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Abstract The offset linear canonical transform (OLCT),
which is a time-shifted and frequency-modulated version of
the linear canonical transform, has been shown to be a pow-
erful tool for signal processing and optics. However, some
basic results for this transform, such as convolution and cor-
relation theorems, remain unknown. In this paper, based on
a new convolution operation, we formulate convolution and
correlation theorems for the OLCT. Moreover, we use the
convolution theorem to investigate the sampling theorem for
the band-limited signal in the OLCT domain. The formulas
of uniform sampling and low-pass reconstruction related to
the OLCT are obtained. We also discuss the design method
of the multiplicative filter in the OLCT domain. Based on
the model of the multiplicative filter in the OLCT domain, a
practical method to achieve multiplicative filtering through
convolution in the time domain is proposed.

Keywords Offset linear canonical transform ·Convolution
theorem · Correlation theorem · Linear canonical transform ·
Sampling theorem ·Multiplicative filtering

Q. Xiang
College of Automation, University of Electronic Science
and Technology of China, Chengdu,
610054, People’s Republic of China

Q. Xiang (B)
College of Electrical and Information, Southwest University
for Nationalities, Chengdu, 610041, People’s Republic of China
e-mail: xqiang_0426@163.com

K. Qin
Institute of Astronautics and Aeronautics,
University of Electronic
Science and Technology of China,
Chengdu, 610054, People’s Republic of China
e-mail: kyqin@uestc.edu.cn

1 Introduction

The OLCT [1–3], also called the special affine Fourier trans-
formation [4] or the inhomogeneous canonical transform [1],
is a six-parameter (a, b, c, d, u0, ω0) class of linear integral
transform. It is a time-shifted and frequency-modulated ver-
sion of the LCT [5–7]. The OLCT is more general and flex-
ible than the original LCT for its two extra parameters u0

and ω0, which correspond to time shifting and frequency
modulation, respectively. Many widely used linear trans-
forms in engineering, such as the Fourier transform (FT),
the offset FT [1,3], the fractional Fourier transform (FRFT)
[6,8], the offset FRFT [1,3], the Fresnel transform (FRST)
[9], the LCT, time shifting and scaling, frequency modu-
lation, pulse chirping, and others, are special cases of the
OLCT. Therefore, understanding the OLCT and developing
relevant theorems for OLCT may help to gain more insights
on its special cases and to carryover knowledge gained from
one subject to others.

Conventional convolution and correlation operations for
FT are fundamental in the theory of linear time-invariant
(LTI) system [10]. The output of any continuous-time LTI
system is found via the convolution of the input signal with
the system impulse response. Correlation, which is similar
to convolution, is another important operation in signal pro-
cessing, as well as in optics, in pattern recognition, especially
in detection applications [6,11,12]. During past years, many
studies have shown that convolution and correlation oper-
ations could be extended to wider domains. For example,
convolution and correlation operations for FRFT have been
proposed some years ago [13,14]. Recently, with intensive
research of the LCT, convolution and correlation operations
have been further extended to LCT domain in the literature
[15–17]. However, convolution and correlation operations
for OLCT still yet remain unknown.
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As a generalization of many other linear transforms, the
OLCT has found wide applications in optics and signal pro-
cessing [1–3]. It is theoretically interesting and practically
useful to consider convolution and correlation theorems in
the OLCT domain. Convolution theorem for a linear integral
transform can be formulated in several ways. Based on the
expression for the generalized translation in the LCT domain,
the generalized convolution theorem has been derived in the
LCT domain by Wei [16], which shows that the generalized
convolution of two signals in time domain is equivalent to
simple multiplication of their LCTs in the LCT domains.
However, the generalized convolution structure in [16] is a
triple integral. So, it is complicated to reduce the expres-
sion of the generalized convolution to a single integral form
as in the ordinary convolution expression. In this paper, we
propose a new convolution structure for the OLCT, which is
different from the generalized convolution structure. It can be
expressed by a simple one-dimensional integral and easy to
implement in multiplicative filter design. In this work, based
on a new convolution operation for OLCT, we will discuss
convolution and correlation theorems in the OLCT domain.
As an application, we also investigate the sampling theorem
and multiplicative filtering for the band-limited signal in the
OLCT domain by using convolution theorems proposed here.

