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Abstract Currently, many speaker recognition applications
must handle speech corrupted by environmental additive
noise without having a priori knowledge about the character-
istics of noise. Some previous works in speaker recognition
have used the missing feature (MF) approach to compensate
for noise. In most of those applications, the spectral reliabil-
ity decision step is performed using the signal to noise ratio
(SNR) criterion, which attempts to directly measure the rel-
ative signal to noise energy at each frequency. An alternative
approach to spectral data reliability has been used with some
success in the MF approach to speech recognition. Here, we
compare the use of this new criterion with the SNR criterion
for MF mask estimation in speaker recognition. The new reli-
ability decision is based on the extraction and analysis of sev-
eral spectro-temporal features from across the entire speech
frame, but not across the time, which highlight the differ-
ences between spectral regions dominated by speech and by
noise. We call it the feature classification (FC) criterion. It
uses several spectral features to establish spectrogram reli-
ability unlike SNR criterion that relies only in one feature:
SNR. We evaluated our proposal through speaker verifica-
tion experiments, in Ahumada speech database corrupted by
different types of noise at various SNR levels. Experiments
demonstrated that the FC criterion achieves considerably bet-
ter recognition accuracy than the SNR criterion in the speaker
verification tasks tested.
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1 Introduction

Nowadays, automatic speaker recognition is widely used in
biometric applications like remote authentication, forensic
research, detection and tracking of speakers. Usually, these
applications work in uncontrolled environments, so using
single channel speech signals acquired in noisy acoustic envi-
ronments, such as telephone booths, hidden microphones,
mobile phones and multispeaker environments, is very
common. In these cases, noise is added to the speech signal
causing bad performance. In order to handle environmen-
tal additive noise, many compensation techniques applied
directly to the signal (speech enhancement methods) or to
some system stage have been proposed, most of them for
speech recognition applications.

Examples of speech enhancement methods used in speaker
recognition systems are the well-known filtering techniques,
Wiener filtering [1] or Spectral Subtraction [2]. They assume
a priori knowledge of the noise spectrum, and therefore, they
frequently use noise estimation techniques [3,4]. On the other
hand, other methods could be applied in each stage of speaker
recognition application: parameterization, modeling, com-
parison (score’s computation), and in the train-test match-
ing conditions, known as multicondition training method [5].
In parameterization, speaker features representations, more
robust to noise than others have been developed, like MFCC
[6] and PLP [7]; however, these methods are not robust
enough to obtain high accuracy in speaker recognition us-
ing highly corrupted speech signals.

In modeling, there are compensation techniques based on
the integration of model noise spectrum to speaker model,
examples of these are parallel model combination (PMC) [8]
and Jacobian environmental adaptation [9]. These methods
assume that the characteristics of noise are previously known
but this fact cannot be possible in real life applications. One
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could think that noise estimation is the solution to this prob-
lem, but if it is obtained with an unreliable estimator the sys-
tem performance could degrade a lot. Besides most acoustic
additive noises that appear in real scenarios are very hard
to estimate, for example, mixture of noises, non-stationary
noises, and noises correlated with speech.

In comparison, score normalization methods [10] like
Z-norm, T-norm, could be used to deal with noise. This cat-
egory of methods is very useful to cope with score variabil-
ity and requires relatively little a priori knowledge of noise
characteristics. However, to obtain really good normaliza-
tion parameters, an impostor voice set must be acquired in
the same conditions of the target voice set, and no database
meets this condition. Furthermore, these methods are highly
data-driven and require a lot of data for training cohort mod-
els and it is not trivial to decide how to split the corpus for
score normalization [11]. As seen previously, it is difficult
to obtain the necessary data to perform an adequate score
normalization in real applications.

In order to overcome the limitations of noise compensation
techniques, the missing feature (MF) approach [12] has been
applied. Unlike others, MF was designed to handle unknown
noise and does not require a priori knowledge of corrupted
noise characteristics. The MF paradigm is based on the fact
that any noise affects time—frequency (¢—f) regions of the
speech spectrum in different ways and it consists in detect-
ing spectrum corruption level and determining which part of
the spectrum is reliable enough to be used in recognition.

