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Abstract Gait, which is defined as the style of walking of
a person, has been recognized as a potential biometric fea-
ture for identifying human beings. The fundamental nature
of gait biometric of being unconstrained and captured often
without a subject’s knowledge or co-operation has motivated
many researchers over the last one decade. However, all of
the approaches found in the literature assume that there is
little or no occlusion present at the time of capturing gait
images, both during training and during testing and deploy-
ment. We look into this challenging problem of gait rec-
ognition in the presence of occlusion. A novel approach is
proposed, which first detects the presence of occlusion and
accordingly extracts clean and unclean gait cycles from the
whole input sequence. In the second step, occluded silhouette
frames are reconstructed using Balanced Gaussian Process
Dynamical Model (BGPDM). We evaluated our approach
on a new data set TUM-IITKGP featuring inter-object occlu-
sion. Algorithms have also been tested on CMU’s Mobo data
set by introducing synthetic occlusion of different degrees.
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1 Introduction

Biometrics-based human identification is becoming increas-
ingly important in visual surveillance systems, tracking,
monitoring, forensics, etc., since they provide reliable and
efficient means of identity verification. Gait-based human
recognition is one of the topics of active interest in biometric
research since it provides many unique advantages such as
non-contact, non-invasive, and perceivable at a distance com-
pared with the traditional biometric features such as face, iris,
palm print, and finger print. Gait recognition refers to ver-
ifying and/or identifying persons using their walking style.
Although gait analysis for human identification is not yet as
mature as fingerprint, iris, or face, it can still be a useful tool.
For example, in a bank robbery case in Denmark, the Court
found gait analysis from video to be a valuable evidence [1].
Often, in cases of robbery, the perpetrator hides his face using
mask and puts on gloves so that no face image or fingerprint
is captured, but security cameras can record his gait.

Gait of a person is a periodic activity where each gait
cycle covers two strides: the right foot forward and the left
foot forward as shown in Fig. 1. Like other biometric-based
systems, gait recognition also follows three stages of opera-
tion. At first, videos of walking subjects are captured. In the
second step, gait sequences are analyzed for detecting the gait
cycles. Then, relevant features are extracted from each cycle
usually from the shape and dynamics of each stride. Shape
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Fig. 1 The key stances of a gait cycle

means physical build of a person seen in different gait phases,
and dynamics means motion dynamics of the person in a gait
cycle. The shape and the dynamics of a gait cycle for a person
together form the gait biometric feature for that person [22].
In the last stage, the extracted feature set is compared against
a template set maintained in the database. Generally, multiple
gait cycles are used in order to make the system robust against
small variations that can occur in individual cycles.

Almost all of the available gait data sets consider that only
a single person is moving in the field of view of the camera
[14,17,33,34]. Thus, the gait cycles obtained from those vid-
eos are clean. All the gait recognition techniques proposed
in the literature have been developed considering such clean
gait cycles. However, in real-life applications, more than one
person could be present in the field of view of the camera
and almost invariably they occlude one another. Occlusion
can occur due to other factors as well, like the presence of
beams, pillars, and other non-living objects. Since the gait
video sequence is captured without the subject’s active par-
ticipation or co-operation and in unconstrained environment,
this type of situation is more likely to happen. An example
sequence of video frames where the first person on the right
in the first frame is occluded during his gait cycle is shown
in Fig. 2. Thus, unlike the example shown in Fig. 1, it may
not be possible to extract clean gait cycles for this subject.
None of the methods available in the literature is able to rec-
ognize the subject from such a video sequence using gait
features even if the classifier was originally trained for the
same individual.

For human recognition using gait in the presence of occlu-
sion, it has to be first determined how many clean gait cycles
could be captured in the video. A gait cycle is represented by
a series of key poses. If all the key poses are present in a gait

cycle, the gait cycle is considered to be clean. Given a gait
sequence, key pose estimation is done to determine which of
the following situations has occurred:

– The gait sequence contains multiple clean gait cycles.
– It has only one clean gait cycle.
– There is no clean gait cycle.

In the first case where multiple clean gait cycles are pres-
ent, classification can be carried out in the usual process by
extracting suitable gait features from the available clean gait
cycles. In the second case, recognition can be done in two dif-
ferent ways. First, the single clean cycle can be used for rec-
ognition. But, in this case, the recognition accuracy degrades
due to the vulnerability of gait features to small variations in
individual cycles. As an alternative, occluded silhouettes of
partial gait cycles can be reconstructed to get multiple clean
gait cycles. Then, usual gait recognition process can be fol-
lowed. In the third situation, occluded silhouettes have to be
reconstructed to get at least one clean gait cycle.

To determine which of the above three situations had
occurred, the input silhouette sequence is first partitioned
into subsequences of one gait cycle length. Then, each of
these subsequences is checked to determine whether any of
the poses is occluded. If occlusion is present, then that subse-
quence is considered as unclean. But determining gait cycles
correctly in the input sequence in the presence of multiple
degraded silhouettes is not possible using the methods pro-
posed in Sundaresan et al. [12], Sarkar et al. [17]. Hence, an
alternative approach has to be devised, which can simulta-
neously detect key poses, occluded poses as well as the gait
cycles. In this paper, we propose a novel method to classify
an input sequence of silhouette frames to the most probable
key poses. Since a sequence of key poses makes up one gait
cycle, classification of the input silhouette sequence as clean
or unclean can be done depending on the output of this step,
namely how many of the key poses could be identified.

After detecting which of the silhouettes is degraded by
occlusion, the next step is to reconstruct them. Here, we apply
Gaussian Process Dynamic Model (GPDM) [28], which is

Fig. 2 A sequence of frames where a subject is occluded by dynamic objects (dynamic occlusion)
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a latent variable model used for nonlinear time series
analysis, to reconstruct the occluded silhouettes.

The rest of this paper is organized as follows. In Sect. 2,
we describe the existing approaches for gait recognition. Sec-
tion 3 describes the overall approach in detail. Section 4 intro-
duces a dynamic programming-based key pose estimation
and occlusion detection method. We describe the silhouette
reconstruction approach in Sect. 5. Then, in Sect. 6, we pres-
ent detailed results and finally conclude in Sect. 7.

2 Related work

Gait recognition approaches are mainly classified into two
types, namely model-based approaches and motion-based
or holistic approaches. Both of these approaches follow the
usual framework of biometric-based human recognition, i.e.,
feature extraction, feature correspondence, and high level
processing. The difference is in the way feature correspon-
dence is done.

