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Abstract The effective management and exploitation of
multimedia documents requires the extraction of the underly-
ing semantics. Multimedia analysis algorithms can produce
fairly rich, though imprecise information about a multime-
dia document which most of the times remains unexploited.
In this paper we propose a methodology for semantic index-
ing and retrieval of images, based on techniques of image
segmentation and classification combined with fuzzy rea-
soning. In the proposed knowledge-assisted analysis archi-
tecture a segmentation algorithm firstly generates a set of
over-segmented regions. After that, a region classification
process is employed to assign semantic labels using a con-
fidence degree and simultaneously merge regions based on
their semantic similarity. This information comprises the
assertional component of a fuzzy knowledge base which is
used for the refinement of mistakenly classified regions and
also for the extraction of rich implicit knowledge used for
global image classification. This knowledge about images is
stored in a semantic repository permitting image retrieval and
ranking.

This research was supported by the European Commission under
contract FP6-027026 K-SPACE.

N. Simou (B) · Th. Athanasiadis · G. Stoilos · S. Kollias
Image Video and Multimedia Systems Laboratory,
School of Electrical and Computer Engineering,
National Technical University of Athens,
Iroon Polytexneiou 9, 15780 Zografou, Greece
e-mail: nsimou@image.ntua.gr

Th. Athanasiadis
e-mail: thanos@image.ntua.gr

G. Stoilos
e-mail: gstoil@image.ntua.gr

S. Kollias
e-mail: stefanos@image.ntua.gr

Keywords Image indexing and retrieval · Semantics ·
Fuzzy description logics · Reasoning

1 Introduction

During the last decade a dramatically large increase of digital
multimedia content has occurred. The main reason that led
to this change was the broad availability and use of digital
devices, not only by professional or very experienced users,
but almost by everyone. As a consequence new research inter-
ests have emerged having as primary aim, among others,
the efficient management of multimedia content providing
mechanisms for indexing and retrieval.

To meet this objective, various approaches have been pro-
posed during the years. The first attempts were based on
metadata generation for the multimedia documents [26]. Dif-
ferent types of metadata were used which can be separated
based on their context into low level like MPEG-7 descrip-
tors and higher level like thematic categorization [19]. Fur-
thermore different methods for metadata generation have
been examined such as automatic, semi-automatic and man-
ual. The research community has focused on the automatic
extraction of semantic information, which is desired for inter-
action by most users. Clearly semantic indexing and retrieval
is a very challenging task that requires significant effort in
various fields. Firstly, efficient multimedia analysis and
processing techniques are required for the extraction of
semantic information. Additionally, artificial intelligence
algorithms need to effectively manage the provided informa-
tion by using it for the extraction of new implicit information.
Finally, the extracted information, implicit and explicit, has
to be stored in such a way that it is accessible for retrieval in
a user-friendly way.
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Most approaches related to semantic-based analysis and
indexing are grounded on the implementation of semantic
concepts detectors. Evaluation of these techniques indicates
that a good level of maturity has been reached [20,25,28].
At the same time, image segmentation and object recogni-
tion have been used simultaneously, instead of sequentially,
aiming at improvement in both domains. Such approaches
include graph-cuts minimization algorithms [16], fuzzy
region labeling for semantic region growing [2] or integrat-
ing bottom-up and top-down approaches [6]. On the other
hand the majority of classification techniques employs sta-
tistical modeling, associating low-level visual features with
mid-level concepts [7,20]. Popular machine learning tech-
niques used for region-based image classification include
Neural Networks, Support Vector Machines (SVMs) [33] and
AdaBoost [32].

This extracted information by multimedia analysis algo-
rithms requires effective management capable of inferring
complicated concepts. In this context various attempts have
been examined using taxonomies and ontologies. Hollink
et al. [11] attempt to specify the necessary requirements
for a visual ontology for video annotation and proposes the
use of a WordNet/MPEG-7 ontology combination towards
that scope. Hoogs et al. [12] couple a classical image analy-
sis objects and events recognition approach with WordNets
semantics, taking advantage of its hierarchical relationships
structure. WordNet was also used to include lexical relation-
ships between abstract and detected mid-level concepts in
[27], while in [3] authors focus on the use of a multimedia
ontology infrastructure for analysis and semantic annotation
of multimedia content. Finally, in [21] the issue of scalability
of multimedia ontologies is discussed.

Ontologies are based on description logics (DLs) [4] that
are a family of knowledge representation languages. How-
ever, despite the rich expressiveness of DLs, they lack the
ability to deal with vague and uncertain information which is
very common in multimedia content. This was the reason that
a variety of DLs capable of handling imprecise information,
like probabilistic [10] and fuzzy [29,30] have been proposed.
In any of these variations the main role of an ontology remains
the same: proper representation of semantic information in
a readable format, permitting to software agents to use it
in order to find, share and integrate information more easily.
The great evolution of ontologies during the last decade, bred
the need of data storage systems that were built specifically
for storing and querying ontologies, like Sesame,1 Kowari,2

Jena3 and more.
In this paper we present a knowledge assisted image

analysis and automatic semantic annotation methodology

1 http://www.openrdf.org/.
2 http://www.kowari.org/.
3 http://jena.sourceforge.net/.

