

)
( f − u)

∥∥∥2

2
, (7)

where � (u) = minω∈B D(�) α1
∫
�

g (x) |∇u − ω| dx +
α0 ‖ε (ω)‖1 , g (x) = 1

1+K|∇Gσ ∗ f |2 is an edge indicator

function, Gσ (x) = 1
2πσ 2 exp

(
−|x |2

2σ 2

)
is the Gaussian fil-

ter with parameter σ, K ≥ 0 is the contrast factor. B D (�)

denotes the space of vector fields of bounded deformation,
that is,ω ∈ L1

(
�, Rd

)
such that the distributional sym-

metrized derivative ε (ω) = ∇ω+∇ωT

2 is a Sd×d -valued
Radon measure [14]. α1 > 0, α0 > 0, β > 0 are the tuning
parameters, f is the observed image.

Let us briefly mention some properties of the proposed
model (7). First, when K = 0, then g (x) = 1 and � (u) turns
into the second-order TGV. Second, g (x) can better preserve
the edges in the cartoon of image [16]. Finally, from the def-
inition 1 and definition 2, we can see that � (u) can measure
the jump of the derivatives, from the zeroth to the 1-th order,
so it can reduce the staircase effect. In addition, each func-
tion of bounded variation admits a finite TGV value, which

makes the notion to be suitable for images. This means that
piecewise constant images can be captured by TGV model.
Compared (7) with (3), the proposed model (7) can reduce
the staircase effect while decomposing image, meanwhile, it
can adaptively preserve the key features such as edges, which
is very important in image decomposition.

3.1 Split Bregman algorithm for the proposed model (7)

Recently, the split Bregman method has become a very
effective tool for solving various inverse problems [17–20].
The method is proven to be equivalent to the augmented
Lagrangian method [21] and also belongs to the framework
of the Douglas-Rachford splitting algorithm [22]. With the
advantages such as fast convergence speed, numerical stabil-
ities and smaller memory footprint, etc., see details in [22].
The split Bregman method has been used widely in the image
processing. In the following, we shall use it to solve the pro-
posed model (7).

Firstly, we introduce a variable z in Eq. (7) and let z = u.
Then we can get

min
u, z

� (u)+ β

2

∥∥∥∇
(
�−1

)
( f − z)

∥∥∥2

2
, s.t. z = u. (8)

Introducing the auxiliary variable d and using the split Breg-
man method, we have

uk+1 = arg min
u

� (u)+ μ

2

∥∥∥u − zk − dk
∥∥∥2

2
, (9)

zk+1 = arg min
z

β

2

∫

�

∣∣∣∇
(
�−1 ( f − z)

)∣∣∣2dx

+μ

2

∥∥∥uk+1 − z − dk
∥∥∥2

2
, (10)

dk+1 = dk − uk+1 + zk+1, (11)

3.2 Chambolle and Pock’s algorithm for Eq. (9)

In this subsection, we use the Chambolle and Pock’s primal-
dual algorithm [23] to solve the first subproblem (9). The
algorithm has been shown to be a good choice for large-scale
convex optimization problems in image processing [23].

Definition 3 Assume that � is a Hilbert space. The dual, also
called the polar, of the proper functionalϕ : �→ R ∪ {∞}
is defined as

ϕ∗ : �∗ → R ∪ {∞} , ϕ∗
(
w∗
)= max

w∈�
{〈

w∗, w
〉−ϕ (w)

}
.

(12)

If ϕ is a proper, lower-semi-continuous and convex function,
we have the bi-conjugate ϕ∗∗ = ϕ.
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For Eq. (9), we first set

ϑ1 = ∇u − ω, ϑ2 = ε (ω),

F1 (ϑ1) = α1

∫

�

g |ϑ1| dx, F2 (ϑ2) = α0

∫

�

|ϑ2|dx . (13)

It is obvious that F1, F2 are both proper, lower-semi-
continuous and convex functions. From the above Defini-
tion 3, for the dual variable ϑ∗1 of ϑ1, we have

F∗1
(
ϑ∗1
) = max

ϑ1

〈
ϑ∗1 , ϑ1

〉− F1 (ϑ1)

= max
ϑ1

〈
ϑ∗1 , ϑ1

〉− α1

∫

�

g (x) |ϑ1|dx

=
{

0, i f
∣∣ϑ∗1

∣∣ ≤ gα1,

+∞, i f
∣∣ϑ∗1

∣∣ > gα1.
(14)

Similarly, for the dual variable ϑ∗2 of ϑ2, there is

F∗2
(
ϑ∗2
) =

{
0, i f

∣∣ϑ∗2
∣∣ ≤ α0,

+∞, i f
∣∣ϑ∗2

∣∣ > α0.
(15)

From Eqs. (13)–(15) and F∗∗1 = F1, F∗∗2 = F2, let p= ϑ∗1 ,

q = ϑ∗2 , then we can get

F∗1 (p) =
{

0, i f |p| ≤ gα1,

+∞, i f |p| > gα1.
,

F∗2 (q) =
{

0, i f |q| ≤ α0,

+∞, i f |q| > α0.
(16)

F1 (∇u − ω) = max
p
〈∇u − ω, p〉 − F∗1 (p),

F2 (ε (ω)) = max
q
〈ε (ω), q〉 − F∗2 (q).