Model-based approaches

Model-based approaches generally model the human body
or its motion from input gait sequences. Then, the model
is matched in every frame of a gait sequence by measuring
the parameters such as trajectories, limb lengths, and angular
speeds. Cunado et al. [2] and Yam et al. [4] first extracted leg
motion and then computed gait signature by Fourier analysis.
Activity-specific static body parameters are used by Johnson
and Bobick [3] without directly analyzing gait dynamics.
Jain et al. [5] proposed a fuzzy approach, where they used a
bio-mechanical model for identification. In [6], Zhang et al.
introduced a novel approach by employing a five-link biped
locomotion human model. But, here, the recognition rate is
significantly limited by the distance of the subject from the
camera.

In contrast to the above, Lu et al. [7] proposed a full-
body layered deformable model using manually labeled sil-
houettes. The model is defined for the fronto-parallel gait
with 22 parameters describing human body part shapes
(widths and lengths) and dynamics (positions and orienta-
tions). While other model-based approaches mainly focus
on lower limbs, this approach is based on full-body model
utilizing the dynamics of upper limbs, shoulders, and head as
well. Another manually labeled silhouette-based approach is
the one proposed in Huang and Boulgouris [8]. This approach
fuses several discriminative features extracted from manually
labeled silhouettes, i.e., the area, the gravity center, and the
orientation of each body component. Although they reported
promising results, these approaches are restricted by the use
of manually labeled silhouettes. While model-based methods
are generally view and scale invariant, the use of such meth-
ods is still limited due to current imperfect vision techniques

(e.g., tracking and localizing human body accurately in 2D or
3D space has long been a challenging and unsolved problem),
requirement of good quality silhouettes, and high computa-
tional cost.

Motion-based or holistic approaches

Most of the current approaches are motion based, which
directly use the silhouettes of gait sequences for feature
extraction without developing any model. These approaches
are further categorized into two classes, namely state-space
methods and spatiotemporal methods.

In state-space methods, gait dynamics is assumed to be
composed of a sequence of static gait poses. Temporal varia-
tion of observations with respect to these static poses is used
for recognition [9,10].

Spatiotemporal methods characterize the spatiotempo-
ral distribution of gait dynamics. The earliest approach
in this category is by Niyogi and Adelson [13]. In their
approach, recognition is done using spatiotemporal gait pat-
terns obtained from curve-fitted ‘snake’. Later, Little and
Boyd used frequency and phase features from optical flow
information of gait [14] and obtained better recognition result
on a small database of six subjects. This method is suscep-
tible to noise. BenAbdelkader et al. [15] used image self-
similarity plots of a moving person to recognize gait. For
recognition and classification, they use principal component
analysis (PCA) and K-nearest neighbor method, respectively.
Their approach is sensitive to walking speed, clothing, light-
ing, etc. Vega and Sarkar [16] described a gait recognition
method, which exploits the non-stationarity in the distribu-
tion of feature relationships. Sarkar et al. [17] proposed a
baseline algorithm based on spatiotemporal silhouette corre-
lation. This approach is quite often used as a reference for
comparing different gait recognition methods.

An automatic gait recognition method using spatiotempo-
ral symmetry was introduced in Hayfron-Acquah et al. [18].
Generalized symmetry operator is used for extracting the
features. Lee et al. propose a method to divide the silhouette
of a walking person into regions to facilitate the recogni-
tion task [19]. The features used for recognition are view
and appearance based. As a result, with a change of appear-
ance of the subject, recognition accuracy decreases. Han and
Bhanu [23] proposed a new gait feature named as Gait Energy
Image (GEI). In GEI, the spatiotemporal information is repre-
sented in a single 2D gait template. GEI reflects major shapes
of silhouettes and their changes over the gait cycle. They
reported promising result using this new feature representa-
tion. Later, a number of variations of this basic GEI feature
have been proposed, namely enhanced GEI [24], frame dif-
ference energy image (FDEI) [25], and active energy image
[26]. In [20], a detailed comparison was done for several
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motion-based techniques. Advantages and disadvantages of
different features are also identified.

Lu and Zhang [21] proposed a method using multiple fea-
tures and view fusion based on Genetic Fuzzy Support Vector
Machine (GFSVM). They show that the recognition perfor-
mance using a fusion of multiple features and multiple views
is better than single feature– or single view–based meth-
ods. Another multiple feature–based approach was proposed
in Chen et al. [11]. Factorial HMM (FHMM) is employed
here as a feature level fusion scheme for fusing different
gait features, which is then compared with a Parallel HMM
(PHMM)- based decision level fusion scheme.

It can be observed from the above discussion that all of the
existing approaches tried to improve the recognition accuracy
irrespective of walking environment, viewing angle, walking
surface, walking style, carrying condition, etc. But all of them
ignore the important aspect of occlusion that is quite com-
mon in real-world scenarios. This issue needs to be addressed
in order to do gait recognition in practical real-life situa-
tions. Our current work addresses this challenging problem
of occlusion handling in the context of gait recognition.

3 Overall algorithm description

Figure 3 shows the block diagram of the proposed approach,
and Algorithm 1 describes the steps followed.

Algorithm 1 Complete Algorithm
Step 1: Key Pose Estimation

Input: Training silhouettes (Ii , i = 1, . . . , IM),
No. of eigen vectors (K), No. of key poses (K)
Output: Key poses in eigen space(P1, . . . , PK )
Step 1.1: Project silhouettes (Ii) into eigen space
and obtain K eigensilhouette (ui , i = 1, . . . ,K)
Step 1.2: Compute weight vectors (Ωi , i = 1, . . . , M)
Step 1.3: Apply K-means clustering on eigen images (�i)
to get K key poses representing a gait cycle (P1, . . . , PK )

Step 2: Occlusion Detection
Input: Test silhouettes (T I1, . . . , T IT ), Key poses (P1, . . . , PK )
Output: Clean and Unclean gait cycles
Step 2.1: Apply eigen-space projection on training
silhouettes (T Ii)to get the weight vectors (Ωi)
Step 2.2: Compute match scores among all training
images and key poses P1, . . . , PK
Step 2.3: Apply graph-based path searching to find out
the most likely poses of the test silhouette sequence
Step 2.4: Analyze the result and find out which and
how many gait cycles are degraded by occlusion

Step 3: Missing Silhouette Reconstruction
Input: Training silhouettes (I1, . . . , IN), test silhouettes
(T I1, . . . , T IT ) where T Ii − T I j are missing
Output: Reconstructed silhouettes (RIi − RI j)
Step 3.1: Training/ Learning: Train GPDM with
normal walking sequences I1, . . . , IN
Step 3.2: Deployment: Use trained GPDM to predict
the missing silhouettes T Ii − T I j as RIi − RI j

Occlusion Detection and Key Pose Estimation Step

Silhouette
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Step
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Fig. 3 Block diagram of the proposed approach

For classifying the input silhouettes into key poses, it
is required to define the key poses first. Since there is no
standard way of determining the number of key poses and
their characteristics, we apply unsupervised learning, spe-
cifically constrained K-means clustering, to choose the key
poses. Instead of directly applying K-meaning clustering,
PCA is first applied on training silhouette images to map them
in the eigen space. Since PCA finds a small set of orthogo-
nal vectors (K) that captures the observed total variance in
a better way than the original feature space, clustering in
eigen space results in better clusters (see steps 1.1 and 1.2
in Algorithm 1). Once the weight vectors of each silhouette
in the eigen space is obtained, K-means clustering is applied
on these weight vectors (see step 1.3 in Algorithm 1). The
clusters thus formed represent different key pose classes, and
the mean vectors are used to represent the key poses.

