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Abstract For images with partial blur such as local defocus
or local motion, deconvolution with just a single point spread
function surely could not restore the images correctly. Thus,
restoration relying on blur region segmentation is developed
widely. In this paper, we propose an automatic approach
for blur region extraction. Firstly, the image is divided into
patches. Then, the patches are marked by three blur features:
gradient histogram span, local mean square error map, and
maximum saturation. The combination of three measures is
employed as the initialization of iterative image matting algo-
rithm. At last, we separate the blurred and non-blurred region
through the binarization of alpha matting map. Experiments
with a set of natural images prove the advantage of our algo-
rithm.

Keywords Blur region segmentation · Image matting ·
Gradient histogram span · Local mean square error ·
Maximum saturation

1 Introduction

Classical image restoration mainly focuses on the
deconvolution under the assumptions of linear system trans-
formation, stationary signal statistics, and stationary signal-
independent noise [1,2], with the usage of fast Fourier
transform (FFT). Unfortunately, the assumptions are not
always fit for real applications. For example, the degradations
with SVPSF (space-variant point spread function), caused by
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optical aberration, medium perturbation, temperature varia-
tion, local defocus blur, local motion blur, etc., could not use
FFT directly because of the added object-space coordinate.
Usually, the image segmentation methods perform well in
ordinary application [3,4], but would fail in local blur seg-
mentation. Therefore, sectioned approach [5,6] is proposed
to solve the problem.

Sectioned approach is based on subframe partition and
traditional space-invariant point spread function (SIPSF)
restoration. For applications with global SVPSF blur [7], the
selection of isoplanatic region, in which the PSF does not vary
significantly, usually depends on the regularity of PSF varia-
tion. While for partial blurred images, local defocus blurred
images, and local motion blurred images, we need to extract
the defocus region, or motion object. A single motion blurred
image is deblurred using speed detection [8], which is a sec-
tioned approach, while the results contain much ringing due
to the error segmentation of blur region. It is not easy to per-
form the extraction, that is, to distinguish the blurred region
from the non-blurred region.

Recently, researchers have made a great effort on this
issue. It is apparent that highly blurred regions accommo-
date low spatial derivatives. So the sharpness of edge is an
effective reflection of blur extent [9]. Rugna et al. [10] find
that blurred regions are more invariant to low-pass filtering.
Similarly, Bar et al. [11] smooth the partial blurred image by
Laplacian function first, but the identification of blurred/non-
blurred regions is different. It is based on the observation that
the average gray level of the edges in the blurred region is
lighter than in the sharp regions. The thickness of object
contours after filtering with steerable Gaussian basis filter is
utilized as a blur feature as well [12,13]. Moreover, Chuang
et al. [14] fit gradient magnitude along edge direction to a
normal distribution and then combine the standard devia-
tion of the distribution and gradient magnitude as the blur
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measure. The color, gradient, together with spectrum infor-
mation of the partial blurred image, which is described in
Liu’s [15] work, also provide additional useful knowledge
for the discrimination.

However, in most of existing research on blur detection,
the accuracy rate is not satisfactory. To improve the reliability
of blur region segmentation, we suggest to combine three blur
features, gradient histogram span, local mean square error
map, and maximum saturation, to discriminate blur patches
and automatically create a ‘trimap’ (which means the image
is divided into three partitions, the foreground marked with
white, the background marked with black, and the unknown
area), and then use image matting to extract the exactly blur
region. Image matting [16–20] is a kind of soft segmentation
which reserves the details, even as feather or hair, between
different regions well. Nonetheless, in general, user interac-
tion is needed to specify the foreground and background. In
our investigation, there are no user strokes of foreground
and background, instead of the marked regions detected
automatically by the three blur features. The combination
of automatic blur detection and image matting shows chal-
lenging results in our experiment presented in the following
section.

