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Abstract The mathematical transforms such as Fourier
transform, wavelet transform and fractional Fourier trans-
form have long been influential mathematical tools in infor-
mation processing. These transforms process signal from
time to frequency domain or in joint time–frequency domain.
In this paper, with the aim to review a concise and self-
reliant course, the discrete fractional transforms have been
comprehensively and systematically treated from the sig-
nal processing point of view. Beginning from the defin-
itions of fractional transforms, discrete fractional Fourier
transforms, discrete fractional Cosine transforms and dis-
crete fractional Hartley transforms, the paper discusses their
applications in image and video compression and encryp-
tion. The significant features of discrete fractional trans-
forms benefit from their extra degree of freedom that is
provided by fractional orders. Comparison of performance
states that discrete fractional Fourier transform is superior
in compression, while discrete fractional cosine transform
is better in encryption of image and video. Mean square
error and peak signal-to-noise ratio with optimum fractional
order are considered quality check parameters in image
and video.
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1 Introduction

The French scientist Jean Baptiste Joseph Fourier suggested
the use of Fourier transform (FT) while solving a heat
conduction dilemma in 1807. However, with the extension
of research theme and area, the fractional power of FT oper-
ator appeared in the mathematical literature in 1929 [1–3].
The fractional Fourier transform (FrFT) has later on estab-
lished many applications in the area of quantum mechan-
ics [4], signal processing [5–7], pattern recognition [8],
and optical, image and video processing [9–11]. The FrFTs
are well known as rotational Fourier transform or angular
Fourier transform in few papers [12,13]. The continuous
FrFT is often implemented in optics [14,15]. It is a recog-
nized fact that difference equations have a richer solution set
than their continuous limit differential equations [16]. The
window functions in the fractional domain using different
discrete fractional Fourier transform (DFrFT) classes have
been analyzed in [17]. Fractional Fourier domain decompo-
sition for continuous and discrete signals and systems has
been introduced in [18]. Nowadays, digital implementation
of fractional Fourier transform is applied in many applica-
tions areas [19–24]. Several discrete fractional transforms
have been successfully used for one-dimensional (1-D),
two-dimensional (2-D) and three-dimensional (3-D) signals
[19–25].

The goal of this paper is to review the definitions
of discrete fractional Fourier transform (DFrFT), discrete
fractional cosine transform (DFrCT) and discrete frac-
tional Hartley transform (DFrHT) and their applications
in the area of image and video processing. The paper
is organized as follows: Section 2 presents definitions of
Fractional transforms, 1-D/2-D DFrFT, DFrCT, DFrHT.
Section 3 presents the simulation results for image and
video compression and encryption using discrete fractional
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transforms. The conclusion of this paper is given in the last
section.

2 Fractional transforms

In the last decade, researchers have delved in the fractional
transforms and their applications [27,28]. Fractional trans-
forms are one of the key tools in many disciplines such as
communication, signal processing, and control systems etc.
The Namias in 1980 [4] introduced FrFT, a generalization of
the classical FT. The FrFT is a cohesive time-frequency trans-
form which can reveal the characteristics of signal gradually
changing from time domain to frequency domain with its
order increasing from 0 to 1. Performance of FrFT becomes
better with extra degree of freedom. The results of the Namias
were refined by the McBride and Kerr in 1987 [26] by devel-
oping an operational calculus to define the FrFT. The one-
dimensional FrFT is defined as FrFT of order α of x(u)

denoted by Xα(u) [27]:

Xα (u) =
∞∫

−∞
x (t) Kα (t, u) dt (1)

Kα(t, u)

=

⎧⎪⎪⎨
⎪⎪⎩

√
1− j cot α

2π
e

j ((u2 + t2)/2) cot α
− jut cos ec (α) if α is not multiple of π

δ(t − u) if α is multiple of 2π

δ(t + u) if α + π is multiple of 2π

(2)

where α = aπ/2 indicates the rotation angle of the trans-
formed signal for FrFT, a is the fractional order of the FrFT,
and the FrFT operator is designated by Xα . From definition,
it is apparent that FrFT is periodic with period 4 and additive
in index. The simplest generalization of the FrFT for two
dimensions is given by Eqs. (3) and (4):

Xα,β(u, s) =
∞∫

−∞

∞∫

−∞
Kα,β(u, s; t, r)x(t, r)dtdr (3)

Kα,β(u, s; t, r) = Kα(u, t)Kβ(s, r) (4)

In case of two-dimensional FrFT, we have to consider two
angles of rotation, α = aπ/2 and β = bπ/2. If one of
these angles of rotation is zero, then the two-dimensional
kernel reduces to one-dimensional kernel. The signal can be
recovered back by 2-D FrFT operation with inverted angles
(−α, −β).