Next stage is occlusion detection. Given the input test
sequence (T I1, . . . , T IT ), each silhouette is first linearly pro-
jected into the eigen space to get the weight vectors (see step
2.1 in Algorithm 1). Euclidean distance is used to compute a
match score between the observed weight vector of a silhou-
ette and each of the key poses (see step 2.2 in Algorithm 1). If
there are K key poses and T frames in a sequence, an [K ×T ]
array of match scores is obtained. From these match scores,
the input silhouette can be classified directly by considering
the best- matched key pose. But this oversimplified method
does not consider the temporal context of key pose sequence.
Thus, only shape-based classification can potentially give
misleading result. So, we use a state transition model (see
Fig. 5), which shows the allowable transitions between key
poses that are associated with each state in the model. Based
on this model, a directed graph is constructed, where vertices
are the key poses and edges represent allowable transitions.
Classification of an input sequence to a sequence of known
key poses is formulated as a most probable path search prob-
lem which is solved using dynamic programming (see step
2.3 in Algorithm 1). Each silhouette in the input sequence
is labeled into one of the key poses. Substantially degraded
silhouette frames are classified as occluded. Thus, the output
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Fig. 4 Output of the pose estimation step. Mapped Sequence shows
class of each frame of the input sequence. Index labels ‘S1’ to ‘S16’
denote one of the sixteen key poses, and index label ‘S0’ denotes
occluded pose. From this mapped sequence, three extracted subse-
quences are shown as GC 1, GC 2, and GC 3. Subsequence GC 1
and GC 2 are unclean and GC 3 is clean. Asterisk indicates presence of
occluded frame(s)

at this stage is a sequence of key pose labels representing
the most probable class of each silhouette frame in the input
sequence as shown in Fig. 4. By analyzing these class labels,
the subsequence of frames corresponding to a gait cycle can
be extracted. Since a sequence of frames containing all the
key poses constitute a clean gait cycle, if any of the frames
in the sequence is identified as occluded, then the complete
sequence is labeled as unclean. After checking whether any
of the frames in a subsequence is classified as occluded or
not, it can also be determined whether the subsequence is
clean or not (see step 2.4 in Algorithm 1). Thus, we can indi-
rectly identify the gait cycles in the input sequence without
applying any of the methods used in Sundaresan et al. [12],
Sarkar et al. [17].

In the final stage, reconstruction of occluded silhouettes
is done using GPDM. First, the GPDM is trained to learn the
model parameters (see step 3.1 in Algorithm 1). This learned
model is then used for reconstructing the missing silhouettes
(see step 3.2 in Algorithm 1). The reconstructed silhouettes
are used for reconstructing the unclean gait cycles, so that
they can now be used for feature extraction and subsequent
gait recognition using any of the existing methods described
in Sect. 2.

4 Key pose estimation and occlusion detection

As discussed before, the first step in occlusion handling is
to determine whether any of the gait cycles present in the
input sequence is degraded by occlusion. In this section, we

describe the method of key pose estimation and occluded
frame detection.

4.1 Eigen-space projection

As discussed above, the first step is to apply eigen-space pro-
jection to find the principal components or the eigenvectors
of the silhouette image set. Since these eigenvectors have a
silhouette- like appearance, we call them eigensilhouettes.
Every silhouette image in the training set can be represented
as a weighted linear combination of these basis eigensilhou-
ettes. The number of eigensilhouettes we obtain is equal to
the number of silhouette images in the training set. Since
some of these eigensilhouettes are more important in encod-
ing the variation in silhouette images, we select only the K
most significant eigensilhouettes.

Let there be M training silhouette images I1, I2, . . . , IM

of size S = W × H , where W = width and H = height of
a silhouette image frame. We represent each image Ii ∈ I
as a column vector �i of size S × 1, where I represents the
training set. We find the mean silhouette vector � as follows:

� = 1

M

M∑

i=1

�i (1)

Next, we compute the normalized silhouette image vector
�i by subtracting the mean silhouette vector �i from each
training silhouette vector.

�i = �i − � (2)

Thus, only the distinguishing features from each silhouette
are considered. We then find the covariance matrix C as fol-
lows:

C = 1

M

M∑

n=1

�n�T
n = 1

M

M∑

n=1

(�n −�)(�n −�)T = AAT (3)

where A = [�1,�2, . . . , �M ]. Since the size of C is S × S,
computing eigenvectors ui from this covariance matrix is
intractable for typical image sizes [35]. This problem can be
solved by first computing the eigenvectors of much smaller
AT A matrix of size M × M and taking linear combina-
tions of the silhouette images �i . For example, in TUM-
IITKGP dataset, the number of images used for training,
M ≈ 2,000 of size S = 88×128 (M � S). By solving AT A,
M eigenvectors (vi , i = 1, 2, . . . , M) are obtained, each of
dimension M × 1. Now from matrix properties, we compute
eigenvectors (ui , i = 1, 2, . . . , M) of the covariance matrix
C = AAT as ui = Avi [35]. Since the dimension of A is
S × M , the dimension of ui becomes S × 1. ui is normalized
such that

∥∥ui
∥∥ = 1. Thus, M eigenvectors of C are obtained.

Since the number of training data M is very large (depends
on the dataset size, e.g., TUM-IITKGP dataset M ≈ 2,000),
the number of eigenvectors is still large. Further, all of them
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do not contain significant information. To select K most sig-
nificant eigenvectors, we sort the eigenvalues in decreasing
order and select K number of eigenvectors that account for
variance more than 90%.

Once eigenvectors are computed, we find the weight vec-
tors, also known as silhouette space image, as follows:

Ωi = uT �i , i = 1, 2, . . . , M (4)

where u = [u1, u2, . . . , uK],K ≤ M , and silhouette space
image Ωi = [w1, w2, . . . , wK]T .