consisting of several novel and state-of-the-art techniques.
The architecture of our proposal is shown in Fig. 1. As can be
seen, we initially segment an image based on color and shape
criteria. It is well known that with such criteria image seg-
mentation algorithms fail to extract semantically meaningful
objects. For that reason we introduce a novel semantic region
growing methodology which incorporates object detection
simultaneously with region merging, providing better input
for region-based classification. To further improve this oper-
ation we use the fuzzy reasoning engine FiRE together with a
terminology (TBox) defined in order to improve region-based
classification by incorporating spatial relations and neighbor-
hood information (Role Assertions). The previous step pro-
vides a list of concepts (together with degrees of confidence
for each one) that have been linked to the image (Concept
Assertions). Our purpose is to use this information in order to
extract additional, implicit knowledge, and also infer abstract
concepts on a global image basis. Towards this aim, FiRE is
employed using this time a different terminology especially

Fig. 1 Overview of the proposed architecture
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for this purpose. The final results are stored in an online
semantic repository, in a strictly structured format, allowing
query mechanisms for semantic retrieval and ranking. The
main contributions of the proposed architecture are:

– It presents a semantic-aware segmentation algorithm
together with a region-based classification.

– It incorporates expressive fuzzy DLs together with the
obtained results from the classification algorithms for
segmentation refinement and extraction of higher implicit
information.

– It presents a novel way for ranking and retrieval of images
based on querying of expressive fuzzy knowledge bases.

The rest of the paper is organized as follows. Section 2
presents the region-based classification and the semantic-
aware segmentation algorithm. Section 3 presents the over-
all architecture for fuzzy reasoning storage and querying.
Section 3.1 shortly introduces the fuzzy DL f -SHIN , while
the fuzzy reasoning engine FiRE, which is based on the fuzzy
DL f -SHIN , along with its syntax and reasoning services,
are presented in Sect. 3.2. Next, Sect. 3.3 presents the inte-
gration of FiRE with the RDF store Sesame and Sect. 3.4
describes the implementation of expressive queries to exploit
fuzziness which are used in this case for the retrieval and
ranking of images. Finally, we provide experimental results
of the overall approach in Sect. 4 and we draw our conclu-
sions in Sect. 5.

2 Semantic segmentation and region classification

Knowledge-assisted analysis, in the context of this work,
deals with the very important and difficult task of the instan-
tiation of a fuzzy knowledge base by processing an image.
The optimum operation of this task is crucial for our archi-
tecture since mistaken instantiation of the fuzzy knowledge
base would lead to mistaken inferred knowledge. In order to
achieve this objective, a semantic variation of the Recursive
Shortest Spanning Tree (RSST) segmentation algorithm [18]
is employed together with the fuzzy reasoning engine FiRE.
We first describe the graph representation of an image used in
our approach and the way it is initialized. Then, the Seman-
tic RSST (S-RSST) algorithm is detailed and its operation
on this graph together with FiRE.

2.1 Graph representation of an image

An image can be described as a structured set of individual
objects, allowing thus a straightforward mapping to a graph
structure. In this fashion, many image analysis problems can
be considered as graph theory problems, inheriting the solid
theoretical grounds of the latter. Attributed Relation Graph

(ARG) [5] is a type of graph often used in computer vision and
image analysis for the representation of structured objects.

Formally, an ARG is defined by spatial entities represented
as a set of vertices V and binary spatial relationships repre-
sented as a set of edges E : ARG ≡ 〈V, E〉. Letting G be
the set of all connected, non-overlapping regions/segments
of an image, then a region a ∈ G of the image is represented
in the graph by vertex va ∈ V , where va ≡ 〈a, Da,La〉.
Da is the ordered set of MPEG-7 Visual Descriptors char-
acterizing the region in terms of low-level features, while

La =∑|C|
i=1 Ci/µa(Ci ) is the fuzzy set of concepts assigned

to the region, defined over the crisp set of concepts C = {Ci }.
Following the sum notation for fuzzy sets [15], µa is the
membership function of the fuzzy set and µa(Ci ) repre-
sents the degree of confidence that region a depicts concept
Ci . The adjacency relation between two neighbor regions
a, b ∈ G of the image is represented by graph’s edge eab ≡
〈(va, vb), sab〉. sab is a similarity value for the two adjacent
regions represented by the pair (va, vb). This value is calcu-
lated based on the semantic similarity of the two regions as
described by the two fuzzy sets La and Lb:

sab := max
Ci∈C
{�(µa(C), µb(C))}, a ∈ G, b ∈ Na (1)

where � is a t-norm and Na is the set of neighbors of a
defined below. The above formula states that the similarity
of two regions is the supremum of all common concepts of
the t-norm � of µa(Ci ) and µb(Ci ) for the specific concept
of the two regions a and b.

Next, we consider two regions a, b ∈ G to be connected
when at least one pixel of one region is 4-connected to one
pixel of the other. In an ARG, a neighborhood Na of a vertex
va ∈ V is the set of vertices whose corresponding regions
are connected to a : Na = {vb : eab �= ∅}, a, b ∈ G. Finally,
the subset of ARG’s edges that are incident to region a can
be defined as: Ea ≡ {eab : vb ∈ Na}.

2.2 Image graph initialization

The graph representation of an image, as detailed in the pre-
vious subsection, is the basis of all further analysis tasks.
Here, we discuss briefly how this graph is constructed, i.e.
compute the vertices’ attributes Da and La , as well as the
semantic similarity sab for all graph’s edges. Graph initial-
ization consists mainly of four processes:

– Initial (over)segmentation.
– Extraction of spatial relations between regions.
– Extraction of visual descriptors.
– Region-based classification.

