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Abstract Colorization is the process of replacing a scalar
value stored at each pixel of a grayscale image or film by a
vector in a multidimensional color space. Mapping between
scalar and color is therefore not unique, and colorization is
ambiguous in nature and requires some amount of human
interaction or external information. This paper presents a new
method of interactive colorization by introducing a new con-
cept to the bilateral filter. We adopt the bilateral filter as a
range weights filter (bilateral filter without Gaussian spatial
domain), and we show that the Nikolaou filter is equivalent
to the range weights bilateral filter, but has better behavior
near the edges. In our algorithm, the user selects grayscale
image regions by directly painting these regions; the user
does not need to paint over the whole object. Each selection
can be automatically expanded from the user’s paint brush
and aligned with the object boundary. Robustness and quality
of the results obtained over a collection of several challeng-
ing images demonstrate the efficiency of this new method
for some difficult cases, such as human faces or images with
confusing lighting.
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List of symbols

I Digital image
s The spatial locations of pixels at s
p The spatial locations of pixels at p
Is Image at position s
Ip Image at position p
Ws Normalization at position s
Ω Set of image pixels∑

p∈Ω Sum over all pixels p
f The spatial domain
g The range domain
σs Standard deviation of the spatial similarity
σr Standard deviation of the range (intensity/color)

similarity
|.| Absolute value
di Intensity differences
k Parameter (controls the amount of colors that

will diffuse across edges)
t Discrete time (iterations)
Y Luminance of the pixels in a grayscale image
Yp Luminance of the pixels at position p
Ys Luminance of the pixels at position s
U, V Chrominance (color information)
Up, Vp Color hints

1 Introduction

Colorization is the art of adding color to a monochrome image
or movie. The idea of “coloring” photos and films is not
new. Hand coloring of photographs is as old as photography
itself [1].

The colorization problem amounts to replacing a
scalar value stored at each pixel of a grayscale image
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Fig. 1 A. Mantegna’s fresco’s recolorization. a A grayscale photo with
a few color pieces. b The original color is reconstructed using our
method

(e.g. luminance) by a vector in a multi-dimensional color
space (e.g. a three-dimensional vector with luminance,
saturation and hue). This is a very time-consuming and
labor-intensive process and therefore is generally a severely
under-constrained and ambiguous problem [2]. Due to these
ambiguities, human interaction usually plays a large role in
the colorization process.

This colorization problem was motivated by recovering
frescoes’ painted by A. Mantegna in an Italian church that
was destroyed during World War II. There are photos of the
full frescoes available in black and white, while only a few
real pieces of frescoes with the original colors remain. The
objective was to reconstruct the original color of the frescoes
(image) using the few remaining real pieces of the original
(with color) and the full black and white grayscale photos of
the frescoes [3,4]. Figure 1 shows an example of A. Man-
tegna’s fresco’s recolorization using our method. A grayscale
photo with a few color pieces(left), and our method extends
the colors of the real pieces to reconstruct the original color
of the photo (right).

This paper presents a new method of interactive coloriza-
tion by introducing a new concept to the bilateral filter [5].
We adopt bilateral filter as a range weights filter (bilateral fil-
ter without Gaussian spatial domain), and we show that the
Nikolaou filter [6] is equivalent to the range weights bilateral
filter, but it is more robust near the edges.

Instead of removing the noise or unnecessary details from
the images, in our algorithm, the user selects grayscale image
regions by directly painting these regions with a paint brush.
The user does not need to paint over the whole object. Instead,
the selection can be automatically expanded from a user’s
paint brush and aligned with the object boundary by using
a Nikolaou filter as a simple and effective Edge-Preserving
Smoothing Filter(EPSF).

Robustness and quality of the results obtained over a
collection of several challenging images demonstrate the

efficiency of the new method for some difficult cases, such
as human faces or images with confusing lighting.