So Eq. (9) can be rewritten

arg min
u

� (u)+ μ

2

∥∥∥u − zk − dk
∥∥∥2

2

= arg min
u,ω

α1

∫

�

g (x) |∇u − ω| dx + α0 ‖ε (ω)‖1

+μ

2

∥∥∥u − zk − dk
∥∥∥2

2

= arg min
u,ω

F1 (∇u − ω)+ F2 (ε (ω))

+μ

2

∥∥∥u − zk − dk
∥∥∥2

2

= arg min
u,ω

max
p∈P,q∈Q

〈∇u − ω, p〉 + 〈ε (ω) , q〉

+μ

2

∥∥∥u − zk − dk
∥∥∥2

2
, (17)

where P = {
p = (p1, p2)

T ||p (x)| ≤ gα1
}
,

Q =
{

q =
(

q11, q12

q21, q22

) ∣∣‖q‖∞ ≤ α0

}
.

Applying the Chambolle and Pock’s algorithm 1 in [23] to
the last formula of Eq. (17), we can get the iterative schemes
for Eq. (9) as follows
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pk+1 = projP

(
pk + δ

(∇ūk − ω̄k)),
qk+1 = projQ

(
qk + δ

(
ε
(
ω̄k))),

uk+1 = τμ
(
zk+dk

)+uk+τdiv
(
pk+1

)
1+τμ

,

ωk+1 = ωk + τ
(
pk + divh̄

(
qk+1

))
,

ūk+1 = 2uk+1 − uk,

ω̄k+1 = 2ωk+1 − ωk,

(18)

Note that in the above Eq. (18), δ, τ > 0, divh̄ is defined in
Sect. 4 and

projP

(
p̃l
)
= p̃l

max
(
1,
∣∣p̃l
∣∣/gα1

) ,

projQ

(
q̃l
)
= q̃l

max
(
1,
∣∣q̃l
∣∣/α0

) .

3.3 Gauss-Seidel method for Eq. (10)

For the second subproblem (10), its Euler-Lagrange equa-
tion is

β ( f − z)+ μ�
(

z + dk − uk+1
)
= 0, (19)

that is,

(β − μ�) zk+1 = β f − μ�
(

uk+1 − dk
)

. (20)

To solve the Eq. (19), one can use several approaches such as
Gauss-Seidel iteration, the gradient descent method or dis-
crete cosine transform (DCT). Here, we use the Gauss-Seidel
iteration to solve the problem. More explicitly, zk+1 can be
attained from the following formula

zk+1
i, j =

μ

β + 4μ

(
zk

i+1, j + zk
i−1, j + zk

i, j+1 + zk
i, j−1

−ρk
1,i−1, j+ρk

1,i, j−ρk
2,i, j−1 + ρk

2,i, j

)
+ β

β+4μ
fi, j (21)

where ρ1 = ∂+x
(
uk+1 − dk

)
, ρ2 = ∂+y

(
uk+1 − dk

)
, ∂+x ,

∂+y denote the first-order forward difference operators of the
directions x and y, respectively.

In summary, the complete algorithm for solving the model
(7) can be described as follows

Algorithm 1. Split Bregman algorithm for Eq. (7)

• Initialization: u0, z0, d0, k = 0;
• Step 1: Compute uk+1 by (18);
• Step 2: Compute zk+1 by (21);
• Step 3: Compute dk+1 by the iterative formula

dk+1 = dk − uk+1 + zk+1;
• k ← k + 1;

• Until:
∥∥uk+1 − uk

∥∥2
2/
∥∥uk

∥∥2
2 ≤ C ; otherwise return to step 1.
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Fig. 1 Comparison of
denoising results from three
different models using “Lena”
image. a Original image, b
Noisy image, c u by OSV
model, d u by the model in [9],
e u by our model, f Local zoom
of u, OSV model, g Local zoom
of u, the model in [9], h Local
zoom of u, our model

4 Numerical discretisation

In order to implement the proposed algorithm 1 on a digital
computer, some discrete notations need to be introduced. For
simplicity, we let the image domain be square of size m × n
and the vector ω = (ω1, ω2)

T . The first-order forward and
backward difference operators are, respectively, defined as

(
∂+x u

)
i, j =

{
ui+1, j − ui, j , if 1 ≤ i < m,

0, if i = m,
,

(
∂+y u

)
i, j
=
{

ui, j+1 − ui, j , if 1 ≤ j < n,

0, if j = n.

(
∂−x u

)
i, j =

⎧⎨
⎩

ui, j − ui−1, j , if 1 < i < m,

u1, j , if i = 1,

−um−1, j , if i = m,

,

(
∂−y u

)
i, j
=
⎧⎨
⎩

ui, j − ui, j−1, if 1 < j < n,

ui,1, if j = 1,

−ui,n−1, if j = n.