Use of the MF approach in speech processing has two
steps. The first is missing feature detection, which consists in
the detection of the reliability degree of the corrupted speech
spectrum, by creating a map of the reliability in each 7—f
region, called a spectrographic mask. The mask is formed by
reliable (R) and unreliable (U) labels for each t—f region in
the spectrum. Regions highly corrupted by noise are tagged
with U labels and the regions with a low level of corrup-
tion with R labels. The second step is missing feature com-
pensation, based on the spectrographic mask. This has two
options: to reconstruct unreliable regions to perform recogni-
tion with the newly reconstructed spectrum or to bypass unre-
liable regions, so as not to use it in the recognition process.
The first option uses reconstruction or missing data imputa-
tion techniques, developed for speech recognition [13]. The
second is known as marginalization and requires a change
in score computation method to handle an incomplete set of
spectral features in speaker verification. In [14] was shown
the better performance of marginalization over imputation
techniques. Other kinds of marginalization were developed
first for speech recognition [34] and later for speaker recog-
nition, such as bounded marginalization [15] and accurate
marginalization [16].

Published results [17-19] show that the MF method is
capable of providing robustness to speaker recognition in
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noisy environment, however, while the potential for improve-
ment increases, it is mainly dependent on mask estimation
accuracy. This happens because missing feature compensa-
tion works only with unreliable regions determined by mask.
If the mask is not accurate, some errors will be introduced,
that is, some reliable regions will be damaged, while some
unreliable ones will be unchanged. In short, it could be said
that mask estimation is the main process in the MF approach,
so in this article, we will focus on the mask estimation step.

The most frequently used criterion to estimate the mask
in speaker recognition is SNR' [20], which consists in com-
puting local SNR in each ¢—f region of the speech spectrum
for determining the reliability measure to be used in speaker
recognition. This paradigm, that we will call: “SNR crite-
rion”, uses various methods to compute local SNR [17,19,
21,22]. However, computing SNR accurately is hard, espe-
cially when the signal is corrupted by some kind of noise
other than stationary. These methods rely only on SNR com-
putation, so if this is not accurate enough the spectrographic
mask estimation will not be either.

The goal of this study is to evaluate the accuracy of speaker
recognition in noisy speech using a method for estimating
spectrographic mask for MF approach following the para-
digm of evaluating different spectro-temporal information
for determining the spectrum reliability. This paradigm, that
we will call the “Features Classification (FC) criterion”, im-
proves over the SNR criterion making use of several com-
plementary features, hence if one is affected by noise the
others could ensure that reliability decision remains consis-
tent. For that purpose, the method proposed by Seltzer et
al. [23] originally applied in robust speech recognition has
been used. Roughly, this method divides the speech signal
into t—f spectral regions using a Mel Filterbank, extracts
several spectro-temporal features in those regions which en-
hance the differences between 7—f regions dominated by
noise and 7—f regions dominated by speech, then it uses
a binary Bayesian classifier to determine the reliable and
unreliable spectral —f regions to be used in the speaker
recognition task. For unreliable compensation, we used mar-
ginalization of the unreliable spectrum [14,17]. To evaluate
the robustness of the FC criterion in speaker recognition, we
conducted speaker verification experiments in several noisy
environments, applying the MF approach with the FC crite-
rion and compared it with the results obtained applying SNR
criterion.

From now on, this article is organized as follows.
Section 2 explains the MF schema proposed and the mask
estimation methods used as baseline. Section 3 presents the
experimental setup of speaker verification tests. Section 4

' SNR: Signal to noise ratio is a measure to quantify how much a signal
has been corrupted by noise. It is defined as the power ratio between a
signal and the background noise.
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explains the results and discussions. Conclusions and future
work are referred to in Sect. 5.

2 Missing feature schema proposed

Figure 1 shows a diagram of a speaker recognition system
based on the MF approach, in general the speaker recogni-
tion system follows the GMM-UBM-MAP state of the art
paradigm proposed by Reynolds et al. [24]. The system is
trained with clean speech signals to obtain speaker models
and MF techniques are applied only to test corrupted speech
signals, where the system first computes the Mel spectrum
of input corrupted speech and later, in order to determine
its reliability, a mask estimator is applied labeling R and U
spectral regions. Finally, Mel spectral features are taken in
logarithmic scale and a marginalized score is computed using
only the R regions determined by mask, ignoring U regions.