Now, each silhouette in the training set (mean subtracted),
�i , can be represented as a linear combination of these
eigensilhouettes ui as follows

�i =
K∑

j=1

w j u j (5)

4.2 K-means clustering

After finding the most relevant eigensilhouettes for the train-
ing images, the weight vector of each silhouette is computed
by projecting it into the eigen space and these vectors are
stored in the database. The next step is to determine the key
poses present in a gait cycle. We apply constrained K-means
clustering, an unsupervised learning technique, such that
each cluster represents a key pose class. The inherent sequen-
tial nature of the key poses in a gait cycle makes the clusters
formed by K-means clustering temporally adjacent. Since
the key poses are defined in a way to represent the asym-
metry of an entire gait cycle, separate key poses or clusters
are formed during left foot forward position and right foot
forward position.

Let us assume that feature vectors of a gait cycle of the
nth subject is given by On = ωn

1 , ωn
2 , . . . , ωn

p, where p =
number of frames in a gait cycle. We initialize the clusters by
equally partitioning each gait cycle into K segments. The j th
frame is assigned to cluster i = 1 + �( j∗K

p )�, where i ∈ K .
Thus, all the frames in the i th segment of each gait cycle
of all the subjects are grouped under the i th cluster. Let the
initial set of clusters be S0 = S0

1 , S0
2 , . . . , S0

K , and the corre-
sponding centroids are P0 = P0

1 , P0
2 , . . . , P0

K , each of which
represents a key pose. Then, constrained K-means clustering
is applied for iteratively refining the clusters. We apply the
constraints to maintain the sequential nature of gait poses.
The constraints are as follows:

– The only allowable transitions are from the i th cluster to
(i − 1)th or i th or (i + 1)th clusters.

– After performing cluster assignment by taking the first
constraint into account, check the transition order of each
frame. If it is not ordered properly, then reassign those

frames such that the previous frame’s cluster is lower or
equal to the current frames’s cluster.

– Ensure that every cluster has at least one frame from each
gait cycle of each subject.

After initialization, the algorithm proceeds by alternating
between the following two steps:

Update step: Calculate the centroid of the cluster.

P(t)
i = 1

|S(t)
i |

∑

ω j ∈S(t)
i

ω j (6)

Assignment step: Reassign each frame to the allowable clus-
ter with the closest mean.

S(t+1)
i = {

ω j : ∥∥ω j − P(t)
i

∥∥ ≤ ∥∥ω j − P(t)
j

∥∥

for j = i − 1 or i + 1
}

(7)

The algorithm terminates when the assignments no longer
change.

4.3 Match score computation

Let the mean weight vectors corresponding to the key poses
be (P1, P2, . . . , PK ). Given an unknown probe silhouette �,
we first normalize it as � = � − �. Then, this normalized
silhouette is projected onto the eigen space and the weight
vector is determined as follows:

Ω = uT � (8)

After the feature vector (weight vector) for the probe silhou-
ette is computed, the match scores of the probe silhouette to
all of the key pose weight vectors (P1, . . . , PK ) are deter-
mined. To do this, we use simple Euclidean distance mea-
sure (D(Pi −Ω)). If D(Pi ,Ω) < �, where � is a threshold
chosen empirically, then the probe image can be matched to
one of the key poses. If, however, D(PiΩ) > �, then the
probe does not belong to any of the key poses. This situa-
tion occurs when a silhouette is degraded due to occlusion.
Thus, D(Pi ,Ω) > � indicates the presence of occlusion in
the corresponding silhouette image. To choose the threshold,
we consider a large set of random silhouette images (both
occluded and not occluded) and calculate the distance values
for silhouette images in the database and also for this random
set. The threshold � is set accordingly.

Since we require similarity score, we compute S(Pi ,Ω)

= 1 − D(Pi − Ω) for i = 1, 2, . . . , K . When D(Pi ,Ω) >

�∀i, S(Occluded,Ω) = 1 and S(Pi ,Ω) = 0. Con-
versely, when D(Pi ,Ω) < �∀i, S(Occluded,Ω) = 0 and
S(Pi ,Ω) = 1 − D(Pi − Ω). All the similarity values are
then normalized.
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Fig. 5 Proposed state transition diagram considering three states
(S1–S3) corresponding to three key poses (P1–P3) and one occluded
pose state (O)

4.4 Graph-based path searching

A gait cycle is modeled as a chain of estimated key poses.
An example state transition diagram considering only three
key poses in a gait cycle is shown in Fig. 5. Each state in this
graph model corresponds to one key pose. This state tran-
sition model provides contextual and temporal constraints
where the links specify the temporal order of the key poses.
The special feature of this model is inclusion of an occluded
state. Like each key pose associated with a state, we associ-
ate an occluded pose to the occluded state. Since occlusion
can occur randomly at any frame in a sequence, transition to
the occluded state can occur from any key pose state. Simi-
larly, when occlusion is over, the next key pose can be any
pose depending on the duration of occlusion. Thus, we can
determine when occlusion occurs and in how many frames.

Now, suppose there are N states in the state transition
model and T silhouette frames in the input sequence. It is
required to determine the key pose of each silhouette frame.
In the preceding subsection, an N × T array of matching
scores is obtained. To find out the key pose of the i th silhou-
ette frame, one straightforward approach would be to assign
the best-matched key pose as the key pose of the i th frame.
However, this oversimplified approach does not consider the
following factors which may lead to false detection.

– Silhouettes can be easily distorted by a bad foreground
segmentation, and thus the matching score may be mis-
leading.

– Even if silhouettes are clean, different key poses may gen-
erate similar silhouettes (like left foot forward position
and right foot forward position).

Thus, decision based only on individual matching scores is
unreliable. To robustly recognize key poses from unreliable
individual observations, we take advantage of the tempo-
ral constraints imposed by the state transition model and

formulate the key pose finding problem as the most likely
path finding problem in a directed graph, where each key
pose is a node and the edges are the allowable transitions
among them.

4.4.1 Directed graph construction

We construct a directed graph from the state transition model
proposed in the previous subsection. Each node of the graph
represents a state while each edge represents allowable state
transition from the current silhouette frame to the next sil-
houette frame. The graph is constructed as follows.

Let, the input sequence of frames be F = F1,F2, . . . ,FT

and the possible set of states in the i th frame be Si =
Si

1, . . . , Si
N , where S1 to (SN−1) states represent key poses

Pi = Pi
1 , Pi

2 , . . . , Pi
N−1 and SN represents occluded pose.

The set of vertices V of the graph GF corresponds to the
key pose states and occluded state, Si = Si

1, Si
2, . . . , Si

N for
i = 1 to T . An edge e ∈ E of the graph GF links verti-
ces in frame Fi with vertices in frame Fi + 1. Thus, edge
ei

kp : Si
k → Si+1

p is added to the graph GF only if transition
from Sk to Sp is allowable by the state transition diagram. The
graph thus constructed is a directed acyclic graph. Figure 6
shows an example of a graph constructed from the example
state transition model shown in Fig. 5 for five consecutive
frames.