2 Blur region detection

As shown in Fig. 1, there are two styles of partial blurred
images. Figure 1a is a local defocus blurred image. The cam-
era focuses on the forest backwards, and the rabbit in the front
is out of focus, with obvious blur. The car in Fig. 1b is mov-
ing during the scene captured, which results in partial motion
blur. Surely, deconvolution with a single blurring kernel for
the entire image will lead to severe artifacts. Therefore, we
need to distinguish the blurred region from the non-blurred
region and restore them, respectively.

In the following sections, we will quantify three blur fea-
tures, denoted as q1, q2, and q3, respectively, in Sect. 2.
It is known that gradient of an image is the derivative of

Fig. 1 Partial blurred images, a local defocus blurred image, b local
motion blurred image

horizontal or vertical pixels, commonly denote where the
sharp edge is. The gradient feature gradient histogram span
(GHS) is determined by Eq. (2), as presented in Fig. 2a.
Likewise, local mean square error (LMSE) describes the dif-
ferences between neighbor pixels. The impulses near struc-
ture edges accommodate large values, while in blur region,
the pixels are inclined to be similar with each other, which
leads to small values. The LMSE feature is defined by Eq.
(4), and Fig. 2b demonstrates the LMSE distribution map
for Fig.1a. In addition, the blur process confuses the color
information. With the concept that confused color means
lower saturation, the observation motivates us to perform
the blur detection by saturation of color. The maximum sat-
uration (MS) feature is defined by Eq. (6). As shown in
Fig. 2c, the blurred rabbit is expressed by low saturation.
In the following sections, we will quantify the three blur
features. And they are employed jointly to construct a pre-
signed mask, that is, ‘trimap’ for the following matting. And
Fig. 2d–f are corresponding to Fig. 1b. In Fig. 2f, the MS
value of unblurred road is lower than the blur car. For dif-
ferent image content, one feather will make mistake, for that
we prefer to combine three features together. The all three
blur features map in Fig. 2 are only shown their intensity
information.

2.1 Gradient histogram span

Comparing a blurred image with a non-blurred one, we could
easily get the conclusion that the edge of blurred image is
not as sharp as the latter. That means the gradient of blurred
image is lower, as illustrated in Fig. 2a. Moreover, recent
research in natural image modeling [15,21,22] suggests that
the statistics of gradient response in natural images usually
follow a mix-Gaussian distribution, and the gradient his-
togram span responds to the observed derivatives. As exam-
ples, we choose two pairs of blur/non-blur patches, which
are marked with green/red rectangle in Fig. 3a, b, to demon-
strate this distribution characteristic. The gradient maps of
the patches are computed first, and then, the histograms of
the maps are plotted. Figure 3c, d presents the log gradient
distributions of blur patches, while Fig. 3e, f are for non-blur
regions, which exhibit apparent heavy-tail compared with the
former.

A mixture of two-component Gaussian model is used to
approximate the distribution:

G p = a1e
−(x−σ1)

2

μ1 + a2e
−(x−σ2)

2

μ2 (1)

where mean value μ1 = μ2 = 0, and variance σ2 >

σ1. a1, a2 are constants. The components of the fitted
Gaussian mixture models are illustrated as magenta curves
in Fig. 3. The Gaussian component with larger variance
σ2 is mainly responsible for causing the heavy-tail in

123



SIViP (2013) 7:1173–1181 1175

Fig. 2 Intensity map of the
three blur features. a GHS map
of Fig. 1a. b LMSE map of
Fig. 1a. c MS map of Fig. 1a.
d GHS map of Fig. 1b. e LMSE
map of Fig. 1b. f MS map of
Fig. 1b

the original distribution [15]. Hence, we set σ2 as a blur
factor:

q1 = σ2 (2)

2.2 Local mean square error map

We define LMSE as the sum of all pixels’ mean square in the
patch, expressed by:

Vp = 1

n

√∑
n

(x − mean)2 (3)

It is a measure of the variance between the pixel and the
mean value. There will be a large value near sharp edge,
while blur region usually has small LMSE. Considering
that different scenes contain different levels of edge sharp-
ness, we take the relative local-to-global variance as our blur
factor:

q2 = Vp − Vo

Vo
(4)

In which Vo is the mean square error of the entire image.