The rest of the paper is organized as follows. Section 2
gives a brief description of the OLCT along with some prop-
erties. In Sect. 3, based on a new convolution operation,
we derive convolution and correlation theorems for OLCT
in detail. The sampling theorem for OLCT and discussions
about multiplicative filter in the OLCT domain are presented
in Sect. 4. Section 5 concludes the paper.

2 The OLCT

The OLCT with real parameters of A = (a, b, c, d, u0, ω0)

of a signal f (t) is defined by [1,2]:

FA(u) = OA
L [ f (t)](u)

=
{∫ +∞
−∞ f (t)hA(t, u)dt b �= 0√
de j cd

2 (u−u0)
2+ jω0u f [d(u − u0)] b = 0

,

(1)

where

hA(t, u) = KAe
j

2b [at2+2t (u0−u)−2u(du0−bω0)+du2],

KA =
√

1

j2πb
e j d

2b u2
0 , (2)

and ad − bc = 1. The definition for case b = 0 is the limit
of the integral in (1) for the case b �= 0 as |b| → 0. There-
fore, from now on we shall confine our attention to OLCT for
b �= 0. And without loss of generality, we assume b > 0 in the
following sections. The inverse of an OLCT with parameters

A = (a, b, c, d, u0, ω0) is given by an OLCT with parame-
ters A−1 = (d,−b,−c, a, bω0−du0, cu0−aω0). The exact
inverse OLCT expression is given by [1,2]:

f (t) = OA−1

L [FA(u)](t)

= C

∞∫
−∞

FA(u)hA−1(u, t)du, (3)

where

C = e j 1
2 (cdu2

0−2adu0ω0+abω2
0).

This can be verified by using the definition (1). Some of
the special cases of the OLCT are listed in Table 1. Those
relations can be easily verified by substituting the specific
parameters A in Eq. (2).

A signal f (t) is band-limited to UA in the OLCT domain,
which means that:

FA(u) = 0 for |u| > UA,

where UA is called the bandwidth of the signal f (t) in the
OLCT domain with parameters A.

The OLCT has many properties [1–7,17]. We present the
following important space shift and phase shift properties of
OLCT [7,17], which can also be easily verified by using the
definition (1).

Property 1: The space shift property [7,17]

OA
L [ f (t−τ)](u)
=FA(u − aτ)e− j acτ2

2 +jcτ(u−u0)+jaτω0 . (4)

Property 2: The phase shift property [17]

OA
L [ f (t)e jvt ](u)
=FA(u−bv)e− j bdv2

2 + jdv(u−u0)+ jbvω0 . (5)

Table 1 Some of the specific cases of the OLCT

Transform Parameters A

Offset linear canonical transform (OLCT) A = (a, b, c, d, u0, ω0)

linear canonical transform (LCT) A = (a, b, c, d, 0, 0)

Fourier transform (FT) A = (0, 1,−1, 0, 0, 0)

Fractional Fourier transform (FRFT) A = (cos θ, sin θ,

− sin θ, cos θ, 0, 0)

Offset fractional Fourier transform A = (cos θ, sin θ,

(OFRFT) − sin θ, cos θ, u0, ω0)

Fresnel transform (FRST) A = (1, b, 0, 1, 0, 0)

Frequency modulation A = (1, 0, 0, 1, 0, ω0)

Time scaling A = (d−1, 0, 0, d, 0, 0)

Time shifting A = (1, 0, 0, 1, u0, 0)
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Property 3: The space shift and phase shift properties [17]

OA
L [ f (t − τ)e jvt ](u)
= FA(u − aτ − bv)e− j acτ2+bdv2

2

×e j (cτ+dv)(u−u0)e− jbcτve j (aτ+bv)ω0 .

(6)

3 Convolution and correlation theorems for OLCT

In this section, we derive convolution and correlation theo-
rems for OLCT based on the definition and properties of the
OLCT. Some of the well-known results about the convolution
and correlation theorems in FT domain, FRFT domain, and
LCT domain are shown to be special cases of our achieved
results.

3.1 Convolution theorems for OLCT

In the general framework of convolution theory (see [18,
Ch. 4]), it is known that to every integral transformation �,
one can, at least theoretically, associate with it a convolution
operation, �, such that

�( f�g) = �( f ) · �(g).
Let be W that subspace of the space of all integrable func-
tions with the property that f (t) ∈ W if and only if the FT
of f (t) is also in W [13,14]. Let us consider two functions,
f, h ∈ W , the conventional convolution operator for FT, is
given by [10]

f (t)∗h(t) =
∞∫
−∞

f (τ )h(t − τ)dτ .