Initially, a segmentation algorithm, based on low-level
features such as color and texture [1], is applied in order
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to divide the given image into regions. Based on the relative
location of each region, binary spatial relations are extracted.
Further on, corresponding low-level visual descriptions (such
as MPEG-7 visual descriptors) are computed for every result-
ing region. The latter are employed so as to form a compound
low-level descriptor vector for every image region, based on
a simple concatenation mechanism. The computed feature
vector is employed for generating an initial set of the region’s
candidate semantic labels La together with a degree of con-
fidence for each of them using a trained SVM [14]. Based
on the fuzzy sets of labels of each region and the neighbor-
hood information as extracted from the spatial relations, we
calculate the semantic similarity for every graph’s edge.

2.3 Semantic RSST

As previously argued, segmentation based on cues such as
color and texture fails to extract semantic objects and thus
region-based classification also fails to recognize objects of
interest within an image (material-like concepts like sky,
sand, etc. being an exception). Here, we present a method-
ology to improve both image segmentation and detection of
concepts at the same time, providing a more robust mecha-
nism for semantic indexing.

RSST [18] is a bottom-up segmentation algorithm that
begins from the pixel level and iteratively merges similar
neighbor regions until certain termination criteria are sat-
isfied. RSST may use internally a graph representation of
image regions, like the ARG described in Sect. 2.1. In the
beginning, all edges of the graph are sorted according to a
criterion, e.g. color dissimilarity of the two connected regions
using Euclidean distance of the color components. The edge
with the least weight is found and the two regions connected
by that edge are merged. After each step, the merged region’s
attributes (e.g. region’s mean color) are re-calculated. Tradi-
tional RSST will also re-calculate weights of related edges
as well and re-sort them, so that in every step the edge with
the least weight will be selected. This process goes on recur-
sively until termination criteria are met. Such criteria may
vary, but usually these are either the final number of regions
or a threshold on the weight.

Following the conventions and notation used so far, we
introduce here a modified version of RSST, called Semantic
RSST (S-RSST) with novel (dis)similarity and termination
criteria. The criterion for ordering the edges is not a distance
metric based on low-level features, but the semantic similar-
ity measure sab defined in Eq. 1. For an edge between two
adjacent regions a and b we define its weight as follows:

w(eab) = 1− sab (2)

Considering that an edge’s weight should represent the
degree of dissimilarity between the two joined regions and
since sab ∈ [0…1], we simply subtract the estimated value

from one. Commutativity and associativity axioms of all
fuzzy set operations (thus including default fuzzy union and
default fuzzy intersection) ensure that the ordering of the
arguments is indifferent. In this way all graph’s edges are
sorted by their weight.

Let us now examine in detail one iteration of the S-RSST
algorithm. Firstly, the edge with the least weight is selected
as:

e∗ab = argmin
eab∈E

(w(eab)), a ∈ G, b ∈ Na (3)

Then regions a and b are merged to form a new region â.
Region b is removed completely from the ARG, whereas a is
updated appropriately. Region merging, apart from the effect
to the graph, it actually changes the segmentation map of the
image, by joining the two sets of pixels of the two regions
a and b. The update procedure at the graph consists of the
following two actions:

1. Update graph’s vertices: Consulting FiRE to re-evaluate
the degrees of confidence of each region for every con-
cept taking into account the current region labels and
their spatial relations (see Sect. 4.2).

2. Update graph’s edges, which is subdivided into two tasks:

(a) Removal of edge eab, i.e. update the Role assertions
(b) Re-evaluation of the weight according to Eq. 2 of

all affected edges ê, i.e. the union of those incident
to region a and of those incident to region b: ê ∈
Ea ∪ Eb

This procedure continues until the edge e∗ with the least
weight in the ARG is above a threshold: w(e∗) > Tw. This
threshold is calculated in the beginning of the algorithm (sim-
ilarly to the traditional RSST), based on the cumulative his-
togram of the weights of all edges E . It should be pointed out
that the interaction of the S-RSST algorithm with FiRE for the
refinement of the degrees of detected concepts corrects erro-
neous classifications of regions and assists the region merg-
ing process towards the segmentation of semantic objects
(see Sects. 4.2, 4.3).

3 Fuzzy reasoning, storing and querying

This section gives a brief introduction to the fuzzy DL
f-SHIN also presenting the fuzzy reasoning engine FiRE
that currently supports it. The graphical user interface, the
syntax and the inference services of FiRE are presented.
Furthermore FiRE integration with the RDF store Sesame,
which is an open source Java framework for storing and
querying RDF/RDFS data, is presented. The main benefit
from this integration is the implementation of Conjunctive
Threshold Queries (CTQs) and General Fuzzy Conjunctive
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Table 1 Semantics of concepts and roles

Constructor Syntax Semantics

Top � �I(a) = 1

Bottom ⊥ ⊥I(a) = 0

General negation ¬C (¬C)I(a) = c(CI(a))

Conjunction C 
 D (C 
 D)I(a) = t (CI(a), DI(a))

Disjunction C � D (C � D)I(a) = u(CI(a), DI(a))

Exists restriction ∃R.C (∃R.C)I(a) = supb∈�I {t (RI(a, b), CI(b))}
Value restriction ∀R.C (∀R.C)I(a) = infb∈�I {J (RI(a, b), CI(b))}
At-most ≤ pR infb1,...,bp+1∈�I J (t p+1

i=1 RI(a, bi ), ui< j {bi = b j })
At-least ≥ pR supb1,...,bp∈�I t (t p

i=1 RI(a, bi ), ti< j {bi �= b j })
Inverse role R− (R−)I(b, a) = RI(a, b)