Although the fractional Fourier transforms have been the
mainstay in transform, a more recent approach from the last
decade known as DFrFT simplifies both the mathematics and
physical analysis. The advantages of discrete fractional trans-
forms are that it is an evolutionary computational method,
high compression ratio and that its fractional part provides

extra degree of freedom in computations. Huffman decoding
[29] is difficult due to different code lengths at decoder and
some prior knowledge of probabilities of symbols is required
from encoder, whereas in case of discrete fractional trans-
forms, only the inverse keys of encoder are required at the
decoder.

The usefulness of discrete transforms in image and video
processing applications is presented in paper.

2.1 Discrete fractional Fourier transforms

After the continuous FrFT has been derived, many resear-
chers have attempted their best to develop a discrete coun-
terpart of it. It was the Santhanam and McClellan [30] who
have first reported the work in 1995. The properties such as
unitarity, index additivity, reduction to DFT when the order
is equal to unity and approximation of the continuous FrFT
are to be fulfilled by a valid discrete input/discrete output
FrFT.

Discrete fractional Fourier transforms must obey the rota-
tional properties quite like the continuous FrFT. These rota-
tional properties can be easily realized by the power law of the
kernel matrix in discrete case. So the fractional power of ker-
nel is required for computing the DFrFT. In [31,32], a method
for computing the DFrFT has been proposed. DFrFT can
be derived as linear combination of identity operation, dis-
crete Fourier transforms (DFT), time inverse operation and
inverse DFT (IDFT) [33]. Unfortunately, this DFrFT cannot
have similar outputs as those with the continuous FrFT. The
development of current improved DFrFT introduced a com-
muting matrix M to compute the real eigenvectors of the DFT
kernel matrix H:

M =

⎡
⎢⎢⎢⎢⎢⎣

2 1 0 0 . . . 0
1 2 cos ω 1 0 · · · 0
0 1 2 cos 2ω 1 · · · 0
...

...
...

. . .
...

1 0 0 0 · · · 2 cos(N − 1)ω

⎤
⎥⎥⎥⎥⎥⎦

(5)

where ω = 2π/N , and N is the size of the DFT kernel
matrix. Matrix M commutes with the matrix H and satis-
fies commutative property: MH = HM. The eigenvectors of
matrix M and H are the same, but their eigenvalues are differ-
ent. The eigenvectors of M are orthonormal to each other, and
eigenvalues are real because M is a real symmetric matrix.
In [32,34], Pei and Yeh used the DFT eigenvectors obtained
from matrix M to construct the DFrFT kernel. The eigenvec-
tors of matrix M are treated as discrete Hermite functions
[34,35]. The transformation kernel of DFrFT can be easily
defined by determining the fractional powers of the eigenval-
ues. The transform kernel of the DFrFT can be calculated as

Dα = F2α/π = V D2α/π V T (6)

123



SIViP (2014) 8:1543–1553 1545

Table 1 Eigenvalues assignment rule of DFrFT kernel matrix

N The eigenvalues

4m e− jkα, k = 0, 1, 2, . . ., (4m − 2), 4m

4m + 1 e− jkα, k = 0, 1, 2, . . ., (4m − 1), 4m

4m + 2 e− jkα, k = 0, 1, 2. . ., 4m, (4m + 2)

4m + 3 e− jkα, k = 0, 1, 2, . . ., (4m + 1), (4m + 2)

where α indicates the rotation angle of the DFrFT. V =
[v0|v1|· · · |vN−2|vN−1] for N odd, V = [v0|v1| · · ·
|vN−2|vN ] for N even, and Vk is the kth-order DFT Her-
mite eigenvector. D2α/π is the diagonal matrix with eigen-
values of DFrFT in the diagonal entries. A method for finding
the DFT Hermite eigenvectors vk is presented in [22,32]. In
Table 1, there exists a jump in the last eigenvalues for the two
even-length cases and (6) can be written as:

Dα =
N−1∑
k=0

e− jkαvkv
T
k , for N = 4m + 1, 4m + 3 (7)

The DFrFT of a signal can be computed with a transformation
kernel with Eq. (8).