And the convolution theorems for the FT are as follows:

ψFT( f (t)∗h(t)) = F(u)H(u),

where ψFT(·) denotes the FT operator and F(u), H(u)
denotes the FT of f (t)andh(t), respectively. In this paper,
the FT is defined as follows [10]

F(u) = ψFT( f (t)) =
∞∫
−∞

f (t)e− jut dt,

f (t) = 1

2π

∞∫
−∞

F(u)e jut du.

To obtain the convolution theorem for OLCT, we first define
a new convolution operation for OLCT.

Definition 1 For any function f (t), h(t) ∈ W , let us define

a new convolution operation
A⊗ for OLCT as follows [17]:

z(t) = ( f
A⊗ h)(t)

= KA

∞∫
−∞

f (τ )h(t − τ)e− j aτ
b (t−τ)dτ (7)

Based on the Definition 1, the expressions for the OLCT of
a new convolution of two functions can be derived.

Theorem 1 Let z(t)=( f
A⊗ h)(t)and ZA(u), FA(u), HA(u)

denote the OLCT of z, f and h, respectively. Then

OA
L [z(t)](u) = ZA(u)

= FA(u) · HA(u)e
j

2b [−du2+2u(du0−bω0)] (8)

Proof From Eqs. (1) and (6), we see that both OA
L [ f (t)](u)

and OA
L [ f (t − τ)e jvt ](u) depend on the same parameter if

we choose τ and v such that

aτ + bv = 0 (9)

According to Eq. (9), we get

v = −a

b
τ (10)

Substituting (10) into (6) and making use of ad − bc = 1,
Eq. (6) can be reduce to

OA
L

[
f (t − τ)e− j aτ

b t
]
(u) = FA(u)e

− j aτ2
2b − j τb (u−u0). (11)

Then, using the definition of the OLCT, we have

FA(u) · HA(u)

=FA(u)

∞∫
−∞

KAe
j

2b [aτ 2+2τ(u0−u)−2u(du0−bω0)+du2]h(τ )dτ .

(12)

According to Eq. (11), we get

FA(u)e
j τb (u0−u) = e j aτ2

2b OA
L

[
f (t − τ)e− j aτ

b t
]
(u). (13)

Substituting (13) into (12), we can obtain

FA(u) · HA(u)

=
∞∫
−∞

KAe
j

2b [aτ 2−2u(du0−bω0)+du2]h(τ )

×
(

e j aτ2
2b OA

L

[
f (t − τ)e− j aτ

b t
]
(u)

)
dτ. (14)
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conventional
convolution

Fig. 1 A new convolution operation for OLCT

Using the definition of the OLCT, we rewrite (14) as

FA(u) · HA(u)

= K 2
Ae

j
2b [−2u(du0−bω0)+du2]

∞∫
−∞

e j aτ2
b h(τ )

×
⎛
⎝ ∞∫
−∞

e
j

2b [at2+2t (u0−u)−2u(du0−bω0)+du2]

× f (t − τ)e− j aτ
b t dt

)
dτ. (15)

According to (7), we get

z(t) = KA

∞∫
−∞

f (τ )h(t − τ)e− j aτ
b (t−τ)dτ

= KA

∞∫
−∞

h(τ ) f (t − τ)e− j aτ
b (t−τ)dτ . (16)

Substituting (16) into (15), we can obtain

FA(u) · HA(u)e
j

2b [−du2+2u(du0−bω0)]

= OA
L [z(t)](u) = ZA(u). (17)

The proof of Theorem 1 is achieved.
From (16) and (17), we see that the function z(t) could be

a good candidate to be a new convolution of f (t) and h(t)
for the OLCT. Further, based on the conventional convolu-
tion operator, we can express the new convolution operation
(7) as

z(t) = ( f
A⊗ h)(t)

= KAe− j at2
2b

(
f (t)e j at2

2b

)
∗

(
h(t)e j at2

2b

)
. (18)

See Fig. 1, a realization of the new convolution operation
for OLCT. Equation (8) shows the OLCT of a new convolu-
tion of two functions is equivalent to simple multiplication
of their OLCTs, multiplying by a quadratic phase function
(linear chirp).This may be particularly useful in filter design
and applications as will be shown later on.

Next, we derive the expressions for the OLCT of a prod-
uct of two functions. This leads to the following convolution
theorem.