Equivalence C ≡ D ∀a ∈ �I .CI(a) = DI(a)

Sub-concept C � D ∀a ∈ �I .CI(a) ≤ DI(a)

Transitive role Trans(R) ∀a, b ∈ �I .RI(a, b) ≥ supc∈�I {t (RI(a, c), RI(c, b))}
Sub-role R � S ∀a, b ∈ �I .RI(a, b) ≤ SI(a, b)

Concept assertions 〈a : C��n〉 CI(aI)��n
Role assertions 〈〈a, b〉 : R��n〉 RI(aI , bI)��n

Queries (GFCQs), based on which semantic ranking and
retrieval of images is achieved.

3.1 The Fuzzy DL f-SHIN

The DL f-SHIN is a fuzzy extension of the DL SHIN [13]
and it similarly consists of an alphabet of distinct concept
names (C), role names (R) and individual names (I). Using
DLs, the construction of new concepts and roles is possible.
For that purpose DLs include a set of constructors to construct
concept and role descriptions. These constructors specify the
name of the DL language [4] and in the case of f -SHIN
these are the ALC constructors (i.e. negation ¬, conjunction

, disjunction �, full existential quantification ∃ and value
restriction ∀) extended by transitive roles (S), role hierarchy
(H), inverse roles (I ), and number restrictions (N ≤, ≥).
Hence, if R is a role then R− is also a role, namely the inverse
of R. f-SHIN concepts are inductively defined as follows:

1. If C ∈ C, then C is a f-SHIN concept
2. If C and D are concepts, R is a role, S is a simple role and

n ∈ N, then (¬C), (C � D), (C 
 D), (∀R.C), (∃R.C),
(≥ nS) and (≤ nS) are also f-SHIN concepts.

Differently to crisp DLs, the semantics of fuzzy DLs are
given by a fuzzy interpretation [30]. A fuzzy interpretation
is a pair I = 〈�I , ·I〉 where �I is a non-empty set of
objects and ·I is a fuzzy interpretation function, which maps
an individual name a to elements of aI ∈ �I and a concept
name A (role name R) to a membership function AI : �I →
[0, 1] (RI : �I ×�I → [0, 1]).

By using fuzzy set theoretic operations the fuzzy interpre-
tation function can be extended to give semantics to complex
concepts, roles and axioms [15]. In this case the standard
fuzzy operators of 1− x (c) for fuzzy negation and max (u),
min (t) for fuzzy union and intersection are used, respectively.
The complete set of semantics is depicted in Table 1.

An f-SHIN knowledge base � is a triple 〈T ,R,A〉,
where T is a fuzzy T Box , R is a fuzzy RBox and A is a fuzzy
ABox . T Box is a finite set of fuzzy concept axioms which are
of the form C ≡ D called fuzzy concept equivalence axioms
or C � D called fuzzy concept inclusion axioms saying
that C is equivalent or C is a sub-concept of D, respectively.
Similarly, RBox is a finite set of fuzzy role axioms of the
form Trans(R) called fuzzy transitive role axioms and R � S
called fuzzy role inclusion axioms saying that R is transitive
and R is a sub-role of S, respectively. Finally, ABox is as
finite set of fuzzy assertions of the form 〈a : C��n〉, 〈(a, b) :
R��n〉, where �� stands for ≥,>,≤,< or a � .= b, for a, b ∈
I. Fuzzy representation enriches expressiveness, so a fuzzy
assertion of the form 〈a : C ≥ n〉 means that a participates
in the concept C with a membership degree that is at least
equal to n.

3.2 Fuzzy reasoning engine FiRE

3.2.1 FiRE interface

FiRE4 is a Java based fuzzy reasoning engine currently sup-
porting f -SHIN that can be used either as an API by another

4 FiRE can be found at http://www.image.ece.ntua.gr/~nsimou/FiRE/
together with installation instructions and examples.
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Fig. 2 The FiRE user interface
consists of the editor panel
(upper left), the inference
services panel (upper right) and
the output panel (bottom)

application or through its graphical user interface. The graph-
ical user interface of FiRE consists of the editor panel, the
inference services panel and the output panel (Fig. 2). Hence
the user has the ability to create or edit an existing fuzzy
knowledge base using the editor panel, and to use the infer-
ence services panel to make different kinds of queries to the
fuzzy knowledge base. Finally, the output panel consists of
four different tabs, each one displaying feedback depending
on the user operation.

3.2.2 FiRE syntax

As previously mentioned, a fuzzy knowledge base consists
of three components T Box , RBox and ABox . T Box and
RBox are defined using the Knowledge Representation Sys-
tem Specification [9] proposal since they do not include
uncertainty. So, transitive roles or the sub-role of another role
can be defined by using the keywords transitive and parent
respectively and concept axioms by the keywords implies
and equivalent. (Please refer to [9] for a full specification.)

On the contrary, since the assertions are extended to fit
imperfect knowledge, ABox in fuzzy DLs is different.
Instances in FiRE are defined using the keyword instance
followed by the individual, the concept in which the individ-
ual participates, the inequality type (one of <,<=,>,>=)
and the degree of confidence degree ∈ [0, 1]. Similarly, role
assertions are defined by using the keyword related followed
by subject and object individuals, the inequality type and the
degree of confidence. In both cases the inequality type and the
degree of confidence are required only for fuzzy assertions,

if these are not mentioned then the assertions are assumed as
crisp (i.e >= 1).