Dαx = F2α/π x = V D2α/π V T x (8)

To compute inverse DFrFT (IDFrFT) [33], DFrFT is calcu-
lated with order –α.

x = F−2α/π Dα = V D−2α/π V T Dα (9)

For 2-D DFrFT, two individual angles of rotation α and β in
two dimensions are taken and can be implemented by row–
column computation in case of 2-D separable kernel. Then,
the forward and inverse 2-D DFrFT for (m, n) and (p, q)
points are defined with separable form as:

D(α,β)(m, n) =
M−1∑
p=0

N−1∑
q=0

x(p, q)D(α,β)(p, q, m, n)

(10)

x(p, q) =
M−1∑
m=0

N−1∑
n=0

D(α,β)(m, n)D(−α,−β)(p, q, m, n)

(11)

The 2-D DFrFT also keep the preferred properties of contin-
uous 2-D FrFT. In the present paper, applications of DFrFT
in two dimensions, that is, in image and video compression
and encryption, are discussed.

2.2 Discrete fractional Cosine transform

The discrete fractional cosine transform (DFrCT) is a gen-
eral form of discrete Cosine transform (DCT), which has an
additional free parameter that can be used in all applications

where DCT is found to be useful. The DCT of a sequence
{x[n], 0 ≤ n ≤ N − 1} is defined [37–41] with Eqs. (12)
and (13):

X (k) = α (k)

N−1∑
n=0

x [n] cos

[
(2n + 1) πk

2N

]
,

for 0 ≤ k ≤ N − 1 (12)

where

α (k) =
⎧⎨
⎩

1√
N

for k = 0√
2
N for 1 ≤ k ≤ N − 1

(13)

The elements of one-dimensional DCT kernel matrix are
given by equation (14):

EDCT (k, n)

=
⎧⎨
⎩

1√
N

, k =0; 0≤n ≤ N −1√
2
N cos

[
(2n+1)πk

2N

]
; 1≤k ≤ N −1; 0≤n ≤ N −1

(14)

Because the sequence is orthogonal, the inverse DCT (IDCT)
can be recovered as:

x[n] =
N−1∑
k=0

α(k)X (k) cos

[
(2n + 1)πk

2N

]
,

0 ≤ n ≤ N − 1 (15)

The DFrCT uses the eigen decomposition of the DCT kernel.
And the exclusive eigenvectors are obtained from the even
Hermite–Gauss eigenvectors of the Fourier matrix in the
cosine case. The kernel matrix of N point DFrCT is defined
as [36,42]:

CN ,α = VN D2α/π
N V T

N

= VN

⎡
⎢⎢⎢⎣

1 0
e−2 jα

. . .

e− j2(N−1)α

⎤
⎥⎥⎥⎦ V T

N (16)

where VN = [
v0 |v1 |· · · |v2N−2

]
, vk is the eigenvector

derived from kth-order DFT Hermite eigenvector.
DFrCT has the mathematical property of unitarity, addi-

tivity of rotations, periodicity and reality [35]. In image
compression and encryption, two-dimensional DFrCT is
used. Two-dimensional DFrCT is used as two times one-
dimensional DFrCT (row-wise and column- wise). Two
angles of rotation α and β in two dimensions are taken sep-
arately. Applications of DFrCT for 2-D are reviewed with
simulation results.
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2.3 Discrete fractional Hartley transform

The need of fractional order and its computation has been
investigated in many of the engineering and science applica-
tions [43,44]. Thus, the transform kernel K α

H

(
u, u′)of frac-

tional Hartley transform is given by:

K α
H (u, u′) =

∞∑
n=0

λα
n en(u)en(u′) (17)

The relation between fractional Hartley transforms (FrHT)
and fractional Fourier transform (FrFT) is given as:

gα
H (u′) = 1 + e

jαπ
2

2
gα

F (u′) + 1 − e
jαπ

2

2
gα

F (−u′) (18)

The two-dimensional FrHT can be computed by applying
one-dimensional transform row-wise and column-wise sep-
arately. The relation between DFrFT and DFrHT is given
by:

gα
F (u′) = 1 + e

jαπ
2

2
gα

H (u′) + e j (π/2)α 1 − e
jαπ

2

2
gα

H (−u′)

(19)

Moreover, if the real and imaginary parts of the DFrHT are
both even symmetric, then gα

F

(
u′) = gα

H means that DFrFT
is equal to DFrHT.