1.1 Previous work

In our literature review, we divided the algorithms of col-
orization into three groups depending on the way those algo-
rithms work:

In manual algorithms, the users segment the image into
regions and colorize each region by hand. In Markle’s origi-
nal colorization process [7], a color mask is manually painted
for at least one reference frame per shot. Motion detection
and tracking are then applied. It appears that these systems
still rely on defining regions and tracking them between the
frames of a shot.

The second group of algorithms depends on transferring
colors between images. The critical part of these algorithms is
choosing the source image to match with the target image. For
example, the process of selecting a source image representing
the sea is not successful for coloring an image that represents
the forest.

Welsh et al. [8] present a semi-automatic technique for
colorizing a grayscale image by transferring color from ref-
erence data. The idea is to examine the luminance values in
the neighborhood of each pixel in the target image and trans-
fer the color from pixels with matching neighborhoods in the
reference image.

Eisemann et al. [9] use the bilateral filter to correct the arti-
facts caused by the flash shadows, which takes an average of
non-shadow flash-photo pixels, weighted by their similarity
in the no-flash image and their pixel distance to the pixel to be
corrected. They rely on using a shadow matte to transfer the
color information from outside the shadow matte to fill in the
missing information inside the shadow matte. This worked
well in some cases, but failed in many, particularly where the
kernel is large(over detail), which it blurs by nature, espe-
cially over softer edges. Furthermore, making shadow mat-
ting robust and practical remains a continuing challenge for
many researchers [10–12].

Charpiat et al. [13] avoid using an automatic segmentation
of the training or test images by using the probability distri-
bution of all possible colors and also predicts the expected
variation of color at each pixel. The algorithm then uses graph
cuts to maximize the probability of the whole colored image
at the global level.

Kekre et al. [14] propose a technique for generating a
color palette using vector quantization codebook genera-
tion. Newly introduced Kekre’s Biorthogonal color spaces
are used, and then, the algorithm uses a color palette for col-
orizing grayscale images.

Pouli et al. [15] propose a color transfer technique that
can progressively reshape the histogram of a given image to
match it to the histogram of another. The approach relies on
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the novel idea of scale-space manipulation of the histograms,
which allows the user to select how well the color palette of
the input image should be matched to that of the target.

The third group of algorithms are based on color scribbles
by applying simple strokes in regions of the image. The color
of the strokes is then propagated to the remainder of the
selected region of the image.

Levin et al. [16] is a pioneer of this method and proposes a
simple yet effective user-guided colorization method where
the user is required to scribble the desired colors in the inte-
riors of the various regions. These constraints are formulated
as a least-squares optimization problem that automatically
propagates the scribbled colors to produce a completely col-
orized image.

Drew et al. [17] present an algorithm for adjusting the
color gradients of a colorized image to generate the same
maximum-contrast direction as in the original grayscale
image, where the contrast in the colorized image may not
match the gradient perceived in the original grayscale image.

Quang et al. [3] find that Reproducing Kernel Hilbert
Spaces (RKHS) have (both algorithmically and theoretically)
recently emerged as a powerful paradigm. The main contri-
bution of this approach is to apply the theory of RKHS and
to extend an RKHS-based function to image and video col-
orization.

Previous work took colorization control out of the hands
of the user, requiring intensive computational labor for the
user to specify which parts should be colored. Even with such
computational costs, the results usually failed on the strong
edges. In contrast, we present a fast, simple and efficient
algorithm, that can even be used for challenging images, as
we will see in the results.

2 Edge-preserving smoothing filter (EPSF)

Smoothing an image while preserving its edges is necessary
in a wide variety of applications. Simple smoothing oper-
ations such as Gaussian filtering, which do not take into
account intensity variations within an image, tend to blur
edges.

Several EPSF methods have been proposed to take into
account the local structure of images. The best and most
popular is the bilateral filtering [5].