4.4.2 Most likely pose sequence search

Once the graph is constructed, we need to find out the most
probable key pose assignment for each silhouette frame in
the input sequence. As mentioned before, since we want to
consider the temporal context during key pose assignment,
the graph path search technique is adopted. Thus, the most
likely sequence of key poses for a sequence of frames will be
the most probable path (the path having maximum weight)
belonging to the set of all admissible paths in the directed
graph, which can be formulated as a dynamic programming
problem [30].

The example shown in Fig. 6 is used to illustrate how
dynamic programming is employed in our approach. The fig-
ure shows the graph constructed with three key pose states
and one occluded state for a five frame sequence. The goal
is to find a path from the first frame to the last frame hav-
ing maximum path weight. At each time step, we compute
three values for each state: the matching score (the first value
shown in each node) between state j in the graph and input
frame Fi , the best score (the second value shown in each
node) along a path up to node (ti j ) and the previous element
on this path. The matching score actually represents to what
extent the silhouette of the current input frame matches the
key pose corresponding to state j . The procedure for com-
puting this value is described in detail in Sect. 4.3. At frame
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Fig. 6 Directed acyclic graph
constructed for three key pose
states (S1–S3) and one occluded
state (O) over five frames. The
bold edges show the most
probable path found by dynamic
programming. The pose
assignment obtained for each
frame is:
S1–S1–O–S2–S3(1–1–4–2–3)

number Fi , node ti j searches at every possible previous node
that links to the current node in the graph and chooses the
one with the maximum path score. The path score of the
current node ti j is updated accordingly, and the selected pre-
vious node is recorded (the third value shown in each node).
When the last frame is reached, the node with the maximum
path score is selected and then backtracking starting from this
node is done to get the most probable path (shown in bold).
The complete algorithm for finding most probable path is
described in Algorithm 2. The complexity of the algorithm
for a fully ergodic graph (graph constructed from all possible
transitions between states in the state transition diagram) is
O(N 2T ), where N is the number of states and T is the num-
ber of frames. In our case, since the average in-degree of each
node is small, the overall complexity reduces to O(N T ).

5 Reconstruction of occluded silhouettes

For occluded silhouette estimation/reconstruction, we apply
a learning-based approach to model the silhouette observa-
tions and their dynamics using GPDM. In [27], Pullen et al.
reported that human motions have certain cooperative rela-
tionships especially when people do some specific move-
ments like walking, swimming, etc. This relationship can
be used to reduce the high observation space dimensionality
while performing human motion analysis. So, human motion
can be modeled in a low-dimensional latent space. Since
human motion is non-linear, basic dimensionality reduction
methods such as PCA are inadequate to describe it. Thus,
these methods are not suitable for building low-dimensional
walking models [28]. Gaussian Process Latent Variable

Algorithm 2 Key Pose Detection Algorithm
Input:
T = total number of frames in a sequence
F = a sequence of frames F1, F2, . . . , FT where F1 is the
starting frame and FT is the ending frame
Construct the graph GF(V,E)

N = number of nodes in each frame (same as the number
of states in the state transition model)

ti j = j th state in frame Fi

E(ti j , tkl ) = edge joining the node ti j with tkl

MatchScore(ti j ) = probability of being Fi in j th state
Best Score(ti j ) = weight of the most probable path up to Fi

that accounts for first i frames and ends in state j
PrevNode(ti j ) = keeps track of the state that
maximizes Best Score(ti j ) in previous frame Fi−1

Output: MaximumW eighted Path from F1 to FT ,
and Best Statei for i = 1, . . . , T

Initialization:
Best Score(t1 j ) = MatchScore(t1 j ),
Best Score(ti j ) = 0 , ∀i > 1, j
PrevNode(ti j ) = 0, ∀i, j

Iteration:
For every frame Fi and for each j th state in Fi,
such that 1 ≤ i ≤ T
Compute:
Best Score(ti j ) = max(Best Score(tkl ) + MatchScore(ti j ))

∀ nodes in the previous frame Fk such that k = i − 1
PrevNode(ti j ) = argmax(Best Score(tkl ) + MatchScore(ti j ))

Termination:
MaximumW eighted Path = max(Best Score(tT i ))

∀ nodes i in the last frame FT

Best StateT = argmax(Best Score(tT i ))

Path Backtracking:
Best Statei = PrevNode(t(i+1)(Beat Statei+1)),

i = T − 1, T − 2, . . . , 1
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Models (GPLVM) [29] and later extended approaches likes
Gaussian Process Dynamic Models (GPDM) [28,31] can
learn a non-linear mapping between the observation space
and the latent space, and they also provide an inverse map-
ping. But GPLVM is a static model that represents data
independently without considering their temporal continu-
ity. GPDM is specially designed to handle the chronological
relations between successive data points, in our case a sil-
houette sequence. It can also learn dynamical model from
missing data and produce estimates of them. This motivates
us to use GPDM to predict the missing silhouettes. The sil-
houette frames that are detected as occluded are treated as
missing.

5.1 Gaussian process dynamical model

Gaussian Process Dynamic Model (GPDM) [28] is a pow-
erful latent variable model that can be applied for probabi-
listically modeling high-dimensional nonlinear time series
data. It consists of two nonlinear mappings, namely a con-
tinuous mapping from the high-dimensional observation sil-
houette image space to the low-dimensional latent space
and a dynamical mapping in the latent space. The model
is obtained by marginalizing out the parameters of the two
mappings in closed form by using Gaussian process pri-
ors and optimizing the latent coordinates of training data.
Suppose {I1, . . . , It , . . . , IN } denotes observation silhouette
data set and It represents a particular silhouette image at
time t, It ∈ RD where D is the size of the silhouette image.
{L1, . . . , Lt , . . . , L N } is the set of corresponding data points
in the latent space, Lt represents the d-dimensional latent
coordinate of the silhouette image at time t, Lt ∈ Rd . The
first-order Markov dynamics and the latent space mapping
can be expressed as:

Lt =
∑

i

aiφi (Lt−1) + nL ,t (9)

It =
∑

j

b jϕ j (Lt ) + nI,t (10)

where weights A = [a1, a2, . . .], B = [b1, b2, . . .], φi and
ϕi are basis functions, and nL ,t , nI,t are zero-mean, isotro-
pic, white Gaussian noise processes. The model parameters
A and B are marginalized out in GPDM through model aver-
aging. Using an isotropic Gaussian prior on each b j , we can
marginalize over B in closed form to yield a multivariate
Gaussian data likelihood [28]:

p(I | L, β) = |W |n√
(2π)N D|KI|D

× exp

(
−1

2
tr(K −1

I IW 2IT )