3 Discrete fractional transforms applications

The applications of discrete fractional transforms in image
and video are discussed in this section.

3.1 Image compression

To expedite transmission and reduce storage requirements,
image compression means image with smallest possible
number of bits without loss of information [45,46] at receiv-
ing end. Two fundamental components of compression
are redundancy and irrelevancy reduction. Certain image
processing operations such as compression and encryptions
are more perceptive and proficient if we process the image in
a different domain like frequency domain and spatial domain
[47]. A motivating aspect of using a frequency domain rep-
resentation of an image is that it is much more efficient to
decorrelate an image in the frequency domain than in the
spatial domain. For image compression, different frequency
domains techniques are discussed in the literature. In our
paper, we are reviewing image compression with 2-D dis-
crete fractional transforms. The following steps are used for
image compression:

Step 1: An image is first separated into non-overlapped
subimages. The most popular subimage sizes are

8 × 8 AND 16 × 16. For simulation results, imple-
mentation scheme subimage size chosen is 8 × 8.

Step 2: A 2-D discrete fractional transform (DFrFT, DFrCT
and DFrHT) is applied to each block at optimum
value of fractional order with selected compression
percentage. The degree of data reduction as a result
of the compression process is known as compression
percentage. For simplicity, the ‘α’ order along (rows)
and y (columns) directions is taken to be same. This
is done to convert the gray-scale levels of pixels in
spatial domain into coefficients in transform domain.

Step 3: The quantization of these coefficients is done to
selectively eliminate or more coarsely quantize the
coefficients that carry the least information. A com-
promise can be made between image quality and
compression percentage by adjusting the coarse-
ness of the quantizer called cutoff value. The opti-
mized quantized coefficients are arranged from
lower-frequency to higher-frequency components
and further compressed by efficient run-length cod-
ing approach.

Step 4: At decoding end, simply contrary process of encod-
ing using inverse 2-D discrete fractional transform
is performed. Inverse discrete fractional transform
is obtained by inverted value of ‘α’ that was used in
forward discrete fractional transform with the same
value.

Various parameters are used to study the properties of
the compressed image. The most commonly used parame-
ters to estimate image-compression algorithms are compres-
sion percentage, peak signal- to-noise ratio (PSNR) and mean
square error (MSE). In Eq. (21), the PSNR value in decibels
(dB) is used to measure the difference between the decoded
image ‘r’ and the original image ‘o’. In general, the larger
the PSNR value, the better the image quality.

MSE =
⎡
⎣ 1

M N

M−1∑
i=0

N−1∑
j=0

[r(i, j) − o(i, j)]2

⎤
⎦ (20)

PSNR = 10 log10

[
M × N

M SE

]
(21)

where M × N is the size of the image.
Numerical simulations have been executed to estimate the

strength of the image compression technique. The original
images taken are Baboon, Boats, House, Flower and Pepper
with 256 × 256 pixels. These images are compressed to the
compression percentages of 10 %, 20, 30, 40, 50 and 75 % by
varying values of fractional order ‘a’. The minimum value
of compression percentage taken in the simulation is 10 %,
and the maximum is 75 %. We observed that the optimum
compression performance is achieved for values of fractional
order ‘a’ varying between 0 and 1. The optimum value of ‘a’
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Fig. 1 Fractional-order a vs. PSNR of different images using DFrFT
with 10 %

Fig. 2 Error bar graph of different images using DFrFT with 10 %

(aopt) is dependent both on the image and on the compres-
sion percentage. Figure 1 shows the plots for PSNR vs. ‘a’
for different images at selected compression percentage of
10 %. Larger PSNR and low MSE are considered for good-
quality compressed image. MSE and PSNR are metric para-
meters that illustrate the performance of discrete fractional
transforms.

The optimum value of ‘a’ (aopt) is selected for maximum
PSNR and minimum MSE at particular compression per-
centage for an image in Fig. 1. When simulation results are
repeated for number of times, the error bar graph is shown
in Fig. 2.