2.1 The bilateral filter

The bilateral filter is a nonlinear process that smoothes
images while preserving their edges [5]. For an image I ,
at position s, it is defined by the following:

Is = 1

Ws

∑

p∈Ω

f (p − s)g(Ip − Is)Ip (1)

where Ω is the set of image pixels, the subscripts s and p
indicate spatial locations of pixels, and Ws is a normalization:
∑

p∈Ω f (p − s)g(Ip − Is).
The filter output at each pixel is a weighted average of its

neighbors. The weight assigned to each neighbor decreases
with both the distance in the image plane (the spatial domain
f with a standard deviation σs) and the distance on the inten-
sity axis (the range domain g with a standard deviation σr ),
using a Gaussian function as a decreasing function.

The main feature of the bilateral filter is its ability to pre-
serve edges while smoothing an input image. Although a
naïve implementation of the bilateral filter is costly, due to
the joint spatial and range filtering, several fast approxima-
tions have been proposed [18,19].

The latest studies have noted, however, that the bilateral
filters have limitations, especially on the edges of the objects.
We explain these limitations by using the simple test image
(Fig. 2a), this image is a piecewise constant function that
has been corrupted by zero-mean Gaussian noise with small

Fig. 2 Filtering test image with the bilateral filter and the Nikolaou
filter. a Noisy image. b Visualization. c BF: σr = 0.2, σs = 3. d BF:
σr = 0.2, σs = 13. e RBF: σr = 0.6. f NF: σr = 0.6
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variance. For clarity, we visualize the image intensities using
a color map (shown in Fig. 2b).

First, we attempt to smooth out the noise by applying
the bilateral filter with a small σs(Fig. 2c). We show that
it smoothes the fine-scale noise in the input image while
preserving its edge. By increasing only σs , the bilateral filter
smoothes out large-scale noise (Fig. 2d), but the filtering
output has gradient-reversal artifacts. The reason is that when
a pixel (often on an edge) has few similar pixels around it, the
Gaussian weighted average is unstable. The artifacts increase
as σs increases. It is shown that the behavior of the bilateral
filter becomes a range filter when σs is limited. Thus, to get
more, smoothing is not only through increased σs , but also
the range support σr must be increased as well. The range
weight prevents pixels on one side of a strong edge from
influencing pixels on the other side since they have different
values.

The primary focus of this paper adopts a fast and robust
edge-preserving filter. Because noise is out of the scope of
our work, we will be ignoring the spatial smoothing in the
future, and we will apply the bilateral filter as a range weights
filter.

However, the range bilateral filter blurs colors across edges
when σr gets larger (Fig. 2e), where the likelihood of two sim-
ilarly colored pixels in the neighborhood being separated by
edge grows quickly. But in many cases, a more restrictive cri-
terion may be better used to describe a given guidance image
during the filtering process. For example, in our work, the
output chrominance channels should have consistent edges
with the given luminance channel.

Nikolaou et al. overcomes these issues by proposing an
edge-preserving smoothing operator like the range weights
bilateral filter, but having better behavior near the edges.
Nikolaou filter does not find the weight average of the pixel
differences directly; instead, they extract the Manhattan color
distances between the central pixel with its neighbor and they
replace the Gaussian function in a range bilateral filter with
a robust coefficient function. This function allows us to keep
track of how much color propagates to each pixel in the image
and normalizes it accordingly. Figure 2f shows the Nikolaou
filter results as a comparison with the range weights bilateral
filter in Fig. 2e. For both these figures, we set σr to 0.6 with
3 × 3 support. Due to the ((σr or k) ≥ 1) in the Nikolaou
formula, we scale the σr with Nikolaou filter for testing both
figures simultaneously. We show that, for the same running
time, the Nikolaou filter is more robust than the range bilat-
eral filter. In our experimental results, we demonstrate these
differences using real images.