(22)

The gradient operator ∇ =
(
∂+x , ∂+y

)T
, and the diver-

gence operator div = −∇∗ is defined by div (p1, p2) =
∂−x p1 + ∂−y p2, where ∇∗ is the adjoint operator of ∇. The
discrete version of the symmetric gradient operator is

ε (ω) = 1

2

(
∇ω+∇ωT

)

=
⎛
⎝ ∂+x ω1,

1
2

(
∂+y ω1 + ∂+x ω2

)
1
2

(
∂+x ω2 + ∂+y ω1

)
, ∂+y ω2

⎞
⎠.

(23)

If set divh̄ = −ε∗, where ε∗ denotes the adjoint operator

of ε, and let q =
(

q11, q12

q21, q22

)
, then we have divh̄ (q) =

(
∂−x q11 + ∂−y q12

∂−x q21 + ∂−y q22

)
.

123



44 SIViP (2014) 8:39–47

Fig. 2 a Original image,
b noisy image, c cartoon
component u of OSV model
(γ = 0.05), d f − u of OSV
model, e cartoon component u
of the model in [5], f f − uof
the model in [5], g cartoon
component u of our model,
h f − u of our model, i local
zoom of u, OSV model, j local
zoom of u, the model in [5],
k local zoom of u, our model

5 Numerical experiments

In this section, we demonstrate the performance of our pro-
posed model for image denoising and decomposition. The
numerical results are compared with those obtained by the
OSV model, the models in [5] and [9], respectively. We use

“Lena” (256×256),“Barbara” (400×393) and the synthetic
image (171×179) as the test images. In order to measure the
quality of restored images, peak signal to noise ratio (PSNR),
mean absolute-deviation error (MAE) [24] and structural
similarity (SSIM) [25] are employed. Moreover, in all our
experiments, the parameters in the edge indicator function
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Fig. 2 continued

are chosen K = 0.001, σ = 1, and the parameter in the
stopping criterion C = 3× 10−4.

Experiment 1 We take the “Lena” image (256 × 256) for
denoising test. “Lena” image is corrupted with Gaussian
white noise and the noise standard deviation is 20. The para-
meters in our algorithm are chosen α1 = 5, α0 = 5, β =
0.2, μ = 0.01, respectively. Figure 1 has given the exper-
imental results. From the restored images and their corre-
sponding magnifying results in Fig. 1, it is clear to see that
the OSV model and the model in [9] produce obvious stair-
casing effect. But, for our model as expected, the smooth
regions are well processed and the staircasing effect is suc-
cessfully avoided while removing the noise, which makes the
cartoon part restored by our model to look more natural than
other two models. Moreover, the related data in Table 1. also
demonstrate that the proposed model is more effective.

Experiment 2 We take the “Barbara” image (400 × 393)
with Gaussian white noise for decomposition experiment.
The noise standard deviation is 20. The parameters in the
proposed algorithm are chosen to be α1 = 10, α0 = 5, β =
0.2, μ = 0.01. The experiment results are shown in Fig. 2.
From these results, it is not difficult to find that the staircasing

Table 1 PSNR, MAE, SSIM for different models in experiment 1

Model PSNR MAE SSIM

OSV 28.9803 6.5554 0.8172

[9] 29.2727 6.2418 0.8342

Ours 29.4190 6.0417 0.8470

The best value of each column is highlighted in bold

effect appears in the cartoon component u of the OSV model,
which can be seen clearly in Fig. 2i. Though the model in [5]
can reduce the staircasing effect, the cartoon part has become
blurry and there are some speckle pixels. Compared with the
OSV model, The proposed model cannot only avoid the stair-
casing effect in the cartoon component u which can be seen
clearly from Fig. 2k, but also extract the texture components
successfully from the observed image with very few struc-
tural features. Furthermore, Compared with the model in [5],
the cartoon component u of our model looks more natural and
clear. So our proposed method can achieve a better trade-off
between the noise removal and image decomposition, while
avoiding the staircasing effect effectively.

Experiment 3 We consider the clean synthetic image (171×
179) for the cartoon + texture decomposition test. In the
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Fig. 3 a Original image,
b cartoon component of OSV
model (γ = 0.05), c texture
component of OSV model,
d cartoon component of our
model, e texture component of
our model

experiment, the parameters in our proposed algorithm are
chosen to be α1 = 5, α0 = 5, β = 0.2, μ = 0.01.
Figure 3 give the decomposition results of the synthetic
image. From which we can easily find that the edges are
retained successfully in cartoon component by our proposed
model. These can be clearly seen from Fig. 3e, such as
the edges of triangle in Fig. 3e. Moreover, by comparing
the Fig. 3b, d, we can also clearly see that the textures are
extracted better by our proposed model, and there are some
textures are not yet extracted out from the cartoon compo-
nents by the OSV model.

6 Conclusions

In this paper, we propose a new variational model for image
decomposition by adaptive TGV regularizer. Compared with
the OSV model based on TV regularizer, the proposed model
cannot only preserve the key features such as object bound-
aries while avoiding staircasing, but also can well extract the
texture. In addition, To solve the proposed model, the split
Bregman method and primal-dual approach are used in the
numerical algorithm. The numerical experiments show that
the proposed model is more effective for image decomposi-
tion.
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