In Table 2, for Baboon image, performance of DFrFT at
20 % compression percentage, when aopt is 0.91, gives high
PSNR of 50.663, and low MSE of 0.412. Table 3 gives the
results of different images for ‘aopt’ at selected compression
percentage (10 %), compressed using DFrFT and DFrCT.

Table 2 MSE and PSNR at optimum a and selected compression for
Baboon using DFrFT

Image Compression
percentage

aopt MSE PSNR

Baboon 10 0.92 0.046 60.08

20 0.91 0.412 50.663

30 0.91 1.513 45.19

40 0.92 4.23 40.77

50 0.91 9.84 37.111

75 0.97 66.14 28.83

Figure 3 is the original Baboon image of 256 × 256
and shows the compressed images for compression percent-
age = 10 % using DFrFT, DFrCT and DFrHT.

Figure 4 shows effect on PSNR for compression percent-
ages of 10, 20, 30, 40, 50 and 75 % at optimum value ‘a’ for
Baboon and Barbara images using all three transforms.

Figure 4 shows that at the highest compression percent-
age, PSNR is lowest, and at the lowest compression per-
centage, PSNR is highest. We observed that the DFrFT is
better than DFrCT and DFrHT for both images. However,
the performance of DFrCT is better than DFrHT in Baboon
image but wavering in the Barbara image. So, it is evi-
dent that DFrFT provides better PSNR in comparison with
DFrCT and DFrHT. The reason is that in time-frequency
representations, generally a plane has two orthogonal axes
corresponding to time and frequency, respectively. If a sig-
nal is represented along time axis, its Fourier transform is
represented along the frequency axis. The Fourier trans-
form operator is viewed as a change in the representation
of the signal corresponding to a counterclockwise axis rota-
tion of π /2 rad. In context of DFrFT, for any vector at
45◦, it performs same for time and frequency plane equally.
Image compression with DFrFT performs better in frequency
domain and tries to save bandwidth by varying fractional
order 0–1.

The comparison of discrete fractional transforms and
JPEG [48] is given in Table 4 for Lena and Pepper images.

It was observed that for (8 × 8) blocks, discrete fractional
transform shows better performance in image quality except
in encoding and decoding time of CPU. The improvement
in PSNR for Lena and Pepper images is 9.89 and 8.21 dB,
respectively.

3.2 Image encryption

An encryption technique transforms the image such that only
authorized users can understand the meaning of the image
using encryption keys. A number of review papers are avail-
able on image and video encryption providing a more or less
inclusive overview of the techniques proposed so far [49–54].
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Table 3 MSE & PSNR at optimum a and selected compression (10 %) using DFrFT and DFrCT

Image Compression percentage Using DFrFT Using DFrCT

aopt MSE PSNR aopt MSE PSNR

Boat 10 0.93 0.1118 56.555 0.92 0.3281 51.08

House 10 0.93 0.010 66.99 0.98 0.1718 54.69

Pepper 10 0.91 0.0226 63.49 0.95 0.3271 51.10

Aerial 10 0.96 0.14 55.48 0.97 0.2993 50.69

Jet plane 10 0.92 0.021 63.68 0.94 0.2968 50.68

Baboon 10 0.92 0.046 60.08 0.93 0.1093 54.23

Flower 10 0.94 0.0102 66.94 0.94 868.16 18.74

Fig. 3 Simulation results of
Baboon image with three
transforms at compression
percentage = 10 %. a The
original Baboon image,
b compressed using DFrFT,
c compressed using DFrCT,
d compressed using DFrHT

Fig. 4 Compression percentage vs. PSNR of a Baboon and b Barbara image for DFrFT, DFrCT and DFrHT

Table 4 Comparison of discrete fractional transforms and JPEG

Algorithm Image size PSNR in dB CPU time

Encoding time (s) Decoding time (s)

Discrete fractional transforms Lena (256 × 256) 44.55 5.33 5.33

Pepper (256 × 256) 42.28 3.48 3.48

JPEG [48] Lena (256 × 256) 34.66 0.12 0.12

Pepper (256 × 256) 34.27 0.2 0.2
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Fig. 5 Simulation results with
DFrCT. a original Baboon
image, b encrypted Baboon
image (1, 0.33, 0.8) with
PSNR = 79.072, c incorrectly
decrypted image
(−0.6,−0.33,−0.8) with
PSNR = 54.31, d incorrectly
decrypted image
(1,−0.40,−0.8) with
PSNR = 78.92, e incorrectly
decrypted image
(−1,−0.33,−0.5) with
PSNR = 78.41, f correctly
decrypted image
(−1,−0.33,−0.8) with
PSNR = 80.04