In the same spirit of the Nikolaou method, Heinrich et
al. [20] improve the bilateral filter by dealing with the two
Gaussian functions in the bilateral filter separately via a sin-
gle weighting of the shortest path distance on the image graph
and then recombining the two types of distances in one filter.

sp s p 

(b)(a)

Fig. 3 The pixels value differences in the image regions. a The pixel
s and p in the constant region. b The pixel s and p in the discontinuous
region

2.2 Nikolaou nonlinear filter

Nikolaou et al. [6] introduce a new concept to adopt bilateral
filter. They improve bilateral filter by ignoring Gaussian spa-
tial domain while at the same time replacing the Gaussian
range domain with a new function. The resulting filter pro-
duces more robustness near the edges and performs its task
with low computation time.

Assuming that I is a noisy gray-level image. The differ-
ences for the value Is at pixel s with its eight neighbors Ip

are normalized in range [0,1]:

di = | Ip − Is |
255

, 0 ≤ di ≤ 1, i = 1, . . . , 8 (2)

and then, the function g is computed as follows:

g(d(p, s)) = (1 − di )
k, where k ≥ 1 (3)

where the factor k scales exponentially the intensity differ-
ences, it controls the amount of blurring performed on the
image. This concludes to the following nonlinear smoothing
filter:

Is = 1

Ws

∑

p∈Ω

g(d(p, s))Ip (4)

where Ω is the set of image pixels, the subscripts s and p
indicate spatial locations of pixels, and Ws is a normalization:
∑

g(d(p,s)).
To give a statistical interpretation for the Nikolaou filter,

we set the function g as a “weight” and from there enlarge
a part of Fig. 2 (shown in Fig. 3a). The differences of inten-
sity value between pixel s and its neighbor pixel p in the
same(originally constant) region will be small, and hence,
g will be heavily weighted. This is equivalent to choosing an
s value to be the mean of the neighboring intensity values.
In the next section, our algorithm will use this property for
expanding the color in all directions within a specific region.
This is not true for pixels across edges (Fig. 3b). Due to the
image features (discontinuity of intensity) and the estimated
intensity value at pixel s on one side of an intensity discon-
tinuity, measurements from the value of pixel p at the other
side should be “rejected”. In the context of the Nikolaou fil-
ter, the function g will be lightly weighted and has only a
small effect on the final result. Hence, each iteration in Eq. 4
will produce only a small change in the image.
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3 Colorization

We present our method in the YU V color space [21]. The
Y component represents the luminance of the pixels in a
grayscale image, while the U and V components correspond
to the chrominance (color information) as provided by the
user via color hints. Let Ω represent the image domain. Our
algorithm assumes that the complete grayscale image is given
in the entire Ω . Let the small patches where the color is given
be the domain Ωc such that |Ωc| � |Ω|. The object from
the knowledge of Y in Ω and (U, V ) in Ωc is to colorize the
whole domain Ω .

In our formula, we calculate the function g for every value
in the Y component by finding the differences between each
central value s with eight neighboring values p in a 3 × 3
window:

di =| Yp − Ys | /255, 0 ≤ di ≤ 1, i = 1, . . . , 8 (5)

and then the function g is computed as:

g(d(Yp,s)) = (1 − di )
k (6)

where k controls the amount of colors that will diffuse across
edges. A fixed value k = 30 is used for all our experi-
ments. In this section, we modified the Nikolaou formula-
tion, and we introduce a fast and stable nonlinear colorizing
filter(Eq. 7) to solve the problem of colorizing grayscale
images:

(U, V )t+1
s = 1

∑
g(d(Y t

p,s ))

∑

p∈Ω

g(d(Y t
p,s))(U

t
p, V t

p) (7)

where (Up, Vp) represents the color hints and t denotes dis-
crete time steps(iterations). In our experimental results, we
found that between 700 and 1000 iterations t reached the
stability of Eq. 7 and produced good results.

Algorithm 1 shows the steps of our algorithm. The idea
is that the colorizing process obtained by our algorithm is
“conditional”: When (Up, Vp) has color information and the
function g within a piecewise constant image region, the
expanding of color information (U, V ) will increase with
iterations.