2.3 Maximum saturation

Color information is also useful for blur detection. It is
observed that blurred pixels tend to have less vivid colors
than non-blurred pixels because of the smoothing effect of
the blurring process [15]. Consequently, the saturation of
color can be used as a measure of blurdegree.

Sp = 1 − 3

R + G + B
[min(R, G, B)] (5)

After computing the saturation Sp of each pixel in a patch,
we find the maximum value max (Sp). It is compared with
the maximum saturation value of the whole image max (So).
Then, we get the third blur factor:

q3 = max(Sp) − max(So)

max(So)
(6)

2.4 Blur/non-blur mask

Although the gradient histogram span, local mean square
error, and maximum saturation are effective blur features,
they could not work well lonely. To illustrate that, we apply
the three blur measures to detect blur and non-blurred regions
in the image shown in Fig. 1b individually. The image is
partitioned to patches size of 20 × 20 in advance. We set
different thresholds Tb, Td for each blur measure. If the blur
factor in a patch is smaller than Tb, the patch is marked as
blurred with white color. If the blur factor is larger than Td ,
the patch is marked as non-blurred region with black color.
Note that since we use white and black as mark, the pixels
with the color [0, 0, 0] and [255, 255, 255] must be removed
from the pending image.

Figure 4a, c, e are the blur region detection results with
above three approaches, respectively. No doubt that not all
patches of car can be picked up. Simultaneously, there are
some detection errors in the road patches, since the road
has a unitary structure and color information which is sim-
ilar with the blur region. The marked non-blur regions are
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Fig. 3 a One local defocus blurred image with a pair of blur/non-blur
blocks marked by green/red rectangles. b One local motion blurred
image with two blocks selected similarly. c, e present the gradient dis-
tributions of the blur/non-blur blocks in (a), respectively. The original

log distributions are plotted in blue, whereas their approximations by
mixture of Gaussian are displayed with magenta curves. d, f are gradient
distributions of the two blocks in (b) (color figure online)

shown in Fig. 4b, d, f. The road and grass are extracted cor-
rectly. However, the black patches containing different object
structures are out of our expectation. These patches must be
removed, or it will result errors in the following image mat-
ting. By the way, it is worth noting that the discrimination
accuracy is related to the pattern of patches partition to some
extent.

Hence, we combine the three features to improve accuracy.
That is, if all of the three features regard a patch blurred, the
patch is blurred with higher probability. It is the same to the
non-blurred patch.

Q = q1q2q3 (7)

If Q < Tb, the patch is blurred, else if Q > Td , it is non-
blurred. So we get the ‘trimap’ as shown in Fig. 4g.

3 Image matting

Image matting attempts to separate a foreground object
from the background, which is guiding for our segmentation
of blurred/non-blurred region. Matting algorithms typically
assume that each pixel x = (i, j) in an input image I (x)

is a linear combination of a foreground color F(x) and a
background color B(x), by an alpha map αx [16]:

I (x) = αx F(x) + (1 − αx ) B(x) (8)

αx is opacity value for each pixel, ranged from 0 to 1. If
the alpha map is constrained to be either 0 or 1, the matting
problem degrades to be a segmentation problem. Wang [16]
proposed an iterative optimization algorithm ground on belief
propagation (BP) to determine F , B, and α, with the help of
uncertainty u. In the first stage, pixels in marked regions are
initialized to have an uncertainty of 0, an α of 0 (background)
or 1 (foreground). u of the other pixels is set as 1, and α =
0.5. In each iteration, the alpha map as well as uncertainty
value is updated. Pixels with new estimated value u = 0 are
removed from unknown region to foreground or background.
While the certainty for the whole image cannot be reduced
any further, we get the last matte. More details could be found
in Wang [16].

