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Abstract In this paper, we propose a fuzzy weighted
non-local means filter for the removal of random-valued
impulse noise. We introduce a new fuzzy weighting func-
tion, which can shut off the impulsive weight effectively, to
the non-local means. According to the new weighting func-
tion, the more a pixel is corrupted, the less it is exploited
to reconstruct image information. Experiments show that the
performances of the new filter are surprisingly satisfactory in
terms of both visual quality and quantitative measurement.
Moreover, our filter also can be used to remove mixed Gauss-
ian and random-valued impulse noise.

Keywords Fuzzy weight · Image restoration ·
Impulse noise · Mixed noise · Non-local means

1 Introduction

In many data acquisition, transmission and storage systems,
noise is often inevitable as caused by various factors. For
example, failures in sensors, readout circuits, A/D converters,
or communication channels may introduce impulsive noise
in digital images [1]; the thermal motion of electron in the
photoelectric sensor may induce the white Gaussian noise.
Therefore, image denoising is one of the most fundamental
problems in image processing.

Many methods have been proposed for impulse noise
removal in the literature. The median filter (MED) was
once the most popular nonlinear filter for removing impulse
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noise [2]. But it tends to treat signal pixels and noisy pixels
without distinction and results in destroying fine details and
producing blotches in the restored images [3]. A solution
to this problem is to devise an impulse detector to recognize
noisy pixels from image signal pixels, and only the noise can-
didates are removed. For example, the genetic programming
(GP) filter [4], the Luo filter [5], the directional weighted
median (DWM) filter [6], and the contrast enhancement-
based filter (CEF) [7] are such filters, which are recently
proposed for the removal of random-valued impulse noise.

Many algorithms have been also proposed for Gaussian
noise removal, such as [8–11]. The non-local means (NLM)
algorithm [8] is one of the most efficient methods and has
attracted a lot of attention from signal processing researchers.
The NLM algorithm exploits the self-similarity or informa-
tion redundancy within images and computes the estimated
value of a pixel as a weighted average of all the similar pix-
els in the image. Pixel similarity is defined in NLM as the
Euclidean distance between image patches. The NLM algo-
rithm has two drawbacks. The one is computationally expen-
sive, and many methods were proposed to accelerate it, see
[12–17]. The other is that it is sensitive to impulse noise.
It cannot adequately remove impulse noise because NLM
interprets the noisy pixels as image structures.

In this paper, we present a new algorithm called the fuzzy
weighted non-local means (FWNLM) filter for random-
valued impulse noise removal. We provide an efficient fuzzy
weighting function for the NLM algorithm to shut off the
impulsive components. The new filter processes pixels in
accordance with the rule: the more a pixel is corrupted, the
less the pixel is exploited to reconstruct image information.
Experiments show that the FWNLM filter has a surprisingly
good denoising capability, as shown later.

The paper is organized as follows. In the next section,
we briefly review the NLM algorithm. Then, in Sect. 3 we
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Fig. 1 The sensitivity of the parameter h at various noise levels. a Random-valued impulse noise, p = 40%; b random-valued impulse noise,
p = 50%; c mixed noise, σ = 20, p = 30%; d mixed noise, σ = 10, p = 40%

Table 1 The suggested choice for the parameter h

Noise level p = 40% p = 50% p = 60% σ = 20, σ = 10,

p = 30% p = 40%

Suggested h 5–7 5–7 6–8 8–12 6–9

describe our method in detail. Section 4 presents experimen-
tal results of the new filter. Finally, conclusions are given in
Sect. 5.

2 Review of the NLM algorithm

Let us consider a noisy image u : � ⊂ R2 → R. The gray-
scale value at position x ≡ (x1, x2) ∈ � is represented by
u(x). Each pixel of the filtered image is estimated by the
NLM algorithm as a weighted average [8]:

û(x) = 1
∑

y∈S w(x, y)

∑

y∈S

w(x, y)u(y), (1)

where S(S ⊆ �) usually with a large size is a searching win-
dow centered at the pixel x, and the weights w(x, y) depend
on the pixel similarity between x and y. The pixel similarity
is calculated by comparing surrounding patches (here called
matching windows) around x and y. The similarity is defined
by the expression:

w(x, y)=exp

(

−
∑

k∈�m ga(k)|u(x+k)−u(y+k)|2
h2

)