)
(11)

where I = [I1, . . . , IN ]T is a matrix of training sil-
houette images, L = [L1, . . . , L N ]T is corresponding
matrix of latent positions, K| is a kernel matrix, and β =
{β1, β2, . . . , W } are the hyperparameters of the kernel. W ≡
diag(w1, . . . , wD) is a scaling matrix which captures dif-
ferent variances in the different data dimensions. The kernel
matrix elements are defined by a kernel function (K|)i, j =
K|(Li , L j ). To get the latent mapping of the training silhou-
ette images, L → I, radial basis function (RBF) is used.

kI(L , L
′
) = β1 exp

(
−β2

2
‖L − L

′ ‖2
)

+ β−1
3 δL ,L ′ (12)

where hyperparameter β1 is the output scale of the kernel
function, β2 is the inverse width of the RBF, and β−1

3 is the
variance of the additive noise nL ,t .

The dynamic mapping for latent coordinate L is similar to
the latent space mapping. The joint probability density over
the latent coordinates can be represented by:

p(L | α) = p(L1)
1√

(2π)(N−1)d |KL|d

× exp

(
−1

2
tr

(
K −1

L LoutL
T
out

))
(13)

where Lout = [L2, . . . , L N ]T denotes the latent coordinates
of the input silhouette sequence except the first frame, KL is
the (N −1)× (N −1) kernel matrix constructed from Lin =
[L1, . . . , L N−1], and L1 is given an isotropic Gaussian prior.
α is a vector of kernel hyperparameters. The dynamics is
modeled using the following “Linear + RBF” kernel:

k(L , L
′
)=α1 exp

(
−α2

2
‖L−L

′ ‖2
)
+α3LT L

′ +α−1
4 δL ,L ′

(14)

where hyperparameter α1 is the output scale, α2 is the inverse
width of the RBF, and α3 is the output scale of the linear term.
α−1

4 represents the variance of the noise term nL ,t . The linear
term is useful for approximately linear human motion.

5.2 Training

Training the GPDM from input silhouette data I =
[I1, . . . , IN ]T entails estimating their latent positions and
the kernel hyperparameters. To avoid overfitting, prior dis-
tributions are placed on hyperparameters (p(ᾱ) ∝

∏
i α−1

i ,

p(β̄) ∝
∏

i β−1
i ). Then, GPDM posterior for training silhou-

ette sequences is obtained through a latent space mapping,
a dynamic mapping and prior distributions [28]:

p(L, ᾱ, β̄ | I) ∝ p(I | L, β)p(L | α)p(ᾱ)p(β̄) (15)
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The latent positions and hyperparameters are computed by
minimizing the following negative log posterior:

� = − ln p(L, α, β | I)

= d

2
ln |KL| + 1

2
tr

(
K −1

L LoutL
T
out

)

− N ln |W | + D

2
ln |KI| + 1

2
tr

(
K −1

I IW 2IT
)

+
∑

j

ln a j +
∑

j

ln β j + C (16)

where C is a constant. We use Balanced GPDM (BGPDM)
proposed in Urtasun et al. [32] to improve the smoothness of
data in the latent space. BGPDM slightly alters the objective
function used during training. The dimension differences in
the silhouette pose and latent space are discounted by rais-
ing the dynamics density function in (13) to the ratio of their
dimensions, i.e., λ = D/d. Thus, the first two terms in (14)
become

λ

(
d

2
ln |KL| + 1

2
tr

(
K −1

L LoutL
T
out

))
(17)

5.3 Inference of missing data

Once the model is learnt, it is used to predict the occluded/
missing silhouettes of input test sequences. Given the trained
model, � = {I,L, ᾱ, β̄, W }, the conditional density of the
new sequence I∗ and its corresponding latent coordinates L∗
are as follows [28],

p(I∗,L∗|�) = p(I∗|L∗, �)p(L∗|�)

∝ p(I, I∗|L,L∗, β̄, W )p(L,L∗|ᾱ) (18)

For missing silhouette frames, we set I ∗ = μI(Y
∗). Then, the

missing frames are predicted by optimizing (16). Once the
occluded silhouette frames are reconstructed, unclean gait
cycles are cleaned. These reconstructed clean gait cycles can
then be used by any existing algorithm for gait recognition.
Thus, the challenges caused due to the presence of occlusions
are handled.

6 Experimental results

In this section, we demonstrate the performance of the pro-
posed approach on different gait data sets. Our aim is to
evaluate how well the method classifies each frame to the key
pose classes and also detect the presence of occlusion in var-
ied situations such as variation in the size of data set, walking
surface, walking speed, and carrying condition. After detect-
ing occluded silhouettes, we evaluate the silhouette recon-
struction accuracy of the proposed GPDM- based approach.
Since none of the existing data sets address occlusion, we

use a new data set (TUM-IITKGP), developed as a collabora-
tive research work between Technical University of Munich,
Germany, and Indian Institute of Technology, Kharagpur,
India, for evaluating the performance of the proposed algo-
rithms in real occlusion situations. In addition to this, we also
use the existing MoBo data set from CMU [33]. On this data
set, we introduce different degree of occlusion synthetically
and evaluate the performance. A description of the new data
set and the detailed results are presented in the following
Sections.

6.1 TUM-IITKGP data set

In this section, we first describe the camera setup and types
of occlusion captured in the TUM-IITKGP data set [36,37].
Next, silhouette extraction and preprocessing methods are
presented.

6.1.1 Data set description

To address the gap in existing gait data sets, we have built
a new data set that includes two types of occlusion. One
type considers the subject to be occluded by dynamic objects
(dynamic occlusion), i.e., another person walking in the field
of view of the camera. In the second type of occlusion, the
subject is occluded by static objects (static occlusion). The
setup for recording is shown in Fig. 7. The camera is placed in
a narrow hallway to reflect real-world surveillance applica-
tion scenario. It is positioned at a height of 185 cm in a direc-
tion perpendicular to the hallway. The subject walks along
the line AR to AL. The perpendicular distance of the sub-
ject from the camera is 517.5 cm. The subject walks 444 cm
while within the field of view of the camera. For dynamic
occlusion, the subject starts from point AR, and two other
occluding persons start from points BL and CL, respectively.
Thus, these two occluding persons occlude the subject of
interest in two different positions. The same setup is repeated
for left-to-right motion, only with the starting points reversed
(AL, BR, CR, respectively). One such sequence is shown in

AL AR

BL
S2

CRBRCL
DRDL

444 cm

517.5 cm

Camera

Fig. 7 Camera setup for recording
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Fig. 8 A sequence of frames where a subject is occluded by static objects (static occlusion)

Fig. 2, where the subject of interest is in right-to-left motion.
For static occlusion, we place two persons in points DR and
DL. One such type of static occlusion sequence is shown in
Fig. 8.