2.1 Mask estimator based on FC criterion

Figure 2 shows a diagram of the mask estimation method
[23] used to apply FC criterion in speaker recognition, it is
taking the place of the mask estimation block in the system
presented previously (Fig. 1).

For determining spectrum reliability this method relies on
several independent features extracted from each 7— f region
of speech spectrum—called mask features—and determined
by 20 Mel filterbanks applied to each frame. As noise af-
fects voiced and unvoiced frames in a different way, a robust

algorithm for pitch tracking [25] was implemented and ap-
plied to divide voiced speech frames from unvoiced speech
frames. Specifically, seven mask features were extracted
from voiced frames and only five from unvoiced frames, be-
cause there are the two that depend on pitch can only be used
in voiced frames.

Those features were introduced into a supervised Bayes-
ian classifier scheme—called mask classifier—, which was in
charge of determining the spectrum reliability by classifying
each t— f region as U or R class, depending on its level of cor-
ruption. The training scheme was multicondition, using four
types of noise: stationary pink noise, pseudo-stationary exhi-
bition noise, music noise (theme of Pulp Fiction film), and
non-stationary restaurant. The mask classifier was trained
with a lot of mask feature samples extracted from 25,179
speech signals corrupted at SNR levels from 0 to 25db. An
Oracle mask? was used for labeling (R/U) the training data-
set. The a priori probabilities of R and U classes are taken as
the relative frequency of each class in the training set.

Later on, the number of classifiers to create was fixed,
taking into account the following arguments. Firstly, since
the number of features used for voiced speech segments was
different from unvoiced speech segments, the decision was
to use one classifier for voiced segments and another for
unvoiced segments. Secondly, the spectrum behavior and

2 Oracle mask: is the ideal spectrographic mask, which is computed
using truly local SNR in each r—f component, given both the clean
and noisy speech signals, this mask has often been used to establish
upper-bound limits on recognition accuracy that can be obtained using
MFE.
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the values of the mask features obtained for each subband
was analyzed. Then, it was observed that the values of mask
features in a single frame changed considerably across fre-
quency subbands, less for stationary noise. This happens
because of the different manifestation of frequencies in a
voice, specially in subbands that contain speech formants.
So, finally a separate classifier was trained for voiced and
unvoiced segments, and for each of the 20 subbands of the
Mel Filterbank used in the feature extraction, for a total of
40 classifiers.

Our own implementation of this method was used in this
article, where the classification scheme was designed and
implemented supported by the PRTool toolkit [26].

2.1.1 Mask features analysis

The original motivation of Seltzer et al. [23] for this method
was to apply it on a speech recognition task. Since our aim is
for speaker recognition, and in order to decide which mask
features would be selected for our proposal, in this section an
analysis of the particular contribution of each mask feature
proposed in speaker recognition was done.

The first mask feature was computed as the log ratio of
energy in a subband regarding the energy in the overall cor-
responding frame. This feature measures the contribution of
subband frequency components in the whole frame spectral
energy. Clean speech has most of its spectral energy in low
frequencies and in voiced frames, white additive noise tends
to increase spectral energy of frequencies where it is man-
ifested, provoking changes in the utterance spectral energy
distribution as a function of noise frequencies and SNR level.
So, when the mask classifier is trained from clean to very
noisy speech, the supervised labeling for clean speech is done
fixing as R those regions with relatively high energy in low
frequencies and relatively low energy high frequencies for
voiced frames, while unvoiced frames have relatively low fre-
quency in all subbands, corresponding to the spectral energy
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Fig. 3 Spectrum in a single voiced frame of a a clean speech signal,
b a 10db white noise corrupted speech signal

distribution in a clean speech signal as shown in Fig. 3a.
The more corrupt the speech signal is, the more this spectral
behavior will change, as seen in Fig. 3b, so the supervised
labeling will fix U tags. From this training, the mask esti-
mator will classify as U those regions that are more affected
by noise in the test stage.Speaker recognition systems take
advantage of that, since most useful speaker information lies
in low frequencies, so high frequencies do not contribute
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much in recognizing speakers and at the same time are very
sensitive to additive noise corruption.