On the other hand, when the function g is applied to
boundary pixels (edge pixels), it will be lightly weighted,
and hence, the colors of these neighboring pixels have a
small effect on the final color received by the central pixel.
For this reason, our algorithm will consider these pixels as
edge.

4 Results and limitations

The algorithm is implemented and tested using an I ntel�
CoreT M 2Duo(E7500@2.93 GHz)CPU and 3GB RAM PC.
We currently do not use a Graphical Processing Units (GPU)
for the implementation of our algorithm. The choice whether
to use the CPU or the GPU is driven not only by efficiency
issues; in fact, CPUs are still far more prevalent than GPUs
(e.g., mobile devices and many laptops have CPUs but no
GPUs). The large diversity between GPUs also makes it dif-
ficult to deploy GPU-based software to a wide audience [22].
In addition, a large number of algorithms fail to achieve sat-
isfactory performance gain, since the inherent nature of the
algorithms and the GPU platform is uncooperative [23]. The
proposed algorithm is tested on several challenging images
from the Berkeley segmentation [24], previous work and full-
HD images. The algorithm almost always stopped between
700 and 1000 iterations.

We start with an evaluation of algorithm performance on
a human face and show its superiority over state-of-the-art
methods in both accuracy and efficiency. The most difficult
problems in facial colorization are smoothly colorizing the
skin and keeping the seamless connections among hair, skin,
lip, eye, eyebrow and background. Figure 4a (321 × 481
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Fig. 4 Girl image colorization
example. a The grayscale
image. b The grayscale image
marked with some color
scribbles by the user. c The
colorized image. The image
size/run time 321 × 481/less
than 0.11 sec and t = 700

pixels) shows the grayscale image of the girl’s face and in
the Fig. 4b, the image marked with some color scribbles by
the user. In Fig. 4c, we obtained the result with a run time less
than 0.11 sec and t=700. The colorized result has more visual
appeal than the original grayscale image while keeping the
delicate details of the object boundaries.

To evaluate the capabilities of our technique with others,
we compare our results with three representative colorization
algorithms. We have chosen the Liven et al. [16] algorithm,
the color transfer technique by Welsh et al. [8], Pouli et al.
[15], and finally, we compare our technique with the range
weights bilateral filter.

Levin et al. [16] propose an interactive colorization tech-
nique based on the premise that nearby pixels in space that
have similar gray levels should also have similar colors. How-
ever, because no boundary or region information is consid-
ered in their colorization process, color sometimes diffuses
from one region to others (Fig. 5c). In contrast, because we
take edges into accounts, our proposed algorithm will keep
the “edges” efficiently, as shown in Fig. 5d.

Figure 6 shows the comparison with the previous work.
The input images1(source, target) in the Fig. 6a,b are used
with the methods of Welsh et al. [8] and Pouli et al. [15]
for the purpose of transferring colors from the target colored
image to the source grayscale image.

Figure 6d shows the result of the Welsh et al. algorithm.
In general, the problem with color transfer approaches is
that if the contents of the target image are different than the
source, the results can look unnatural. For instance, the col-
ors of the target image are successfully transferred to the
source in Fig. 6d, but the background of the target image con-
tains some unwanted red patches. In addition, color transfer
may require additional controls to specify which parts of the
source image should be colored or which parts of the target

1 The images are adopted from Pouli et al. [15] and reprinted with
permission from Elsevier

Fig. 5 Comparison with Levin et al. algorithm. Levin et al.’ algorithm
fails on strong edges of images. a The grayscale image. b The image
marked with some color scribbles. c Levin et al. [16]. d Proposed algo-
rithm

should be considered. Pouli et al. [15] used corresponding
mattes to produce the result shown in Fig. 6e. They used a
mask that only includes the flower; the yellows of the target
are only transferred to the flower in the source. Although they
obtained satisfactory results, image matting is known to be
a hard problem in computer vision. The run time of the two
above algorithms for the 680 × 455 pixel is 241.836 sec. We
note that the above methods are very time-consuming.