We repeat the matting algorithm with a pre-signed mask
as Fig. 4g and extract the alpha matte illustrated in Fig. 5a.
Totally, the moving car is separated from the stationary plants
very well. Though a part of car-roof is not sufficiently cov-
ered, mainly because of the erroneous black mark near the
roof. This patch has a large gradient and LMSE, as it includes
the edge of the car and rape with vivid color. We will take
more attention on removing this kind of blocks in our future
work.
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Fig. 4 Blur/non-blur regions
detected by three blur features.
a, b Blur/non-blur regions
detected by gradient histogram
span. c, d Blur/non-blur regions
detected by local mean square
error map. e, f Blur/non-blur
regions detected by maximum
saturation. g ‘Trimap’ created
by the three features, blur
regions are marked with white,
and non-blurred regions are
marked with black

Fig. 5 a Alpha matte extracted
by image matting. b The blur
region segmentation with our
algorithm (area within the red
line) (color figure online)

4 Experiments and discussions

4.1 Typical experiments

Another group of experiment results are presented in Fig. 6.
Figure 6a–c show the blurred regions picked up with three
features, while Fig. 6d–f mark the focused forest. The com-
position of marks is presented in Fig. 6g. We get the alpha
matting map in Fig. 6h and the blur region segmentation
rounded by red line in Fig. 6i.

The [0, 0, 0] and [255, 255, 255] pixels are rejected in
advance. Although black trunk of the tree in the 20 × 20
patches which are nearly unitary regions incline to be mis-
treated as blurred region, we adjust the thresholds of three
blur factors to eliminate the incorrect marks. Meanwhile, the
marks of edge patches containing different object between
two regions cancel each other, leaving only forest patches.
Our algorithm successfully extracts the defocused rabbit.
However, it is a pity that the triangle area within green line
between the ear and the left boundary does not have a back-
ground mark, thus failure to be recognized. This situation
could be improved by decreasing the size of image patch to
match the small area. But too smaller patch will result in huge
computational complexity, together with more difficulty in

rejection of erroneous mark. A balance is required for each
single application.

More examples are shown in Fig. 7. Focused turtle and
butterfly in Fig. 7a, b are successfully separated from the
blurred background. Figure 7c is a challenging image with
different kinds of blur and different extent of blur. The cat
on the left side is focused and stationary, while the cat on the
right is ‘flying’ with slight motion blur, and the defocused
plant background is more blurred. By adjusting the thresh-
olds of blur factors, we extract the two cats as illustrated in
Fig. 7c, d.

We show a blur segmentation examples in Fig. 8, where
(a) is a challenging image example for blur segmentation.
Figure 8b is a result of [15], with unblurred regions in
red, motion blurred region in yellow, and focal blurred
regions in blue. Thus, the unblurred regions is in red and
blur area is in other color. And Fig. 8c is extracted matte
with our method, from which we can judge the blur and
unblurred region. Our segmented result is shown in Fig. 8d.
Our result is better than [15]’s in segmenting blur/non-blur
regions, especially in “hand” area. Though the blur region
and unblurred area are carefully separated, there are sev-
eral mistakes in “leaf” area. We need to improve it in future
work.
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Fig. 6 a–c Blurred regions
detected by gradient histogram
span, local mean square error
map, and maximum saturation,
respectively. d–f Non-blurred
regions detected by three
features. g ‘Trimap’ for matting.
h Extracted matte. i Blurred
region segmentation

Fig. 7 Segmentation results.
a Focused turtle and defocus
background. b Focused butterfly
together with flower, and
defocused background.
c Stationary non-blurred cat,
‘flying’ cat with a little blur and
defocused background with
more blur. d ‘Flying’ cat with a
little blur and defocused
background with more blur
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Fig. 8 Blur segmentation
results for partially blurred
images. a A challenging image
example from Liu et al. [15].
b Liu et al. [15]’s result with
unblurred regions in red, motion
blurred region in yellow, and
focal blurred regions in blue,
c extracted matte with our
method, d our segmentation
result with separating blur and
unblurred region (color figure
online)

Fig. 9 Selected examples of
images (first two rows) and
manually labeled patches (third
row) from our datasets

4.2 Effectiveness measures

We collect totally 200 partially blurred images to form our
database, including local defocus or local motion. These
images are from websites, such as Google and Flickr.com.
And we manually select and segment them into square
patches, generating blur patches and unblurred patches. The
size of those images ranges from 40 × 40 to 200 × 200 pix-
els, which occupies about 5–20 % of the size of the original
images. Figure 9 shows examples of images and patches. The
first two rows are selected examples of images, and manually
labeled patches (blur or unblurred) are shown in third row.
Totally, we generated 400 blur patches and 400 unblurred
patches.