Theorem 2 For any function f (t), h(t) ∈ W , let FA(u),
HA(u) denote the OLCT of f, h, then

OA
L [ f (t)h(t)](u)
= 1

2πb
e

j
2b [du2−2u(du0−bω0)]

×
((

HA(u)e
− j 1

2b [du2−2u(du0−bω0)]
)
∗ F

(u

b

))
. (19)

Proof Let y(t) = f (t)h(t), then

YA(u) = OA
L [y(t)](u)

=
∞∫
−∞

KAe
j

2b [at2+2t (u0−u)−2u(du0−bω0)+du2] f (t)h(t)dt .

(20)

According to the inverse OLCT expression (3), we get

h(t) = C

∞∫
−∞

HA(u)hA−1(u, t)du

= C KA−1

∞∫
−∞

HA(u)e
− j 1

2b [du2+2u(bω0−du0−t)]

×e− j 1
2b [−2t[a(bω0−du0)+b(cu0−aω0)]+at2]du

= C KA−1

∞∫
−∞

HA(u)e
− j 1

2b [du2+2u(bω0−du0−t)]

×e− j 1
2b (2u0t+at2)du, (21)

where

C KA−1 = e j 1
2 (cdu2

0−2adu0ω0+abω2
0)

√
1

− j2πb
e− j a

2b (bω0−du0)
2

=
√

1

− j2πb
e− j d

2b u2
0 .

Substituting (21) into (20), we obtain

YA(u) =
∞∫
−∞

KAe
j

2b [at2+2t (u0−u)−2u(du0−bω0)+du2] f (t)

×C KA−1

∞∫
−∞

HA(v)e
− j 1

2b [dv2+2v(bω0−du0−t)]

×e− j 1
2b (2u0t+at2)dvdt
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= KA

√
1

− j2πb
e− j d

2b u2
0 e

j
2b [du2−2u(du0−bω0)]

×
∞∫
−∞

HA(v)e
− j 1

2b [dv2−2v(du0−bω0)]

×
⎛
⎝ ∞∫
−∞

f (t)e− j t
b (u−v)dt

⎞
⎠ dv

= 1

2πb
e

j
2b [du2−2u(du0−bω0)]

×
((

HA(u)e
− j 1

2b [du2−2u(du0−bω0)]
)
∗ F

(u

b

))
,

where F(·) denotes the FT of f (t). Thus, the proof of The-
orem 2 is achieved. These results of the above-derived theo-
rems are extensions of convolution theorems of the FT and
LCT to OLCT domain.

Corollary 1 If the parameter of OLCT changes to (a, b, c, d,
u0, ω0) = (0, 1,−1, 0, 0, 0), then convolution formulas of
Theorems 1 and 2 reduce to conventional convolution for-
mulas in FT domain as follows:

f (t) ∗ h(t)
FT←→ F(u)H(u),

and

f (t)h(t)
FT←→ 1

2π
F(u) ∗ H(u).

Replacing parameters A = (a, b, c, d, u0, ω0) with A =
(0, 1,−1, 0, 0, 0) in Eqs. (7), (8), and (19), respectively, the
proof of the Corollary 1 is achieved.

Corollary 2 If the parameter of OLCT changes to (a, b, c, d,
u0, ω0) = (a, b, c, d, 0, 0), then convolution formulas of
Theorems 1 and 2 reduce to convolution formulas in LCT
domain [15] as follows:√

1

j2πb
e− j at2

2b

(
f (t)e j at2

2b

)
∗

(
h(t)e j at2

2b

)
LCT←→ F(a,b,c,d)(u) · H(a,b,c,d)(u)e− j du2

2b ,

and

f (t)h(t)
LCT←→ 1

2πb
e j du2

2b

((
H(a,b,c,d)(u)e

− j du2
2b

)
∗ F

(u

b

))
,

where F(a,b,c,d)(u), H(a,b,c,d)(u) denote the LCT of f (t),
h(t), respectively. The proof of the Corollary 2 is similar to
the proof of the Corollary 1 and is omitted.

In addition to the FT and LCT, convolution theorems for the
specific OLCT cases FRST and FRFT shown in Table 1 can
also be obtained from the above-derived theorems [9,13,14].