It has been recently noticed that cascaded discrete fractional
transforms with random phase filtering can be used in encryp-
tion of images [55–59]. Tao et al. in [60] proposed a scheme
utilizing random phase encoding in the fractional Fourier
domain; two images can be encrypted into one encrypted
image with stationary white distribution. Image encryption
benefits from the extra degree of freedom that is provided by
discrete fractional orders. The n-stage of discrete fractional
transforms can provide n-dimensional extra keys indicated
by the fractional orders. Two individual fractional orders
along x-axis and y-axis are used in two-dimensional discrete
fractional-order transforms. Such a system can have n − 1
random phase filters, so that the total encryption keys can be
increased to as many as 3n − 1.

The order ‘α’ along x and y directions is taken to be the
same, that is, αx = αy = α, and three stages of DFrCT are
cascaded together. In the intermediate planes, two randomly
encoded phase masks are used. The algorithm consists of
two parts, encryption to encrypt the image and decryption to
retrieve the image back.

Consider real-valued two-dimensional image data, f (x0,

y0), which is to be encrypted. The image is discrete-
fractional-cosine-transformed three times using fractional-
orders α1, α2 and α3, respectively. In the intermediate stages,
we put two random phase masks (RPM),

p1(x1, y1) = exp [−ι2πϕ1(x1, y1)] (22)

and

p2(x2, y2) = exp [−ι2πϕ2(x2, y2)] (23)

serving as phase filters, respectively. Here, functions ϕ1(x1,

y1) and ϕ2(x2, y2) are randomly generated homogeneously
distributed functions with values (0, 1). Thus, the resultant
transformed function 
(x, y) can be written as in Eqs. (24–
26):


(x, y) = Fα3
c {
2(x2, y2)p(x2, y2)} (24)

with


2(x, y) = Fα2
c {
1(x1, y1)p(x1, y1)} (25)

and


1(x1, y1) = Fα1
c { f (x0, y0)} (26)

The final resultant function 
(x, y) is the encrypted
image. The decryption process is the inverse operation with
respect to encryption. First, take a DFrCT of order-α3 on the
encrypted image 
(x, y), multiply the random phase mask
p∗

2 (x1, y1) and then get the midterm function 
2 (x2, y2).
Next, perform a fractional Fourier transform of order-α2 on
the function 
2 (x2, y2) and then multiply it by the phase
mask p∗

1 (x1, y1); thus, function 
1 (x1, y1) will be recov-
ered. After another fractional Fourier transform of order-α1

on the function 
1 (x1, y1), finally get the original image
f (x0, y0). Here, the mask p∗

2 (x1, y1) and p∗
1 (x1, y1) are

the complex conjugate of p2 (x1, y1) and p1 (x1, y1), respec-
tively.

Encryption and decryption results for Baboon, Boats,
Flower, House and Pepper images of 256 × 256 pixels
using discrete fractional transforms (DFrFT, DFrCT) are
obtained. Numerical simulations have been performed to
examine the performance of discrete fractional transforms
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Fig. 6 Simulation results with
DFrFT a original Baboon
image, b encrypted Baboon
image (0.5, 0.5, 0.5) with
PSNR = 60.46, c incorrectly
decrypted image
(−0.6,−0.5,−0.5) with
PSNR = 54.46, d incorrectly
decrypted image
(−0.5,−0.4,−0.5) with
PSNR = 53.20, e incorrectly
decrypted image
(−.5,−0.5,−0.7) with
PSNR = 53.20, f correctly
decrypted image
(−0.5,−0.5,−0.5) with
PSNR = 53.20

(DFrFT, DFrCT). The original Baboon image is encrypted
with fractional keys {1, 0.33, 0.8} using DFrCT and {0.5,
0.5, 0.5} using DFrFT as shown in Figs. 5 and 6, respectively.
The effect on PSNR is calculated, and it is observed that in
DFrCT, the value of PSNR decreases. Figure 5 shows that
PSNR affects much more in DFrCT as compared to DFrFT
even if single right key is not used for decryption.