, (2)

where

�m ≡ {k = (k1, k2)| − m ≤ k1, k2 ≤ m} , (3)

and m denotes the size of the matching window, the weights
ga(k) define a centered symmetric Gaussian kernel with the
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Table 2 Results in PSNR after filtering images corrupted by impulse
noise

Filters Lena Boat Peppers Elaine Bridge

Random-valued impulse noise (p = 40%)

MED 22.94 23.45 23.53 24.79 21.20

NLM 18.91 19.47 19.42 20.96 18.06

SKR 26.44 26.45 26.60 28.34 23.04

GP 28.11 27.83 28.43 30.46 24.22

Luo 28.30 27.30 28.25 31.59 23.72

CEF 29.09 27.85 29.29 31.11 24.00

DWM 29.33 28.26 29.01 31.71 24.16

FWNLM 29.56 28.24 29.80 31.74 24.51

Random-valued impulse noise (p = 50%)

MED 19.73 20.53 20.57 21.63 19.06

NLM 17.37 18.03 18.02 19.44 16.97

SKR 22.84 23.65 23.71 25.25 21.17

GP 24.98 25.50 25.78 27.63 22.40

Luo 26.37 25.94 26.85 29.68 22.50

CEF 27.28 26.33 27.59 29.02 22.60

DWM 27.11 26.63 27.22 29.63 22.88

FWNLM 28.31 27.01 28.41 30.90 23.54

Random-valued impulse noise (p = 60%)

MED 17.12 18.08 17.89 19.12 17.18

NLM 16.05 17.00 16.77 18.23 16.04

SKR 19.47 20.62 20.43 22.03 19.13

GP 21.42 22.58 22.49 24.23 20.28

Luo 23.89 24.00 24.56 27.08 20.98

CEF 24.34 23.96 24.59 25.54 20.85

DWM 23.58 24.20 24.46 26.49 21.18

FWNLM 26.64 25.64 26.97 29.26 22.44

standard deviation a, and the scalar h is used to control
smoothing.

The NLM algorithm performs impressively in Gaussian
noise suppression. It averages the pixels with various weights
in the entire searching window: Those pixels that are similar
to the centered pixel in image structure get larger weights.
Intuitively, the NLM algorithm matches local image struc-
tures rather than image intensities [14]. However, the NLM
filter fails to remove impulse noise. As impulses damage
image structures significantly, the algorithm tends to inter-
pret the noisy pixels as image structures, and thus, the NLM
algorithm performs not well in the presence of impulse noise,
as shown later.

3 The proposed approach

3.1 The fuzzy weight

Following the initial idea of the NLM filter, we shut off the
impulsive component by an impulsive weight and only use

the impulse-free information to reconstruct the image. As the
impulse noise is very difficult to detect precisely, we provide
a fuzzy weight for each pixel. The fuzzy weight is calculated
according to how impulse-like a pixel is. Here, we use the
rank-ordered absolute differences (ROAD) statistic proposed
in [18], to give a fuzzy index for each pixel. In this work, we
calculate the ROAD as follows.

Let x be a pixel under consideration, assume that

dx,k = |u(x) − u(x + k)|, k ∈ �2, (4)

and 0 ≤ u(x) ≤ 255. The notation �2 indicates we use 5×5
window centered at x. Next, we sort the twenty five dx,k val-
ues in ascending order such that r1 ≤ r2 ≤ · · · ≤ r25, where
ri is the i th smallest element. Then, the ROAD of x is defined
by ROAD(x) = ∑13

i=1 ri .
The ROAD(x) provides us a simple but effective measure

for detecting impulses: If the value is large, then the pixel is
an impulse pixel; if the value is small, then the pixel is an
uncorrupted pixel. Thus, we define the fuzzy weight for each
pixel as

λ(x) =
⎧
⎨

⎩

0 ROAD(x) ≥ T1
ROAD(x)−T1

T2−T1
T2 ≤ ROAD(x) ≤ T1

1 ROAD(x) ≤ T2

(5)

where T1 and T2 are two predefined parameters.
The weighting function λ(x) ranges from 0 to 1 and

indicates how much the information of a pixel is worth.
The maximum value denotes the pixel is uncorrupted, and
its information is fully useful for image reconstruction. On
the contrary, the minimum value means the pixel is damaged
and its information is totally useless.