The second and third features are related to the statistical
behavior of signals. Kurtosis is used for capturing informa-
tion about a signal deviation from gaussianity. Features that
represent a clean speech signal generally have a Gaussian
distribution, in this case the kurtosis will have a great value.
If the clean speech signal is combined with noise its distri-
bution will usually become less Gaussian, in which case its
kurtosis would decrease. The mask classifier should therefore
select 71— f regions with high kurtosis as more reliable.

The third feature is the energy variance in each r—f re-
gion, with the goal of obtaining flatness. As it is known, the
clean speech spectrum is made up of crests and valleys, when
speech is corrupted by noise the valleys tend to flatten, as can
be seen in Fig. 3. So, the mask classifier is expecting lower
variance values for those regions that are corrupted by noise.

Speaker recognition systems are designed assuming the
gaussianity of speech features. So the lost of gaussian distri-
bution introduces a variability between the statistical behav-
ior of the test set and the previously trained set, which works
against the system’s good performance, and causes mistakes
in score computation. Hence, were labeled as U those t—f
regions which have lost their gaussianity.

The fourth feature is the likelihood that a specific spec-
tral region has been corrupted by noise. To obtain this, we
computed the ratio between the subband energy and the
signal noise energy, obtaining noise energy by noise esti-
mation [3]. This technique has the drawback that in the
presence of highly non-stationary noise, the signal noise en-
ergy estimate will not necessarily be accurate, so it would
lack accuracy for some noises. Nevertheless, we decided to
use it because it provides a measure of the level of noise
that is corrupting the speech signal, and it is a fact that
a spectral region could be able to keep the speaker dis-
criminative information depending on the level of noise
corruption, among other things. So this is a useful hint
for determining spectral reliability in speaker recognition
systems. In the case of noise estimation errors, the other
mask features must ensure that classifier performance is not
affected.

Following this idea, we decided to include as a fifth fea-
ture the local SNR too, i.e., the feature normally used in SNR
based mask estimation, which is computed similar to what
was done in SNR criterion methods proposed by Drygajlo
and El-Maliki [21].

The last two features are only computed for voiced speech
frames because both are pitch dependent. Due to this precise
fact, those are the most striking features for the speaker rec-
ognition task. Previous works [27] show that most speaker
discriminative information lies on voiced frames, so these
mask features contribute to characterizing these frames.
The sixth feature is the periodicity and the seventh the

relationship between energies at the pitch harmonics and out-
side the pitch harmonics.

3 Experimental setup
3.1 Corpus

This article evaluates the performance of the FC criterion in
mask estimation for the MF approach through a speaker veri-
fication experiment, conducted with a set of 100 male speak-
ers from AHUMADA [28], a Spanish NIST 2001 speech
database for speaker characterization and identification. To
perform the evaluation, the speaker verification system was
trained and tested with clean speech to establish the clean
baseline; then, for setting the dirty baseline, it was tested with
corrupted speech without using the MF approach. Later on,
the system was tested with the same corrupted speech used
in the dirty baseline but using the MF approach. All speech
material used was taken from 3 different Ahumada micro-
phonic sections: M2, M3 for training and M1 for testing.
Each of these utterances contains about 90 s of spontaneous
speech, making the experiment text independent. All speech
material used for training and testing is digitized at 16 bits,
at 16,000 Hz sample rate.

The corruption signal comes from four different noise
environments:

- stationary white noise

- pseudostationary street noise, which is a mixture of dif-
ferent noises

- music from Guns and Roses band, highly harmonic and
non-stationary noise

- babble noise, special case of non-stationary noise, highly
correlated with voice because is the voice of other speak-
ers

All those types of noise were added electronically to test
speech signals at different SNR levels, from 0 to 20dB in
5dB steps.