There are many aspects of security analysis for evaluating
how a system behaves with common noise attacks. The main
noise of consideration is salt and pepper noise. The angle
of rotation α = aπ /2 depends on fractional-order ‘a’. The
length of fractional part of a can be increased, and it will be
difficult for attacker to find the correct key. Figure 7 shows
salt & pepper noise and decrypted image for DFrFT.

3.3 Video encryption

From the past decade, many people around the world acquire,
utilize and share videos via Internet [61–65]. Security and
protection of video contents are the main demand of users.
Raw video data consist of a series of still images. We have
discussed image encryption techniques as priority.

An encryption and decryption algorithm is implemented
for video encryption based on discrete fractional transforms.
A number of examples of video sequences at 25 frames per
second have been encrypted using discrete fractional cosine
transforms. Four successive frames from a video clip, and
their encrypted form based on DFrCT are depicted in Figs. 8
and 9, respectively.

The advantages of the proposed algorithm are as follows:

a. Multi-keys used to encrypt video frame will enhance the
security strength of video.

b. Three-dimensional discrete fractional transform is sep-
arable transform, and it can be implemented as a series
of one-dimensional transform (or as a two-dimensional
transform followed by a one-dimensional transform).
Each frame of video clip is encrypted with encryption
key column-wise and row-wise and so creates difficulty
for adversary to decrypt each frame of same video scene.

c. Because of individual frame encryption, if a frame is cor-
rupted or lost during transmission, it does not affect the
decryption of other frames. Therefore, time is saved by
avoiding iteration transmission of remaining frames due
to single lost frame.

At receiving end, the authorized user will use inverted
decryption keys and get original frames. Figures 10 and 11
shows the results with wrong keys, and Fig. 12 shows the
results with right encryption keys. A variety of video clips
with different encryption keys using DFrFTs are simulated.
Videos of different frame sizes are taken to calculate the mean
square error (MSE) and peak signal-to-noise ratio (PSNR)
using DFrFT and DFrCT as shown in Table 5.

It is observed that DFrCT gives superior PSNR and less
MSE for video encryption in comparison with DFrFT.

Strong encryption algorithm must be capable of resisting
attack of salt–pepper noise in channel. Figure 13 shows orig-
inal building video frame and its decrypted frame at receiver
after salt–pepper noise attack.
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Fig. 7 a Original Barbara
image, b encrypted using
DFrFT and attacked with
salt–pepper noise, and
c decrypted using DFrFT

Fig. 8 A sequence of four
frames (0–3): note the motion
of arms

Fig. 9 Encrypted video frames
of their respective frames

Fig. 10 Decrypted video
frames of their respective frames
(with wrong keys)

Fig. 11 a Decrypted frame
with first key wrong, b with
second key wrong, c with third
key wrong and d with all keys
wrong

Table 5 MSE and PSNR for different test videos with DFrFT and DFrCT

Test video Frame size (M × N ) With DFrFT With DFrCT

MSE PSNR MSE PSNR

Mars 600 × 480 0.013574 66.803573 0.021606 64.785145

Person 480 × 360 0.029564 63.422864 0.000056 90.636911

Building 480 × 640 0.322862 53.040639 0.000375 82.395493

Corn 720 × 1,152 0.005990 70.356811 0.000001 109.524013

Sea shore 480 × 854 0.177648 55.635208 0.000188 85.388985
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Fig. 12 Decrypted video
frames of their respective frames
(with right keys)

Fig. 13 Building video frame.
a Original, b encrypted using
DFrCT and attacked with
salt–pepper noise, c decrypted
using DFrCT

4 Conclusions

This paper has reviewed that discrete fractional transforms
are used extensively and researched in various applications
to improve efficiency. MSE and PSNR values for different
test images at selected compression percentage and optimum
fractional-order ‘a’ are computed using discrete fractional
transforms for image compression. It has been concluded
that DFrFTs perform better with high PSNR and low MSE
in image compression. Discrete fractional transforms with
multi-keys enhance security in image encryption. DFrCT
results give abundant variations in PSNR with change in
single key as compared to DFrFT. Hence, DFrCT estab-
lishes better sensitivity of encryption keys for authorized
users. Encryption of different frame size videos with discrete
fractional cosine transforms gives better PSNR as compared
to DFrFTs. The high PSNR of the order of 79 dB makes
the algorithm suitable for real-time applications. The future
scope will be the implementation of other discrete fractional
transforms in image and video applications.
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