3.2 The proposed fuzzy weighted non-local means filter

Here we introduce the fuzzy weighting function λ(x) to the
NLM algorithm to selectively pick pixels when calculat-
ing the pixel similarity. The proposed fuzzy weighted NLM
(FWNLM) filter is

û(x) = 1
∑

y∈S w̄(x, y)

∑

y∈S

w̄(x, y)u(y), (6)

where the new weight of y with respect to the central pixel x
is presented as (7).

w̄(x, y)

=λ(y) exp

(

−
∑

k∈�m ga(k)λ(x + k)λ(y+k)|u(x+k)−u(y+k)|2
h2

)

.

(7)

In the new weighting function (7), the fuzzy weight λ(y)

tells the new filter how important the information of y, the
more the pixel is damaged (λ(y) is near to zero), the more the

123



352 SIViP (2014) 8:349–355

Fig. 2 Denoising of Lena
image (part) corrupted with 40%
random-valued impulse noise.
a SKR, b NLM, c GP, d Luo,
e DWM, f CEF, g FWNLM and
h the noise-free image

Fig. 3 Denoising of Peppers
image (part) corrupted with 60%
random-valued impulse noise. a
SKR, b NLM, c GP, d Luo, e
DWM, f CEF, g FWNLM and h
the noise-free image
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information of the pixel tends to be thrown away (w̄(x, y) is
close to zero). And the equation

λ(x + k)λ(y + k)|u(x+k)−u(y+k)|2 (8)

indicates that the more one of the pixels x + k and y + k is
damaged, the less the distance between the two pixels is uti-
lized. Therefore, the new weighting function is apt to discard
impulse-like pixels when calculating the pixel similarity.

4 Simulations

In this section, we present experimental results to assess
the performance of the proposed filter. Simulations were
made on five 512 × 512 8-bit gray-scale standard images:
Lena, Boat, Peppers, Elaine, and Bridge. They will be cor-
rupted by random-valued impulse noise with very high noise
levels—40, 50, and 60%. Restored results are quantitatively
measured by the peak signal-to-noise ratio (PSNR); that is, if
u0 is the noise-free image of size M × N , and û is a restored
image of u0, then the PSNR of û is calculated by

PSNR = 10 log10
2552

1
M N

∑
x∈�

(
û(x) − u0(x)

)2 . (9)

4.1 The selection of the parameters

For simplicity, we hold some parameters as constants in all
the experiments. To reduce the burden of computation, we use
a 21 × 21 window as the searching window as the authors
of NLM suggested in [8], and the pixel similarity is cal-
culated in a 9 × 9 matching window, that is, m = 4 in
(3). We also fix the parameter a = 2 in Gaussian smooth
kernel.

Through many experiments on the five images with 40,
50 and 60% random-valued impulse noise, we find that the
good values of T1 and T2 are 380 and 120, respectively.
In Fig. 1, we show the sensitivity of the parameter h. From
the figure we can see that, for random-valued impulse noise,
the h should increase slightly for better PSNR results
when the noise level grows from 40 to 60%. But for mixed
noise with the same impulse noise level, h should be larger.
In Table 1, we list the suggested choice for the parameter h.

4.2 Experimental results

To evaluate the performance of the proposed filter1, we pro-
vide some comparisons with the median (MED) filter (3×3),
the NLM algorithm [8], the steering kernel regression (SKR)
filter [11], the GP filter [4], the Luo filter [5], the DWM filter
[6], and the CEF filter [7]. The parameters of these filters

1 The FWNLM filter is available at http://wudging.ys168.com/.

Table 3 Results in PSNR after filtering images corrupted by mixed
Gaussian and random-valued impulse noise

Filters Lena Boat Peppers Elaine Bridge

Mixed noise (σ = 20, p = 30%)