We compare our filter with the range weights bilateral fil-
ter (bilateral filter without Gaussian spatial domain) by col-
orizing the same input image, the marked image shown in
the Fig. 6c. We colorize the input image by using the range
weights bilateral filter (Fig. 6f) and by using our algorithm
(Fig. 6g) with σr = 0.3. In (Fig. 6g), we scale σr to corre-
spond to parameter k in the Nikolaou filter. Comparison of the
visual quality of Fig. 6f,g indicates that the bilateral filter is
unable to preserve edges efficiently and some of them become
blurred, which may produce halo artifacts, while our algo-
rithm effectively enhances the quality of the resulting image
(especially on the edge) and improves the performance of the
bilateral filter. The run time of our result is 0.34 sec.
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Fig. 6 Comparison with the
previous work. a–c The input
images. d Welsh et al. [8]. e
Pouli et al. [15]. f Range
bilateral filter. g Proposed
algorithm

Fig. 7 Full-HD image
colorization example. The input
monochromatic image on the
top right. Then, the colorized
result shown with
downsampling. The image
size/run time 1, 024 × 709
pixels/ 0.61 sec

Note that we reduce the process duration as compared with
the run times of the Welsh et al. and Pouli et al. methods. Sta-
bility of the colorizing image is obtained by a proper setting
of the σr as compared with the bilateral filter.

In Fig. 7, we perform a similar experiment with a full-HD
image.2 A direct implementation of our filter may be take

2 The image is publically available at:http://www.f11digital.com/
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several minutes; therefore, we downsample the input image
using Nearest-neighbor algorithm; the simplest method is
just to replace the pixel value with the nearest neighboring
pixel. One possible reason to use Nearest-neighbor algorithm
is that, unlike most other algorithms such as bicubic spline,
bicubic B-spline and Lanczos, it is most suitable for repro-
jecting an image (without a change in pixel size) which when
preserving the original pixel values (color hints) for later
operations is important. Other above algorithms are not well
suited for our operations. Figure 7(top right) shows the input
image; a monochromatic image, a colorized result shown
on the same figure(with downsampling). The image size/run
time is 1024 × 709 pixels/1.13 sec (without downsampling)
and 0.61 sec (with downsampling by a factor 0.5). The result
shows more robustness and higher speed when compared to
previous available approaches.

Limitations Although the proposed method produces
convincing results on a variety of images, there is a limit-
ing factor that should be taken into account, as it can lead
to unexpected behavior; if the placed scribble is located on
the wrong side of the edge or with high gradients between
it, the resulted image will suffer from color artifacts visi-
ble, especially near edges, since the color will diffuse from
one region to others. Sometimes, this mistake is intentional
by the user. For complex images, as shown earlier in Fig. 4,
enough tightly positioned scribbles along the object’s bound-
aries must be given for producing high-quality color images,
so that the user’s effort is minimized.

Of course, the proposed method is realized by an interac-
tive method, the robustness and speed of the algorithm allows
the user to fix such mistakes and to add or move color seeds
as needed.

5 Conclusions

In this paper, we present a new algorithm for interactive col-
orization by introducing the Nikolaou nonlinear filter. Non-
linear filters that preserve edges are a common technique
for removing noise from images. There are many filters for
removing noise; some works use these filters, such as the
bilateral filter, for removing unnecessary details from images
to communicate intended information and use abstraction for
effective visual communication. In our algorithm, instead of
removing noise or unnecessary details from the images, we
are using the Nikolaou filter to automatically expand the color
hints from the user’s paint brush and align them with the
object boundary. Experimental results show that our algo-
rithm works effectively on several challenging images and
succeeds in areas where previous methods have failed.
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