3.2 Correlation theorem for the OLCT

Correlation, which is similar to convolution, is another
important operation in signal processing. Since the correla-
tion of two functions is no more than their convolution after
one of the two functions has been axis-reversed and complex
conjugated, the property of the new convolution results in the
property of the correlation. Making use of the new convolu-
tion structure (7) for OLCT, we can present a new correlation
operation in the OLCT domain as following

Definition 2 For any function f (t), h(t) ∈ W , let us define

a new correlation operation
A⊕ for OLCT as [17]

z(t) = ( f
A⊕ h)(t)

= KA K ∗A

∞∫
−∞

f (τ )h∗(τ − t)e j at
b (τ−t)dτ , (22)

where K ∗A =
√

1
− j2πb e− j d

2b u2
0 and superscript “∗” denotes

complex conjugation, which is also used in the following
content of this paper. Further, based on the conventional con-
volution operator, we can express the correlation operator
(22) in the OLCT domain as follow:

z(t) = ( f
A⊕ h)(t)

= KA K ∗A

∞∫
−∞

f (τ )h∗(τ − t)e j at
b (τ−t)dτ

= KA K ∗Ae− j at2
2b

∞∫
−∞

f (τ )e j aτ2
2b h∗(−(t−τ))e−j a

2b (t−τ)2 dτ

= KA K ∗Ae− j at2
2b

(
f (t)e j at2

2b

)
∗

(
h∗(−t)e− j at2

2b

)
(23)

Theorem 3 Let z(t) = ( f
A⊕ h)(t) and ZA(u), FA(u),

HA(u) denote the OLCT of z, f and h, respectively. Then

OA
L [z(t)](u) = ZA(u)

= KA FA(u) · H∗A(u)e
j

2b [du2−2u(du0−bω0)].
(24)

Proof Let us rewrite (23) in the form

z(t) = ( f
A⊕ h)(t)

= KAe− j at2
2b

(
f (t)e j at2

2b

)
∗

(
K ∗Ah∗(−t)e− j at2

b e j at2
2b

)
.

(25)

And let g(t) be such that

g(t) = K ∗Ah∗(−t)e− j at2
b . (26)
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Substituting (26) into (25), we obtain

z(t) = ( f
A⊕ h)(t)

= KAe− j at2
2b

(
f (t)e j at2

2b

)
∗

(
g(t)e j at2

2b

)
.

According to Theorem 1, we get

ZA(u) = FA(u) · GA(u)e
j

2b [−du2+2u(du0−bω0)], (27)

where GA(u) denote the OLCT of g(t). Using the definition
of the OLCT, we have

GA(u) =
∞∫
−∞

KAe
j

2b [at2+2t (u0−u)−2u(du0−bω0)+du2]

×K ∗Ah∗(−t)e− j at2
b dt

= KAe−
j
b [2u(du0−bω0)−du2]

×
⎛
⎝ ∞∫
−∞

KAe
j

2b [at2+2t (u0−u)]

· e j
2b [−2u(du0−bω0)+du2]h(t)dt

⎞
⎠
∗

= KAe
j
b [du2−2u(du0−bω0)]H∗A(u). (28)

Substituting (28) into (27), we can obtain

ZA(u) = KA FA(u) · H∗A(u)e
j

2b [du2−2u(du0−bω0)].

The proof of Theorem 3 is achieved. By substituting with the
specific OLCT parameters of A in Eqs. (23) and (24), corre-
lation theorems for the special OLCT cases FT, FRST, FRFT,
and LCT [9–17] shown in Table 1 can also be obtained from
the above-derived Theorem 3.

4 Sampling and filtering for the OLCT

Sampling and filtering are two basic theoretical problems in
signal processing. In this section, the above-mentioned con-
volution theorems will be utilized to resolve these problems
associated with the OLCT.

4.1 Sampling theorem for the OLCT

The sampling process is central in almost any domain, and
it explains how to sample continuous signals without alias-
ing. The sampling theorem expansions for the OLCT have
been derived in [2], which provide the link between the con-
tinuous signals and the discrete signals, and can be used to
reconstruct the original signal from their samples satisfying
the Nyquist rate of that domain. Here, utilizing the convolu-
tion theorem, sampling of band-limited signals in the OLCT

domain is further investigated. In particular, the formulas of
uniform sampling and low-pass reconstruction are obtained.