MED 23.48 23.53 23.76 24.35 21.74

NLM 20.59 20.96 21.19 22.58 19.21

SKR 25.50 25.28 25.55 26.45 22.90

GP 24.57 24.36 24.72 25.21 22.68

Luo 25.77 25.03 25.75 27.13 22.72

CEF 25.79 24.96 25.80 26.40 22.74

DWM 25.10 24.63 25.04 25.75 22.67

FWNLM 27.85 26.60 27.88 29.72 23.30

Mixed noise (σ = 10, p = 40%)

MED 22.24 22.68 23.07 23.92 21.01

NLM 18.88 19.35 19.54 20.75 18.07

SKR 25.19 25.38 25.75 26.97 22.62

GP 25.88 25.71 26.23 27.31 23.24

Luo 26.72 25.86 26.75 28.82 22.96

CEF 26.94 26.06 27.04 28.06 23.10

DWM 26.63 26.10 26.57 27.86 23.24

FWNLM 28.68 27.43 28.88 30.84 23.88

are chosen as their authors suggested (the GP filter has no
parameter).

Table 2 presents numerical results for the five standard
images corrupted by random-valued impulse noise with the
high noise ratio p = 40, 50 and 60%. The parameter h of the
proposed filter is chosen for better PSNR values as suggested
in Table 1. It is easy to see that the proposed filter provides
results with higher PSNR values almost in all cases. Espe-
cially, even when the noise level is very high (60%), the
performances of our filter are still very satisfactory.

Subsequently, we show visual results restored by the dif-
ferent filters. Figure 2 shows the enlarged restoration results
for a noisy Lena image corrupted by 40% random-valued
impulse noise. We can see that the output of our filter is very
clean and smooth. The visual comparison is further illustrated
in Fig. 3. Even in the extremely high noise level—60%, our
filter can deal well with it and obtain the best visual quality.

In addition, our filter can also perform well in the removal
of mixed Gaussian and random-valued impulse noise. Table 3
lists the numerical results, and Fig. 4 shows the visual results
for the seven filters. Again, from the table and figure, one
can easily see that our filter yields the best results in terms of
both the quantitative measurement and visual quality when
removing mixed noise.

We end this section by considering the complexity of the
FWNLM filter. Our method needs an extra calculation for the
new weights λ(x) at each pixel. Apart from this, it has extra
multiplications in (7) when compared to the NLM filter’s
weighting equation (2). In Table 4, we show the computation
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Fig. 4 Results of different filters in restoring mixed noise (σ = 10, p = 40%). a Noisy image, b SKR, c NLM, d GP, e Luo, f DWM, g CEF,
h FWNLM and i the noise-free image

time of the eight filters under the same PC equipped with
a Pentium Dual-Core E5300 CPU and 2-GB RAM memory.
The test picture is 512×512 Lena image. We collect the data
of the FWNLM and NLM filter using the 21 × 21 searching
window and the 9 × 9 matching windows. From the table,
we see that the FWNLM filter is about 100–200 s slower than
the NLM algorithm. However, as the calculation of the NLM
and FWNLM filters is very alike, the acceleration methods,
such as [12–17], also can be applied to our algorithm.

5 Conclusion

This paper presents a new filter for random-valued impulse
noise removal. We introduce a new fuzzy weighting func-
tion to the non-local means algorithm to shut off the impul-
sive weight effectively. In contrast to the recently proposed
techniques for the removal of random-valued impulse noise,
the proposed filter has a distinct advantage in cleaning
the noise. In particular, the proposed filter also performs
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Table 4 Comparison of CPU time in seconds

p = 40% p = 50% p = 60% σ = 20, σ = 10,

p = 30% p = 40%

MED 0.1 0.1 0.1 0.1 0.1

NLM 1,117.6 1,118.2 1,117.7 1,118.2 1,118.2

SKR 1,290.3 1,452.1 1,280.9 1,272.6 1,280.0

GP 2.7 2.7 2.7 2.8 2.7

Luo 31.0 31.0 31.0 31.1 31.4

CEF 8.1 12.3 12.6 12.5 12.3

DWM 18.8 18.8 18.9 18.8 18.9

FWNLM 1,235.9 1,269.5 1,269.1 1,269.1 1,270.0

surprisingly well in removing mixed Gaussian and random-
valued impulse noise.
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