Example 1 The syntax of the assertions 〈region1 : Sky〉,
〈region2 : (Sand 
 Sea) ≥ 0.8〉, 〈(region1, region2) :
is AboveO f ≥ 0.7〉 are shown below in FiRE syntax.

(instance region1 Sky)
(instance region2 (and Sea Sand) >= 0.8)
(related region1 region2 isAboveOf >= 0.7)

3.2.3 FiRE reasoning services

One of the main advantages of DLs compared with other
formal representation languages is their sound and complete
algorithms that can be used for reasoning. The main rea-
soning services offered by crisp reasoners are satisfiabil-
ity checking, subsumption and entailment of concepts and
axioms with respect to an ontology. In other words, using
these reasoning services someone is capable of answering
questions like “Can the concept C have any instances in mod-
els of the ontology T ?” (satisfiability of C), “Is the concept
D more general than the concept C in models of the ontology
T ?” (subsumption C � D) “Does axiom � logically follow
from the ontology?” (entailment of �).

These reasoning services are also available by f-SHIN
together with greatest lower bound queries which are spe-
cific to fuzzy assertions. In the case of fuzzy DL, satisfiability
questions become of the form “Can the concept C have any
instances with degree of participation ��n in models of the
ontology T ?”. Furthermore, the incorporation of degrees in
assertions makes the evaluation of the best lower and upper
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truth-value bounds of a fuzzy assertion vital. The term of
greatest lower bound of a fuzzy assertion with respect to �

was defined in [30]. Informally, greatest lower bound queries
are queries like “What is the greatest degree n that our ontol-
ogy entails an individual a to participate in a concept C?”.

FiRE uses the tableau algorithm of f-SHIN , presented by
Stoilos et al. [29], in order to decide the key inference prob-
lems of a fuzzy ontology. Hence entailment queries that ask
whether our knowledge base logically entails the member-
ship of an individual to a specific concept to a certain degree,
are specified in the Entailment inference tab (see Fig. 2).
Their syntax is the same as the one used for the definition of
a fuzzy instance. So, for example a statement of the form:

(instance region1 (and Sea Sky) > 0.8)

would ask whether region1 is Sea and Sky to a degree
greater than or equal to 0.8. If there are assertions in the
ABox of our � that satisfy this query (i.e. there is a model
for our ontology) then FiRE will return true.

On the other hand subsumption queries that are specified
in the Subsumption inference tab evaluate whether a concept
is more general than another concept. Their syntax is of the
following form:

(concept1) (concept2)

where concept1 and concept2 are f -SHIN concepts.
Let’s assume that the first concept is Beach while the second
concept is Sea. Since Beach is a more complex concept let’s
assume that it has been defined in the T Box using an equiv-
alence axiom as a conjunction of concepts Sea and Sand,
i.e. Beach ≡ Sea
Sand. Then the following subsumption
query will always return true since Beach will always be
(i.e. in all models) a sub-concept of Sea.

(Beach) (Sea)

Additionally, the user can perform a global concept clas-
sification procedure presenting the concept hierarchy tree in
the Classification tab of the output panel.

Finally, FiRE permits the user to make greatest lower
bound queries (GLB), which are evaluated by FiRE per-
forming entailment queries. During this procedure a set of
entailment queries is constructed consisting of an entail-
ment query for every degree contained in the ABox, using
the individual and the concept of interest. These queries are
performed using the binary search algorithm to reduce the
degrees search space, resulting the GLB. The syntax of GLB
queries is of the form:

individual (concept)

where concept can be either an atomic concept or a result
of f-SHIN constructors. In order to illustrate the operation
of the GLB service we will present a trivial example using
an atomic concept. Let’s assume the following ABox (FiRE

syntax) for which we want to evaluate the GLB of individ-
ual region1 participating in concept Sand (i.e. the query
region1 Sand)

(instance region1 Sand > 0.8)

(instance region2 Sea > 0.6)

(instance region3 Person > 0.5)

(instance region4 Tree > 1)

Firstly all the degrees used in ABox are sorted. FiRE then
performs entailment queries for the region1 (region of
interest) participating in Sand (concept of interest) using
the binary search algorithm. This procedure is repeated until
the entailment query is unsatisfiable. The greatest degree
found before unsatisfiability is the greatest lower bound. In
this example the following entailment queries are performed
with the indicated results in order to evaluate that the greatest
lower bound of region1 participating in concept Sand is
0.8.

(instance region1 Sand > 0.5) TRUE

(instance region1 Sand > 0.8) TRUE

(instance region1 Sand > 1) FALSE

(More complicated examples that use complex concepts
are presented in Sects. 4.2 and 4.4.).

Finally the user can perform global GLB for a fuzzy
knowledge base. Global GLB service of FiRE evaluates the
greatest lower bound degree of all the concepts of � partic-
ipating in all the individuals of �.

3.3 Storage of a fuzzy knowledge base

FiRE was enhanced by the functionalities of the RDF store
Sesame (Sesame 2 beta 6). Sesame is an open source Java
framework for storing and querying RDF/RDFS data. It sup-
ports two ways of storing RDF, called RDF Repositories. The
first is the In-memory RDF Repository, which stores all the
RDF triples in main memory, while the Native RDF Reposi-
tory stores the RDF triples on the hard disk and uses B-Trees
to index and access them.