3.2 Missing feature protocol

The MF approach is divided into 2 steps: missing feature
detection and missing feature compensation. For compensa-
tion, the classical marginalization technique [29] was used,
even taking into account its limitation compared with the
use of optimal MFCC features. However, it should be noted
that in future any refinements to this method (MF bounds or
MF imputation) could be applied to the MF mask estima-
tion method, allowing the use of MFCC and even improving
the system performance. We, therefore, consider that using
Mel spectral features, rather than Mel cepstrum features is
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sufficient for the purpose of evaluating the accuracy of the
proposed MF mask estimation method. For detection, three
types of mask were used:

- a) Oracle masks, to determine the ideal performance that
speaker verification could reach using the MF approach.

- b) Spectral Subtraction mask (SS-mask) [21], based on
the SNR criterion that allows us to establish a compara-
tive line.

- ¢) Feature Classification mask (FC-mask), based on the
FC criterion, which is the proposal of this article.

To estimate the oracle mask (a), local SNR for each 7—f
region was computed, with a priori knowledge of the noise
spectrum, then a threshold of SNR = 0dB was established,
selecting as U the regions whose spectral speech power is
inferior to spectral noise power.

SS-mask (b) [21] uses a frame by frame spectral subtrac-
tion method as spectral reliability detector based on an esti-
mated noise spectrum. The reliability decision of spectral
regions then uses the following rule:

then
then

Y(fro)P < IN(fr.l?
Y (fr,9)> > IN(fr, )

Y(f,s) < U

Y(f,s) < R M

where Y is the noisy signal and N is the noise estimated for
each 7—f region represented by frame (fr) and subband (s).
The Spectral Subtraction algorithm [2] and Martin’s noise
estimator [4] were used to estimate the noise spectral power.
The threshold selected to determine reliability is the same as
used above (SNR = 0dB).

To estimate FC-mask (c), a set of 25,179 speech signals
was used for training the Bayesian classifier. These signals
were a random selection of short read phrases from 25 speak-
ers of AHUMADA from four different microphonic sections
[28], corrupted by stationary pink noise, pseudo-stationary
exhibition noise, music noise (theme of Pulp fiction film), and
non-stationary restaurant, at SNR levels from 5 to 25dB, so
around 27h of speech were obtained. As a result, classifiers
were trained and later used to estimate the masks used during
testing.

3.3 Speaker verification protocol

For applying the MF approach, speech signals were repre-
sented with Log-Mel Spectral features: a Hamming window
with 25 ms window length and 15ms of overlap is applied
to each frame and a short time spectrum is obtained apply-
ing a FFT. Then, 20 Mel filterbanks were applied over it fol-
lowed by a logarithmic transformation. For implementing the
dirty baseline (BSLN-CSp), state of the art MFCC features
were used, which were computed according to the process
previously described adding the transformation to cepstrum
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domain and finally selecting 15 cesptral coefficients as fea-
tures.

A speech set from 50 male speakers from Ahumada’s
M3 section was used to create a gender dependent Universal
Background Model (UBM) [24] using a Gaussian Mixture
Model (GMM) of 512 gaussians. The number of mixtures
in the GMM was chosen taking into account the number
of speakers, the phonetic richness and the signals duration
to create the UBM. Other 50 different male speakers were
used as targets and their models were obtained by adapta-
tion from the UBM using the Maximum a Posteriori (MAP)
approach [30]. The targets speech set was taken from Ahu-
mada’s M2 section. For testing were taken 50 speech signals
from Ahumada’s M1 section corresponding of each of the
50 target speakers. The text contained in speech signals from
M1, M2, and M3 sections is different for all speakers, so the
speaker verification experiment is text independent. The test-
ing speech set was corrupted by different types of additive
noise (Sect. 3.1). The following experiments were conducted:

1. BSLN-CIn/CSp, MF-Oracle: Three speaker verification
baselines were trained with clean speech and tested with
different speech sets. Clean baseline (BSLN-Cln) was
tested with the same clean signals; dirty baseline (BSLN-
CSp) was tested using the set of corrupted speech signals
specified in Sect. 3.1 and MF with oracle mask baseline
(MF-Oracle) was tested applying MF approach with ora-
cle mask and marginalization.

2. MF-SNR: Speaker verification applying MF approach
with SS-mask, was trained on clean data and tested with
the set of corrupted speech signals specified in Sect. 3.1.

3. MF-FC (Proposed mask criterion): Speaker verification
applying the MF approach with the proposed FC-mask,
was trained on clean data and tested with the set of cor-
rupted speech signals specified in Sect. 3.1.