The movement of each subject is captured in three dif-
ferent situations. Each is first recorded in a regular non-
occluded situation. The other two situations are dynamic and
static occlusions. We capture a total of four sequences (two
sequences for right-to-left motion and two sequences for left-
to-right motion) for each subject in each situation. Thus, there
are 12 sequences for each subject. The data set currently con-
sists of 35 subjects.

6.1.2 Silhouette extraction

Once the videos are captured, moving objects are separated
from background using Gaussian Mixture Model (GMM)
[38]. We use the shadow elimination method proposed in
Lu and Zhang [21] to get clean silhouettes. For removing
spurious pixels and small holes inside the extracted human
silhouette region, we apply morphological operators. First,
dilation operator with 3 × 3 structuring element is applied,
which fills up the holes and expands the silhouette region. To
get back the original silhouette region, we use erosion oper-
ator with same structuring element. Finally, the silhouettes
are normalized by height scaling and centering.

6.2 Results of key pose estimation and occlusion detection

Given a test silhouette sequence, where each silhouette frame
is vertically scaled and horizontally aligned, the first step is
to classify each silhouette into one of the key poses. If occlu-
sion is present, then we classify those degraded silhouettes
as occluded and the remaining as respective most probable
key poses.

To decide the optimum number of key poses produced
by K-means clustering, we consider the rate-distortion curve
as used by Kale et al. [9]. Rate-distortion curve plots the

Fig. 9 Rate-distortion plot

average distortion as a function of number of clusters, an
example of which is shown in Fig. 9. It can be observed from
the plot that beyond sixteen clusters, the average distortion
does not decrease significantly. Thus, for our experimenta-
tion using TUM-IITKGP data set, we choose sixteen clusters
that give a set of sixteen key poses. From mean weight vectors
(P1, P2, . . . , Pk), the key poses are reconstructed for visual-
ization. Figure 10 shows the sixteen reconstructed key poses
over one gait cycle obtained from the clustering.

Each of the key poses is associated with one state in the
proposed state transition diagram as shown in Fig. 5. How-
ever, unlike only the three states shown in this example figure,
we actually have sixteen states, one for each key pose and one
for the occluded state. Based on this state transition diagram,
the graph is constructed with seventeen nodes for each frame.
The key pose detection problem is then solved as the most
probable path search problem in this graph. The output of the
key pose detection algorithm for a subject never occluded is
shown in Fig. 11. The indexes indicate the key pose classes
in which the corresponding frames are mapped.

Occlusion detection and key pose estimation in the pres-
ence of static occlusion are shown in Fig. 12. Here, the sil-
houettes are degraded by inclusion of background pixels. It
can be observed from the figure that when the silhouette is
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Fig. 10 Reconstructed key poses obtained from K-means clustering in
eigen space

Fig. 11 Example mapped sequence for a subject never occluded. In
the first gait cycle, starting from frame no. 1 (S3) and ending at frame
no. 33 (S2), all the key poses are present, thus clean. Second gait cycle
starts from frame no 34, but these remaining seven frames do not form
a complete gait cycle

partially occluded, then also our algorithm is able to predict
the pose of the silhouette.

Figure 13 shows occlusion detection and key pose estima-
tion result in case of dynamic occlusion. Here, the silhouettes
are degraded by addition of foreground pixels. In this case,
also our proposed algorithm performs reasonably well and
predicts the partially occluded silhouettes.

Table 1 shows the accuracy of the proposed algorithm
for key pose detection, occlusion detection, and partially
occluded pose prediction. The ground truth is obtained man-
ually. It can be observed that the algorithm detects the pres-
ence of occlusion with high accuracy. Moreover, it never
detects unoccluded frames as occluded, i.e., false positive
rate is zero (not shown in table). Key pose detection accu-
racy is also high. The frames for which key poses are clas-
sified incorrectly are mainly intermediate frames between
two sequences of occluded frames. Since the temporal con-
text information used by dynamic programming is low in

Fig. 12 Example mapped sequence for a subject occluded by static
objects. First gait cycle starts from frame no. 1 (S6), but the end is
overlapped with the next gait cycle due to occlusion. Thus both the gait
cycles are detected as unclean

Fig. 13 Example mapped sequence for a subject occluded by dynamic
objects. First gait cycle, starting from frame no. 1 (S8) and ending at
frame no. 33 (S7), is detected as unclean as occluded poses are present
or all the key poses are not present. Second gait cycle, starting from
frame no. 34, is incomplete

those situation, frames are misclassified. Partially occluded
poses are predicted reasonably well. It shows the robustness
of the dynamic programming-based pose detection approach,
which is able to handle silhouette degradation to a consider-
able extent.
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Table 1 Pose detection result

Key pose
detection (%)

Occlusion
detection (%)

Partially
occluded pose
prediction (%)

Static occlusion 93.0 99.0 82.0
Dynamic occlusion 94.0 98.0 86.0

Fig. 14 Latent positions and corresponding trajectories learnt from a
silhouette sequence of two gait cycles using BGPDM

6.3 Results of silhouette reconstruction

For reconstruction of the missing silhouettes, BGPDM is first
trained with the normal walking sequences of ten subjects
each of one gait cycle length. Then, this trained model is used
for predicting the missing silhouette frames as discussed in

Sect. 5.3. Figure 14 shows 3-dimensional latent trajectories
obtained for a test sequence of silhouettes. The silhouette
sequence contains two gait cycles of size 34 frames. Twenty
silhouettes were occluded, thus considered as missing. The
latent trajectory for the existing silhouette data is depicted
by dash-dot curve, and the regular curve shows the estimated
missing silhouette latent positions. It can be observed that
the estimated positions closely follow the latent positions of
existing data.

Figure 15 shows the reconstructed missing silhouettes
obtained from reverse mapping of the estimated latent coor-
dinates. The second row and fourth row show twenty recon-
structed silhouettes of two different persons. Corresponding
original silhouettes are shown in first row and third row. It
can be observed that the predicted silhouettes are almost visu-
ally indistinguishable from the ground truth. In spite of this,
to measure the numerical accuracy of reconstruction, we use
Tanimoto similarity measure, commonly known as Tanimoto
coefficient [39]. It computes the similarity between the orig-
inal and reconstructed silhouette, I and I ∗ respectively, as
follows:

T (I, I ∗) = I T I ∗

I T I + I ∗T I ∗ − I T I ∗ (19)

For two normalized overlapping binary silhouettes, this mea-
sure computes the ratio of the number of intersection pixels
to the number of union pixels. The accuracy of the proposed
silhouette reconstruction approach using Tanimoto similar-
ity measure is found to be 90.7% for dynamic occlusion, and
88.9% for static occlusion.