In the proposed architecture the RDF store is used as a
back end for storing and querying RDF triples in a sufficient
and convenient way while the reasoner is the front end, which
the user can use in order to store and query a fuzzy knowl-
edge base. In that way, a user is able to access data from a
repository, apply any of the available reasoning services on
this data and then store back in the repository the implicit
knowledge extracted from them.

In order to use Sesame for storing a fuzzy knowledge with-
out enforcing any extensions to it, a way of serializing fuzzy
knowledge into RDF triples was necessary. For that purpose
a fuzzy-OWL to RDF mapping was required, similar to the
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one provided in the OWL abstract syntax and semantics doc-
ument [23]. In [17] the authors use RDF reification, in order
to store membership degrees. However it is well-known that
reification has weak, ill-defined model theoretic semantics
and its support by RDF tools is doubtful. Another approach
[31] suggests the use of datatypes but the use of a concrete
feature like datatypes to represent abstract information such
as fuzzy assertions is not appropriate.

These limitations lead us to propose a cleaner way that is
based on the use of blank nodes. First, we define three new
entities, namelyfrdf:membership,frdf:degree and
frdf:ineqType as types (i.e. rdf:type) of
rdf:Property.

Using these new properties together with blank nodes we
can represent fuzzy instances. Let’s assume for example that
we want to represent the assertion 〈(region1 : Sky) ≥ 0.74〉.
The RDF triples representing this information are the follow-
ing:

region1 frdf:membership _:region1membSky.
_:region1membSky rdf:type Sky.
_:region1membSky frdf:degree “0.74ˆˆxsd:float”.
_:region1membSky frdf:ineqType “=”.

where _:regionmembSky is a blank node used to repre-
sent the fuzzy assertion of region1 with the concept Sky.

On the other hand mapping fuzzy role assertions is more
tricky since RDF does not allow for blank nodes in the pred-
icate position. Thus, new properties are used for each asser-
tion, such that assertion 〈(region1, region2) : aboveO f ≥
0.8〉 is mapped to

region1 frdf:r1r2above-Of region2.
frdf:r1r2above-of rdf:type above-of.
frdf:r1r2above-of frdf:degree “0.8ˆˆxsd:float".
frdf:r1r2above-of frdf:ineqType “=".

3.4 Querying an expressive fuzzy knowledge base

3.4.1 Fuzzy queries

One of the main advantages of persistent storage systems,
like relational databases and RDF storing systems, is their
ability to support conjunctive queries. Conjunctive queries
generalize the classical inference problem of realization of
DLs [4], i.e. “get me all individuals of a given concept C”,
by allowing for the combination (conjunction) of concepts
and roles. Formally, a conjunctive query is of the following
form:

q(X)← ∃Y .conj (X, Y ) (4)

or simply q(X) ← conj (X, Y ), where q(X) is called the
head, conj (X, Y ) is called the body, X are called the dis-
tinguished variables, Y are existentially quantified variables
called the non-distinguished variables, and conj (X, Y ) is

a conjunction of atoms of the form A(v), R(v1, v2), where
A, R are respectively concept and role names, v, v1 and v2

are individual variables in X and Y or individuals from the
ontology.

Since in our case we extend classical assertions to fuzzy
assertions, new methods of querying such fuzzy information
are possible. More precisely, in [22] the authors extend ordi-
nary conjunctive queries to a family of significantly more
expressive query languages, which are borrowed from the
fields of fuzzy information retrieval [8]. These languages
exploit the membership degrees of fuzzy assertions by intro-
ducing weights or thresholds in query atoms. In particular,
the authors first define CTQs as:

q(X)← ∃Y.

n∧

i=1

(atomi (X, Y ) ≥ ki ) (5)

where ki ∈ [0, 1], atomi (X, Y ) represents either a fuzzy-
DL concept or role and all ki ∈ (0, 1] are thresholds. As it is
obvious those answers of CTQs are a matter of true or false,
in other words an evaluation either is or is not a solution to a
query. The authors also propose GFCQs that further exploit
fuzziness and support degrees in query results. The syntax of
a GFCQ is the following:

q(X)← ∃Y.

n∧

i=1

(atomi (X, Y ) : ki ) (6)

where atomi (X, Y ) is as above while ki is the degree associ-
ated weight. As shown in [22], this syntax is general enough
to allow various choices of semantics, which emerge by
interpreting differently the degree of each fuzzy-DL atom
(atomi (X, Y )) with the associated weight (ki ).

A straightforward extension will be the use of fuzzy thresh-
old with the aid of fuzzy R-implications instead of the crisp
one. Hence, a t-norm (t) as the semantic function for con-
junctions and R-implications (ωt ) as the semantic function
for degree-associated atoms, we get fuzzy threshold queries,
in which the degree of truth of qF under I is

d = sup
S′∈�I×···×�I

{tn
i=1 ωt (ki , atomI

i (v̄)[X �→S,Y �→S′])} (7)

Given some S′, if for all atoms we have atomI
i (v̄)[X �→S,Y �→S′]

≥ ki , since ωt (x, y) = 1 when y ≥ x [15], we have d = 1;
this corresponds to threshold queries introduced earlier.