Using the accuracy metric, we can evaluate the ability of
our classifier. Let N be the number of patches to classify, fi

be the label for patch i , and ai be the ground truth label for
patch i ; the measurements are defined as [10,15]

Accracy = |{i; fi = ai }|
|N | (9)

In our segmentation method, for an arbitrary image, we firstly
do blur region segmentation like Fig. 5b, and then, the whole
image is separated into blur region and unblurred region.
Suppose patch i is a blur patch, ai is labeled as “blur”, if
fi belongs to the above blur region, then fi = ai. Suppose
patch i is an unblurred patch, ai is labeled as “non-blur”, if fi

belongs to the above unblurred region, one can also conclude
fi = ai.

According to the accuracy rate listed in Table 1, the accu-
racy rate of our method is 85.32 %. The excellent methods
[10] and [15] are considered for comparison. Since we cannot
get the original code, the results of Rugna and Konik [10] and
Liu et al. [15] are the performance in their original papers.
Because the similar definition and calculation of accuracy,
the accuracy rate of Rugna and Konik [10] and Liu et al. [15]
can be considered as reference results, which could still be
used for comparison. In order to evaluate individual features
in blur detection, we also calculate the accuracy with only
q1 or q2 or q3, which is also listed in Table 1. In Table 1, Q2

means the result of Q2 = q1 + q2 + q3 replacing for Eq. (7).
The accuracy of direct multiplication and direct summation
is almost equal. The simple combination for three factors
could do well in blur segmentation.

With the largest accuracy rate, our algorithm performs
best. In Rugna and Konik [10] and Liu et al. [15], they need
image data used for training. And in our algorithm, the thresh-
old Td and Tb for Eq. (7) should be slightly adjusted and
changed for different images. This disadvantage should be
improved in future.

4.3 Attempt for image restoration

To apply our algorithm in partial blur image, restoration is
our final purpose. We try to restore Fig. 1 for further attempt.
Actually, the most difficult in partial blur image restoration
is how to well combine the restored blur region and original
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Table 1 Accuracy rate on the dataset

Method Liu et al. [10] Rugna and Konik [15] Ours Q2 Only q1 Only q2 Only q3

Accuracy 80.70 % 76.98 % 87.32 % 87.14 % 61.45 % 54.26 % 57.69 %

Fig. 10 The restored results.
a The result for Fig. 1a.
b The result for Fig. 1b

unblurred area together, reducing the artifacts between the
two regions.

Estimating the PSF with image statistics [22], then we can
restore the blur image. The extracted matte is used as weight
matrix for blur region restoration, which could help reduce
the effect from unblurred area. In order to further control the
artifacts between the two regions, inpainting technique [24]
is also used to reconstruct the deteriorated parts. The restored
results for Fig. 1 are shown in Fig. 10. Though the restored
images are promising, the deteriorated parts are still exists
between blur and unblurred regions. How to well restore and
reconstruct the border of two regions is the key point of future
work.

5 Conclusions

The restoration of partial images is inherently a limited
SVPSF restored problem, absent from classical FFT decon-
volution. Therefore, blur region segmentation algorithm is
used to recover different area separately. In this paper,
gradient histogram span, local mean square error map,
together with saturation information of pixels are utilized for
automatic segmentation. Iterative image matting is also intro-
duced to extract the blurred region more accurately, with-
out the drawback of user interaction. Our algorithm provides
results as well as, if not outperform, the state-of-the-art seg-
mentation. The limitations on unitary region discrimination
and edge block erroneous mark will be our emphasis for the

future work. How to perfectly restore and reconstruct the
border of blur and unblurred region is also a challenging job.
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