All in all, 2,500 trials were done—50 client speakers
against each of 50 target models—for each type of noise
(white, street, music, babble), SNR level (0, 5, 10, 15,20dB)
and noise compensation method (without any: MFCC base-
line, MF-Oracle, MF-SNR, MF-FC). As a whole, 200,000
trials in 80 experiments were done.

4 Results and discussion

4.1 Mask estimation accuracy in regard to oracle mask

Figure 4 presents a comparison of speaker verification
experiment results in EER? percentage, tested using speech

3 EER: The error rate of a verification system when the operating thresh-
old for the accept/reject decision is adjusted such that the probability
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Table 1 Average of hit indexes of SS and FC-masks computed in
regards to oracle mask, obtained in percentage for each corruption cat-
egory: speech corrupted by white, street, music and babble noise, at 0,
5, 10, 15, 20dB of SNR levels

SNR (dB)  Hit: white Hit: music Hit: street Hit: babble
SS FC SS FC SS FC SS FC

20 58 86 57 176 72 73 69 76

15 55 88 48 80 67 76 61 78

10 54 90 39 83 62 79 51 78
56 92 32 85 56 81 42 79
57 92 27 86 50 82 35 82

corrupted by white noise at different SNR levels applying
MEF approach with oracle mask (MF-Oracle) and without it
(BSLN-CSp). It shows that the EER percentage decreased
a lot in MF-oracle mask application, consistent with oracle
mask definition as an ideal mask.

These results encourage us to use oracle mask as a com-
parative pattern for other mask performance, computing the
amount of tagged ¢t—f regions that match with the oracle
mask, which we called hit index, composed by the matched
R and U regions. Both masks were computed with all sets of
corrupted speech and the results of each mask for each cor-
ruption category were ranked, showing a summary of results
in Table 1.

In Table 1 the stability in hit indexes for each type of
noise obtained from the FC-mask can be appreciated, while
for the SS-mask the hit index values tend to improve with the

Footnote 3 continued

of false acceptance and that of false rejection become equal. This mea-
sure is commonly used as recognition accuracy measure in biometrics
applications such as speaker verification.

improvement of SNR, which denotes a strong dependency of
SS-mask accuracy with the SNR level. This fact leads us to
conclude that FC-mask is more robust to noise than SS-mask.

In general, Table 1 shows that hit percentage of the
proposed FC-mask is consistently greater than for the SS-
mask. These results suggest that in general the proposed
FC-mask will outperform SS-mask in speaker verification
experiments. These results could give us a preview of the
performance of a given spectrographic mask estimator with-
out the need to carry out any recognition experiment. This
hit method for comparing different masks against the ora-
cle mask, could therefore be very useful in MF techniques
development. This hypothesis will be analyzed in the fol-
lowing section by comparison of hit indexes and speaker
verification results.

4.2 Speaker verification results

Figure 5 shows results of speaker verification experiments, as
described in Sect. 3.3, in EER percentage versus SNR, using
speech corrupted by four types of noise at five SNR levels,
applying the MF approach with an oracle mask (MF-Ora-
cle), the SNR criterion’s mask (MF-SNR) and the proposed
mask criterion (MF-FC). Some general conclusions could be
obtained from the results:

- When SNR increases, mainly SNR > 15 dB, the usefulness
of any MF approach for speaker verification decreases, al-
though in general it still outperforms speaker verification
results under corrupted speech without any mask. This
happens because if the power of noise is low, EER results
tend to those values that could be obtained if the speaker
verification had been carried out with clean speech. This
is a very common behavior for noise compensation meth-
ods applied to high SNR speech in speaker verification,
that could be seen in Raj and stern [12] and El-Maliki and
Drygajlo [15] too.

- Onthe other hand, generally MF-FC reaches better perfor-
mance than MF-SNR—Iower EER for the same SNR—
with the exception of babble and street noise at SNR >
15dB and music noise at SNR = 20dB, that will be ana-
lyzed later. The results of MF-FC are due to the fact that
it takes into account many features to determine spectrum
reliability, unlike MF-SNR. In spite of that, the perfor-
mance is different for each type of noise, given the very
different kinds of noise used.