Firstly, we define the uniform sampled signal as follows:

f̂ (t) = f (t)sδ(t) = f (t)
∞∑

n=−∞
δ(t − nT )

=
∞∑

n=−∞
f (nT )δ(t − nT )

where T is the sampling period and sδ(t) is the uniform
impulse train. Using the definition of the OLCT, we have

F̂A(u) = OA
L [ f̂ (t)](u)

=
∞∫
−∞

KAe
j

2b [at2+2t (u0−u)−2u(du0−bω0)+du2]

×
∞∑

n=−∞
f (nT )δ(t − nT )dt

= KAe
j

2b [du2−2u(du0−bω0)]

×
∞∑

n=−∞
f (nT )e

j
2b [a(nT )2+2nT (u0−u)]. (29)

Equation (29) shows how to obtain the OLCT of a discrete
time signal f (nT ). We refer to it as the discrete-time OLCT.

Using the definition of the FT, we have

Sδ(u) = ψFT(sδ(t)) = 2π

T

∞∑
n=−∞

δ(u − n
2π

T
)

According to Theorem 2, we can obtain

F̂A(u) = OA
L [ f̂ (t)](u)

= 1

2πb
e

j
2b [du2−2u(du0−bω0)]

×
(
(FA(u)e

− j 1
2b [du2−2u(du0−bω0)]) ∗ Sδ

(u

b

))

= 1

2πb
e

j
2b [du2−2u(du0−bω0)]

(
2π

T

∞∑
n=−∞

δ

(
u

b
−n

2π

T

)

∗
(

FA(u)e
− j 1

2b [du2−2u(du0−bω0)]
))

= 1

T
e

j
2b [du2−2u(du0−bω0)]

( ∞∑
n=−∞

δ

(
u − n

2πb

T

)

∗
(

FA(u)e
− j 1

2b [du2−2u(du0−bω0)]
))
. (30)

From (30) we find that FA(u) replicates with a period of
2πb/T , along with linear phase modulation depending on
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the harmonic order n. When n = 0, we obtain

F̂A(u) = OA
L [ f̂ (t)](u)

= 1

T
e

j
2b [du2−2u(du0−bω0)]FA(u)e

− j 1
2b [du2−2u(du0−bω0)]

= 1

T
FA(u).

The expression above shows that the part of F̂A(u)with n = 0
modulates the amplitude of FA(u) by 1/T , but it does not
modulate the phase. If f (t) is a band-limited signal in the
OLCT domain, in other words, the support interval of FA(u)
is [−UA,UA], then no overlapping occurs in F̂A(u) after
sampling only if

2πb

T
≥ 2UA,

or the sampling frequency

ω ≥ 2UA

b
.

Thus, FA(u) can be recovered, and the other replicated spec-
trums are filtered out through a low-pass filter H̃A(u) having
the gain T and the cutoff frequency ωc in the OLCT domain,
whose transfer function is shown by (31). The original signal
f (t) can be reconstructed without any distortion by inverse
OLCT of the recovered FA(u).

H̃A(u) =
{

T,
0,
|u| < ωc

|u| ≥ ωc
, ωc ∈ [UA, bω −UA] . (31)

The expression of the above-mentioned reconstruction signal
can be obtained by Theorem 1. Assume

H̃A(u) = HA(u)e
j

2b [−du2+2u(du0−bω0)] =
{

T,
0,
|u| < ωc

|u| ≥ ωc
,

then

h(t) = OA−1

L [HA(u)](t)
= OA−1

L [H̃A(u)e
j

2b [du2−2u(du0−bω0)]](t)

= C KA−1

ωc∫
−ωc

e− j 1
2b [du2+2u(bω0−du0−t)+2u0t+at2]

×T e
j

2b [du2−2u(du0−bω0)]du

= T C KA−1

ωc∫
−ωc

e− j 1
2b [2u0t+at2]e j t

b udu

= T C KA−1 e− j 1
2b [2u0t+at2] 2b sin ωc

b t

t
.

According to Theorem 1, we have

F̂A(u)H̃A(u) = OA
L [( f̂

A⊗ h)(t)](u).