Another example of semantics for GFCQs would be to use
fuzzy aggregation functions [15]. For example, let G(x) =
∑n

i=1 xi as a function for conjunctions and a(ki , y) =
ki∑n

i=1 ki
∗ y as the semantic function for degree-associated

atoms. Then we get an instance of fuzzy aggregation queries,
in which the degree of truth of qF under I is

d = sup
S′∈�I×···×�I

∑n
i=1 ki ∗ atomI

i (v̄)[X �→S,Y �→S′]
∑n

i=1 ki
. (8)
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Example of such queries are given in Sect. 4, while more
details on their semantics is beyond the scope of this paper
and the interested reader should refer to [22].

3.4.2 Fuzzy queries using FiRE

These queries were implemented by the use of the query
language SPARQL [24] that is supported by Sesame. The
user can perform them using the Queries inference tab, and
in the case of generalized fuzzy conjunctive queries a choice
of fuzzy threshold or fuzzy aggregation semantics is possible.

Example 2 A threshold query that reveals its FiRE syntax
follows:

x,y <- Beach(x) >= 0.4 ˆ contains(x,y) >= 1.0

ˆ Person(y) >= 0.8

Queries consist of two parts: the first one specifies the
individuals that will be evaluated while the second one states
the condition that has to be fulfilled for the individuals. This
query asks for individuals x and y; x has to participate in
concept Beach to at least the given degree and it also has to
be the subject of a contains assertion with participation
greater than 1.0, having as a role-filler individual y that has
to participate in concept Person to at least the given degree.

The query is firstly converted from the FiRE conjunctive
query syntax to the SPARQL query language. Based on the
fuzzy OWL syntax in triples that we have defined in Sect. 3.3
the query of Example 2 is as follows in SPARQL. The query
results are evaluated by the Sesame engine and visualized by
FiRE.

SELECT ?x WHERE {

?x ns5:membership ?Node1.

?Node1 rdf:type ?Concept1.

?Node1 ns5:ineqType ?IneqType1.

?Node1 ns5:degree ?Degree1.

FILTER regex (?Concept1, "CONCEPTS#Beach")

FILTER regex (?IneqType1,">")

FILTER (?Degree1 >= "0.8ˆˆxsd:float")

?BlankRole2 ns5:ineqType ?IneqType2.

?BlankRole2 ns5:degree ?Degree2.

?BlankRole2 rdf:type ?Role2.

?x BlankRole2 ?y.

FILTER regex (?Role2, "ROLES#contains")

FILTER regex (?IneqType1,">")

FILTER (?Degree2 >= "1ˆˆxsd:float")

...

}

Example 3 We can issue a GFCQ by using the symbol “:”
followed by the importance of participation for each con-
dition statement instead of inequality types. Hence we can
get all beach images that contain the concepts Beach and

Person and rank higher those with larger degree for the
latter:

x <- Beach(x):0.6 ˆ contains(x,y) : 1 ˆ Person(y) : 0.8

In the case of GGCQs the operation is different. The
SPARQL query is constructed in a way that retrieves
the participation degrees of every Role or Concept used in the
atoms criteria, for the results that satisfy all of the atoms. The
participation degrees retrieved for each query atom together
with its weight are then used by FiRE for the ranking pro-
cedure of the results based on the selected semantics. An
excerpt of the SPARQL query for Example 3 follows.

SELECT ?x ?Degree1...
WHERE {

?x ns5:membership ?Node1.
?Node1 rdf:type ?Concept1.
?Node1 ns5:ineqType ?IneqType1.
?Node1 ns5:degree ?Degree1.
FILTER regex (?Concept1, "CONCEPTS#Beach")
FILTER regex (?IneqType1,">")
FILTER (?Degree1 >= "0.0ˆˆxsd:float")

...
}

4 Experimental evaluation

4.1 Image dataset and evaluation procedure

In this section an examination of the proposed architecture is
presented. The dataset consists of 1,000 images from authors’
personal collection and the Internet. All these images in gen-
eral are characterized as personal content, i.e. photos that
usually everyone may have taken from vacations, varying
from beach to mountainous landscapes and to city touring.
The dataset is accompanied by region-based ground truth, i.e.
for every region we know which concept it depicts (such type
of ground truth requires significant labor effort to produce it,
even for 1,000 images). Firstly, every image is processed by
the semantic segmentation algorithm, the output of which
comprise the ABox of a domain specific fuzzy knowledge
base. After that, FiRE using an expressive domain terminol-
ogy extracts implicit information and also refines the region
labels assigned by analysis. The resulting information for
image regions together with the inferred abstract concepts
on the global image are stored in a Sesame repository. In
that way a user can perform the various queries presented
in Sect. 3.4 for ranking and retrieval of specific personal-
ized content. We first go through the fuzzy knowledge base
presenting the refinement operation on region classification.
After that an evaluation of the semantic segmentation is made
and finally the usage of semantic queries is illustrated by a
set of examples.
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4.2 The fuzzy knowledge base

In order to effectively categorize images and also improve
the semantic segmentation process we have implemented
an expressive terminology. The terminology includes defi-
nition of new concepts that characterize an image and also of
concepts that refine information extracted by the classifica-
tion module considering the spatial relations of the labeled
regions.

For better comprehension of the defined terminology, we
first present the input used as the assertional part of the fuzzy
knowledge base provided by the analysis module. The pos-
sible extracted concepts and roles that comprise the alphabet
of concepts C and roles R are shown below:

C = {Sky Building Person Rock Tree Vegetation Sea Grass
Ground Sand Trunk Dried-plant Pavement Boat Wave}

R = {above-of below-of left-of right-of contains}
The set of individuals consist of the amount of segments
obtained for each image together with the global image.