Some noise-related conclusions could be obtained:
- When a noise compensation method is used with the rec-
ognition system, generally is easier to compensate for

the effects of stationary noise than for non-stationary
[30]. In speaker verification experiment under white noise
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(Fig. 5a) MF-FC behavior is very close to MF-Oracle
behavior, because it is stationary noise. On the other hand,
this is an expected result because of the high hit percent-
age of FC-mask, for all SNR levels, shown in Table 1.

In speaker verification experiment under street noise
(Fig. 5b), in general MF-SNR improves EER compared
to BSLN-CSp, but MF-FC performs better. In comparison
with MF-SNR, MF-FC improves EER for the most diffi-
cult SNR conditions, however for SNR > 15dB MF-SNR
performs a little better. This happens since the Martin’s
noise estimation method used is limited when dealing with
a pseudo-stationary noise, and the influence of the behav-
ior of noise compensation methods for corrupted signals
with a low level of noise corruption explained above.

In speaker verification experiment under music noise
(Fig. 5c), MF-SNR and MF-FC had a similar behavior as
in street noise.

In speaker verification experiment under babble noise
(Fig. 5d), for the most challenging SNR levels (0, 5,
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10dB) MF-FC outperforms MF-SNR. In this special case
of non-stationary babble noise, MF-FC must differen-
tiate between impostor and target voices, because bab-
ble noise is one of the most challenging noise interfer-
ences for all speech systems [31]. This result shows us
that spectral features selected to estimate theFC-mask
are not speaker discriminative enough to handle babble
noise.

There is no complete correspondence between hit index
and EER results due to the differences at SNR =15, 20dB
of street noise; SNR =15, 20 dB of babble and street noise
and SNR =20dB of music noise. The mismatched results
are due to the fact that hit index analysis was too rough for
speaker recognition applications, taking into account only
the quantity of hits, without evaluating the spectral region
of each hit. In fact, a hit in a spectral region with speaker
discriminative information impacts more in EER than a
hit in spectral region without any speaker discriminative
information.
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Table 2 Speaker verification results expressed in EER percentage for
the proposed MF-FC and MF-SNR, oracle mask and baselines

Noises SNR (dB) BSLN-CSp MF-oracle MF-SNR MF-FC
BSLN-Cln 30-40 24 - 14 22
White 20 46.32 20.36 38.93 24
15 47.34 24.85 45.63 25
10 47.59 24.98 47 26
5 49.46 26 49 28
0 50 28 50 48.4

Street 20 39.38 17.91 16.28 18
15 46.48 18 18 20

10 48 19.5 22 21.91
5 48.5 20 24.89 22
0 49.92 22 28.93 24

Music 20 31.46 17.46 18.2 18.61
15 40.48 20 24 22

10 48 20.81 36 26.2

5 49 21.79 46 31.18
50 22 50 34

Babble 20 24.48 16 15.83 17.75

15 28.2 20 18.65 20.61

10 41.71 22.53 22.73 22.69

5 46.44 23.79 30 26.77
0 4791 26 41.38 32

Table 2 presents a summary of speaker verification effec-
tiveness in EER values, obtained in the experiments. As a
reference the first line shows results for training and testing
with clean speech. This table shows that MF-FC mask offers
the best speaker verification results, under highly contami-
nated noise conditions (SNR <10dB), for all type of noises.

4.3 Speaker verification accuracy (EER) and amount
of U regions versus SNR

To conclude the discussion, we analyzed the relation between
speaker verification accuracy (through EER) and the propor-
tion of U regions for each mask and each type and level of
noise. So, the percentage of U regions was computed for each
mask corresponding to each type and level of noise. Figure 5
presents the relation between speaker verification accuracy,
SNR level and percentage of U regions, for the three evalu-
ated mask estimation criteria.

Results for the oracle mask are the reference for the others,
since this mask shows the lowest EER results for any type
and level of noise. It is quite clear that the relation between
the proportion of U regions and EER behavior is particular
to for each type of noise, however for all of them the amount
of U regions increases with the SNR decrease, as expected.
It is noticeable that the SS-mask detects the smaller amount

of U regions between all masks and in most cases reaches
the worst EER. This fact supports the MF hypothesis that
it is better for speaker verification performance, to process
incomplete noisy spectrum than the whole noisy spectrum.