Fig. 15 Original silhouettes and reconstructed missing silhouettes of two persons. First shows the original silhouettes, and second row shows the
reconstructed missing silhouettes of one subject. Similarly, third row shows original silhouettes, and fourth row shows the reconstructed silhouettes
of another subject
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6.4 Results on CMU MoBo data set with synthetic
occlusion

We also used CMU’s MoBo data set that has varying walking
styles [33]. The data set consists of indoor video sequences
of 25 subjects walking on a treadmill. Videos were captured
in different modes of walking, i.e., walking on an inclined
plane, walking with a ball in two hands, fast walk and slow
walk. Each sequence is 11.33 s long, recorded at a frame rate
of 30 frames per second.

For our experimentation, we consider sequences of 2 gait
cycles long. Each sequence starts from the midstance mode
after left leg forward position. Then, to introduce occlusion in
these sequences, we consider three different degrees of occlu-
sion, namely low, medium, and severe. To model low-degree
occlusion situation, we degrade frames taking normal dis-
tribution with N(8, 3). For medium occlusion, frames are
degraded according to N(12, 3), and for severe occlusion,
frames are degraded according to N(17, 3). For each distri-
bution, we generate 100 samples that indicate the number of
silhouette frames degraded under this distribution. Degrada-
tion of silhouette frames is done in three different positions
of the input sequence to observe the effect of occlusion on
different parts of a gait cycle. The three selected positions are
(i) start of the sequence (midstance mode to right leg forward
position), (ii) middle of the sequence where the previous gait
cycle ends and the next gait cycle starts (transition from left
leg forward position to right leg forward position), and (iii)
end of the sequence (left leg forward position to midstance
mode). The degraded frames are treated as if the full silhou-
ette is occluded by some large static object.

In the pose detection step, to determine the key poses, sil-
houettes from slow walk are used. Here also sixteen key poses
are used. After getting the key poses constructed from slow
walk sequences, the pose detection accuracy is evaluated for
fast walk, walking on inclined plane, and walking with a ball
in hand. In all cases, ground truth is obtained by manually
annotating the silhouette images into one of the key poses.
The result of pose detection with different degrees of occlu-
sion and different walking types is shown in Table 2. Here, the
result is accumulated over all the three different parts of the
gait cycle where occlusion is introduced. Occluded frames
are always detected correctly. However, pose detection accu-
racy varies with degree of occlusion. With increasing degree
of occlusion, pose detection accuracy drops. Table 3 shows
the result of pose detection for different positions of occlu-
sion and different walking types where the results have been
accumulated over all the three degrees of severity of occlu-
sion. From the results, it can be observed that the position of
occlusion does not have any clear impact on the pose detec-
tion accuracy.

For pose reconstruction, the same procedure mentioned in
Sect. 6.3 is followed. Reconstruction accuracy is computed

Table 2 Pose detection result for different degrees of occlusion

Fast walk (%) Slow walk (%) Incline (%) With ball (%)

N(8, 3) 91.2 95.6 88.8 92.9
N(12, 3) 90.1 94.8 87.5 91.3
N(17, 3) 87.8 94.1 86.3 90.8

Table 3 Pose detection result for different positions of occlusion

Fast walk
(%)

Slow walk
(%)

Incline
(%)

With ball
(%)

Start position 90.1 93.3 86.6 90.2
Middle position 89.7 95.8 88.2 93.5
End position 89.4 95.4 87.7 91.4

Table 4 Silhouette reconstruction result for different degrees of
occlusion

Fast walk (%) Slow walk (%) Incline (%) With ball (%)

N(8, 3) 92.6 91.8 90.2 91.9
N(12, 3) 91.9 91.5 89.8 90.7
N(17, 3) 91.6 91.3 89.6 90.5

Table 5 Silhouette reconstruction result for different positions of
occlusion

Fast walk
(%)

Slow walk
(%)

Incline
(%)

With ball
(%)

Start position 91.8 91.3 90.7 92.1
Middle position 92.1 91.4 90.0 90.8
End position 92.3 92.0 89.1 90.7

using Eq. 19, with respect to the original silhouettes, for var-
ied positions and degrees of occlusion. The results are pre-
sented in Tables 4 and 5. It can be seen from Table 4 that the
reconstruction accuracy degrades gracefully with increased
degree of occlusion. Even during severe occlusion, accuracy
is reasonably high. Reconstruction accuracy for walking on
inclined plane is lower due to the presence of background
noise in the lower leg region. From Table 5, it can be observed
that the reconstruction accuracy varies with position of occlu-
sion. However, the variation is less for fast and slow walk,
while it is slightly higher for walking in inclined plane and
for walking with ball in hand.

7 Conclusions

Automated identification of humans from their gait is a chal-
lenging research problem. In this paper, we have considered
situations where the subject gets occluded due to the pres-
ence of multiple objects in the field of view of camera, which
is quite common in real-world surveillance scenarios. The
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problem is quite challenging and is yet to receive enough
attention. We have proposed a novel approach for detecting
the presence of occlusion in a sequence of silhouette frames
and their subsequent reconstruction. A dynamic program-
ming- based maximum likelihood key pose detection algo-
rithm simultaneously detects key pose class for each frame
and also identifies the occluded frames. Clean and unclean
gait cycles are segregated as the algorithm output. If all the
subsequences of frames corresponding to a gait cycle are
degraded by occlusion, then none of the existing methods
can be used for recognition from this sequence. The need
for reconstruction of the degraded silhouette frames to con-
struct clean gait cycles becomes pertinent in such situations.
A novel method based on BGPDM has been suggested in this
paper, which is able to reconstruct the missing silhouettes
considerably well. The reconstructed silhouettes can then be
used for recognition using any of the existing methods.

We tested our algorithms on a new data set (TUM-IITKGP)
featuring occlusion by static objects as well as dynamic
objects. The result shows that the reconstruction accuracy
is around 90%. We also evaluated the proposed algorithms
on CMU’s MoBo data set by synthetically introducing varied
degree of occlusion. Here also we observed that the method
can reconstruct silhouettes with high accuracy. Thus, it can
be concluded that the proposed approach has the potential to
solve the challenges that arise during recognition of humans
using gait in the presence of occlusion.

Future work would involve further studies with more vari-
ations of occlusion situations, effect of camera positions, test-
ing with larger data sets, and use of multiple cameras for
occlusion reduction.
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