So the output of the low-pass filter is as follows:

f (t) = ( f̂
A⊗ h)(t)

= KAe− j at2
2b ( f̂ (t)e j at2

2b ) ∗ (h(t)e j at2
2b )

= T C KA−1 KAe− j at2
2b

∞∫
−∞

f̂ (τ )e j aτ2
2b

×e− j 1
b u0(t−τ) 2b sin ωc

b (t − τ)
t − τ dτ

= T

π
e− j at2

2b

∞∑
n=−∞

∞∫
−∞

f (τ )δ(τ − nT )e j aτ2
2b

×e− j 1
b u0(t−τ) sin ωc

b (t − τ)
t − τ dτ

= e− j at2
2b

∞∑
n=−∞

f (nT )e j a(nT )2
2b

×e− j 1
b u0(t−nT ) T sin ωc

b (t − nT )

π(t − nT )
. (32)

Equation (32) is the reconstruction formula of band-limited
signal in the OLCT domain. Let ωc = UA in (31), the inter-
polation formula (32) can be presented as follows:

f (t) = e− j at2
2b

∞∑
n=−∞

f (nT )e j a(nT )2
2b

e− j 1
b u0(t−nT ) T sin UA

b (t − nT )

π(t − nT )
(33)

From the above-derived results, we can conclude uniform
sampling theorem for band-limited signal in the OLCT
domain as following

Theorem 4 Let signal f (t) ∈ W is band-limited to UA in
the OLCT domain with parameters A = (a, b, c, d, u0, ω0)

and b > 0.Then, the signal f (t) can be exactly reconstructed
from its sampled version f (nT ), n ∈ Z, providing that the
sampling interval satisfies

T = πb

UA
. (34)

The reconstruction formula is given by (33).
By exchanging the role of the signal and its OLCT, the

sampling theorem of time-limited signal in OLCT domain
derived in [2] can be easily obtained from Theorem 4. Equa-
tions (33) and (34) are the sampling theorem expansions of
the classical results in OLCT domain. Previously developed
sampling theorems for FT, FRFT, and LCT [19–22] can also
be obtained by substituting with the specific OLCT parame-
ters of A in Eqs. (33) and (34).
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Fig. 2 The multiplicative filter in the OLCT domain

4.2 The multiplicative filter in the OLCT domain

Many papers [6,8,15,16] discuss the use of the multiplica-
tive filter designed by the FRFT or LCT to remove noise or
distortion. Here, based on Theorem 1, we can discuss the
design methods and the performance of the multiplicative
filter designed by the OLCT.

The model of the multiplicative filter in the OLCT domain
is shown in Fig. 2. The effect of the multiplicative filter in
Fig. 2 can be written in the following equation:

rout(t) = OA−1

L

[
RA(u) · H̃A(u)

]
(t), (35)

where RA(u) denotes the OLCT of received signal rin(t).
There are many possible types of multiplicative filter by
designing different transform function H̃A(u), such as low
pass, high pass, band pass, band stop, and so on. In practi-
cal application, if the received signal rin(t) comprises two
parts of the designed signal f (t) and noise n(t), then the
desired signal can be reserved and the noise can be discarded
to a large extent for increasing signal-to-noise ratio (SNR)
through a multiplicative filter in the OLCT domain. For
example, we are interested only in the frequency spectrum of
the OLCT in the region [ul , uh] of the designed signal f (t).
We also suppose that the OLCT parts of the received signal
rin(t), FA(u) and NA(u), have no overlapping or minimal
overlapping. According to Theorem 1, we choose function

HA(u)e
j

2b [−du2+2u(du0−bω0)] in (8) as the transfer function of
the multiplicative filter. So, H̃A(u) in Fig. 2 can be expressed
as

H̃A(u) = HA(u)e
j

2b [−du2+2u(du0−bω0)]. (36)

We can design the transfer function, H̃A(u), so that it is con-
stant over [ul , uh] and zero or of rapid decay outside that
region. Passing the output of the filter yields that part of
the spectrum of f (t) over [ul , uh]. By inverse OLCT, the
designed signal f (t) can be obtained.

The above-mentioned multiplicative filter in the OLCT
domain can also be achieved through convolution in the time
domain. Figure 3 shows a method of realizing the multipli-
cative filter in the OLCT domain by convolution in the time
domain. From Fig. 3, the output of the filter is expressed as

rout(t) = KAe− j at2
2b [(rin(t)e

j at2
2b ) ∗ g(t)]. (37)

Fig. 3 The method of realizing the multiplicative filter in the OLCT
domain by convolution in the time domain

Making use of (18), the convolution function g(t) in Fig. 3
can be designed as

g(t) = h(t)e j at2
2b . (38)

According to the inverse OLCT expression (3), we get

h(t) = OA−1

L [HA(u)](t)