On the other hand, oracle mask tends to be inversely
proportional regarding SNR level, with an important slope.
However the SS-masks have lower slope, tending to have a
constant behavior instead. This happens because the noise
estimation method does not deal properly with non-station-
ary noise, which influences the reliability decision. The SS-
mask uses this as the only measure to take into account
when tagging a region as U or R. Figure 5 also shows that
the FC-mask’s U percentage curves maintain similar behav-
ior to oracle curves, detecting many more U regions than
SS-mask, more than 30 %. Those facts demonstrate that the
FC criterion outperforms the SNR criterion in determining
spectrum’s reliability of speech. This explains why the FC
criterion provides more accurate speaker recognition perfor-
mance under noisy conditions.

On the other hand, EER results obtained applying MF-
oracle mask at SNR = 20dB to all types of noises are very
low, which denotes high accuracy in speaker verification. The
amount of U regions obtained at this point indicates that there
is a minimum value of U regions, for which the verification
results are good. Thus, there will be a part of the spectrum
(the minimum percentage of U regions) that contributes to
successful speaker verification, which means that it does not
have speaker discriminative information. This could be very
useful to improve the speed of the speaker verification pro-
cess, analyzing just a reduced number of spectro-temporal
regions.

5 Conclusions and future work

This article is aimed at dealing with the problem of robust
speaker recognition in speech corrupted on different noise
environments. We proposed the use of a Feature Classifica-
tion criterion to estimate MF masks in speaker recognition,
using a method of Seltzer et al. [23] previously used for
speech recognition. For that proposal we were based on the
fact that the SNR criterion—which has been the most fre-
quently used to estimate masks in this task—does not yield
the most effective results. We believe that this problem is due
to the fact that the SNR criterion is only based on SNR esti-
mation, which has the goal of enhancing speech signal, and
by doing this, it could remove speaker-distinguishing infor-
mation. On the other hand, FC criterion make use of wider
context spectral information, which is more advantageous to
face noise than use only SNR.

To conclude, the evaluated mask estimation criterion—
MF-FC—has the advantage of using different spectro-tem-
poral measures not dependent on one another. So, if any part
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of this information is affected by noise, the rest could ensure
that reliability decision remain consistent. On the other hand,
MEF-FC’s computational cost is higher than MF-SNR. This
could possibly reduced using 7—f patches corresponding to
subbands with speaker discriminative information [32,33]
instead of all 7—f regions.

We explored a mask estimator quality measure: the hit
index, presupposing that this could give a preview of the per-
formance of a given spectrographic mask estimator without
the need to carry out any recognition experiment. However, in
spite of the fact that most results matched with EER behavior,
they did not correlate perfectly with EER. Hence, we think
that the problem is that the analysis related to hit index only
took into account the quantity of hits. However in speaker rec-
ognition applications a hit in a spectral region with speaker
discriminative information impacts more in EER than a hit
in spectral region without any speaker discriminative infor-
mation. So, in the future, we will work on a mask estimator
quality measure based on the computation of hit index, but
taking into account this idea.

We evaluated our proposal through speaker verification
experiments. The experiments demonstrated that, for speech
corrupted by stationary, pseudo-stationary and some non-
stationary noises, MF-FC outperforms the MF-SNR mainly
when speech corruption increases (SNR < 10dB).

Finally, we analyzed the relation between speaker verifica-
tion accuracy and the proportion of U regions. From this, we
concluded that there is a part of the spectrum that contributes
a little to successful speaker verification. This could be very
useful to make a computing reduction of speaker verification
process by analyzing just a reduced amount of speaker fea-
ture vectors. This would depend on the spectral distribution
of the signal, and some spectral parameters could be used as
reference of spectral regions with potentially useful speaker
information, such as pitch and formants.

The analytical conclusions and experimental results ob-
tained in this article, encourage us to continue using MF-FC.
As future work, we could use other features more related to
the speaker identity, with the idea of associate the reliabil-
ity decision with the corruption of #—f regions which have
useful speaker recognition information.
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