= C KA−1

∞∫
−∞

HA(u)e
j 1

2b [−du2+2u(du0−bω0)]e j u
b t

×e− j 1
2b (2u0t+at2)du

=
√

1

− j2πb
e− j d

2b u2
0

×
∞∫
−∞

HA(u)e
j 1

2b [−du2+2u(du0−bω0)]e j u
b t

×e− j 1
2b (2u0t+at2)du. (39)

Substituting (36) into (39), we can obtain

h(t) =
√

1

− j2πb
e− j d

2b u2
0 e− j 1

2b (2u0t+at2)

∞∫
−∞

H̃A(u)e
j u

b t du

=
√

j2π

b
e− j d

2b u2
0 e− j 1

2b (2u0t+at2)
	

h

(
t

b

)
. (40)

From Eqs. (38) and (40), we get

g(t) =
√

j2π

b
e− j d

2b u2
0 e− j 1

b u0t	h

(
t

b

)
, (41)

where
	

h(t) is the inverse FT of H̃A(u). According to the
requirement of filter or the time-frequency distribution [2,
6,15] of received signal rin(t), the transfer function H̃A(u)
of the multiplicative filter should be designed in the OLCT
domain first. Substituting (41) into (37), we can obtain

rout(t) = 1

b
e− j at2

2b

(
rin(t)e

j at2
2b

)
∗

(
e− j 1

b u0t	h

(
t

b

))
. (42)

According to Theorem 1, it will be easy to prove that the
output of filter shown in Fig. 3 is same as that in Fig. 2. In
an actual application, the method shown in Fig. 3 has less
computational complexity than that in Fig. 2 for the reason
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that the major computation load of the former method is con-
volution, which can be done by the classical FFT, while the
latter method needs to calculate OLCT twice, and there exists
still no satisfactory fast digital algorithm for OLCT so far. In
the following paragraphs, we will analyze the computation
complexity of the multiplicative filter achieved in the time
domain from (42) in detail.

According to the conventional convolution theorem,
Eq. (42) can be written as

rout(t) = 1

b
e− j at2

2b

(
rin(t)e

j at2
2b

)
∗

(
e− j 1

b u0t	h

(
t

b

))

= 1

b
e− j at2

2b F−1 [F[ϕ1](u)F[ϕ2](u)] (t), (43)

where ϕ1(t) = rin(t)e j at2
2b , ϕ2(t) = e− j 1

b u0t	h( t
b ), F−1(·)

denote the inverse FT operator. Since
	

h(t) is the inverse FT
of H̃A(u), Eq. (43) can be expressed as

rout(t) = 1

b
e− j at2

2b F−1
[

F[ϕ1](u)bH̃A(bu + u0)
]
(t)

= e− j at2
2b F−1[ϕ3](t), (44)

where ϕ3(u) = F[ϕ1](u)H̃A(bu + u0). According to (44),
the FFT can be used to reduce the computation complexity
of this filtering method. Since the computation complexity of
FFT is o(N logN

2 ), then we can draw the conclusion that the
computation complexity of the multiplicative filter achieved
in the time domain can be reduced to o(N logN

2 ) for N point
of samples.

5 Conclusion

In this paper, we first introduced the definition and some
properties of OLCT. Then, convolution theorems for OLCT,
that is, Theorems 1 and 2 have been derived in detail, pre-
senting the OLCT domain’s behavior of a new convolution as
well as a product between two functions in the time domain.
We also obtain the expressions for OLCT of a new correla-
tion operation of two functions based on Theorem 1. Since
the correlation of two functions is no more than their convo-
lution after one of the two functions has been axis-reversed
and complex-conjugated, the property of the new convolu-
tion structure for OLCT results in the property of the correla-
tion for OLCT. All these results developed for OLCT can be
applied to a large class of signals and system outputs and can
be regarded as unified and extended versions of previously
developed convolution and correlation theorems for special
cases of the OLCT. Finally, as an application, utilizing con-
volution theorems for OLCT derived in this paper, sampling
of band-limited signals in the OLCT domain has been further
investigated. The formulas of uniform sampling and low-pass

reconstruction are obtained. Moreover, the multiplicative fil-
ter in the OLCT domain has also been discussed in this paper.
A practical method to achieve the multiplicative filter through
convolution in the time domain is proposed, which can be
realized by classical FFT and has the same capability, but
less computational complexity compared with the method
achieved in the OLCT domain.
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