Example 4 An excerpt of ABox for an image is:
〈image1_seg01 : Sky ≥ 0.744〉,
〈image1_seg01 : Person ≥ 0.514〉
〈image1_seg03 : Sky ≥ 0.831〉
〈image1_seg09 : Sea ≥ 0.557〉,
〈image1_seg09 : Person ≥ 0.510〉,

. . .

〈(image1, image1_seg01) : contains ≥ 1〉,
〈(image1, image1_seg03) : contains ≥ 1〉,
〈(image1, image1_seg09) : contains ≥ 1〉,

. . .

〈(image1_seg01, image1_seg09) : above-of ≥ 1〉,
. . .

An excerpt of T Box can be found in Table 2. The knowl-
edge base consists of two layers. The first, or lower layer,
includes concepts like Sea that are extracted by the classi-

fication module and have been re-defined using spatial rela-
tions. This part of the knowledge is only used together with
the S-RSST for region refinement (those concepts are shown
in capitals).

Since the classifier is trained, we assume a correct
estimation of the label but with a possibly mistaken confi-
dence value. So, SEA has been defined as a segment that
was originally assigned as Sea by the SVM classifier, while
its neighboring regions can be either one of Wave, Sea or
Sky. In this case, a variation of the greatest lower bound
(GLB) reasoning service is used for the semantic refine-
ment of the labels provided by the SVM classifier. Hence,
we first compute the GLB of the region of interest to the
concept of interest (i.e. SEA). We then evaluate the GLB of
the region of interest to the neighbor criterion concept of the
concept of interest (if SEA is the concept of interest then
neighbor criterion concept is ((∃right-of.(Sand �Wave))�
(∃left-of.(Sand �Wave))�. . .). If this bound is greater than
the initial GLB (i.e the value that was originally assigned to
that concept) then the region value is refined to the neigh-
bor criterion concept GLB, otherwise it remains as
assigned.

Let’s assume the ABox of Example 4. The segment of
examination is image1_seg09 that has been classified as
Sea with degree greater or equal to 0.557. Segment image
1_seg01 is above-of segment image1_seg09 but since role
above-of has as inverse role below-of (Table 2) it is equiva-
lent saying that image1_seg09 is below-of segment image
1_seg01. Furthermore image1_seg01 that has been classi-
fied as Sky with degree greater or equal to 0.744. Clearly the
criteria for image1_seg09 to participate in SEA are satisfied
and its GLB is 0.557, equal to the degree that was originally
assigned by the classifier. This fact means that the neigh-
bor criteria concepts (i.e. 
((∃right-of.(Sea �Wave)) . . .)
of the axiom defined for concept SEA are also fulfilled with
a degree at least equal to 0.557. Hence we evaluate the GLB
of image1_seg09 to the neighbor criterion concept that is

Table 2 An excerpt of the terminology T Box

T = {SEA ≡ Sea 
 ((∃right-of.(Sea �Wave)) � (∃left-of.(Sea �Wave))

�(∃above-of.(Sea �Wave)) � (∃below-of.(Sea �Wave � Sky))),

SAND ≡ Sand 
 ((∃right-of.(Sand �Wave)) � (∃left-of.(Sand �Wave))

�(∃above-of.(Sand �Wave)) � (∃below-of.(Sand �Wave � Sea))),

WAVE ≡ Wave 
 (∃right-of.(Sea �Wave)) � (∃left-of.(Sea �Wave))

�(∃above-of.(Sea �Wave)) � (∃below-of.(Sea �Wave))),

WavySea ≡ Sea 
Wave,

SandyBeach ≡ Sea 
 Sand,

PartOfComplexBuilding ≡ Building 
 (∃left-of.Building � ∃right-of.Building),

Beach ≡ ∃contains.Sea 
 ∃contains.Sky,

Landscape ≡ ∃contains.Vegetation,

City ≡ ∃contains.Building � ∃contains.Pavement}

R = {contains, left-of− = right-of, above-of− = below-of}
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0.744 and we refine participation of segment image1_seg09
in concept SEA to this value (note that if the Sky value
was 0.3 the Sea value would have remained as originally
assigned).

The refined results comprise the ABox of the second layer
knowledge base, which includes higher-level concepts. Such
concepts refer to a segment like WavySea and SandyBeach
but also to global image classification like Beach. Concern-
ing notation, concepts here are not in capital because this
knowledge is used after region-refinement and hence the
refined ABox component is again given by S-RSST.

According to the defined terminology implicit knowledge
is extracted. For every image the GLB reasoning service
is used for the defined concepts of the terminology. The
obtained implicit results together with the explicit informa-
tion provided by the classifier (i.e. ABox) are stored to a
Sesame repository. To better understand the operation of

GLB let’s assume the refined ABox previously described.
After the region refinement procedure we have assertions
〈image1_seg01 : Sky ≥ 0.744〉, 〈image1_seg03 : Sky ≥
0.831〉, and 〈image1_seg09 : Sea ≥ 0.744〉. Also regarding
role assertions we have 〈(image1, image1_seg01) :
contains ≥ 1〉, 〈(image1, image1_seg03) : contains ≥
1〉 and 〈(image1, image1_seg09) : contains ≥ 1〉. Within
our knowledge base, Beach has been defined as an image
that contains segments labeled as Sky and Sea. Clearly the
criteria for image1 to participate in concept Beach are ful-
filled. Hence image1 is classified as Beach with the great-
est degree that satisfies these criteria, being 0.744. This is
because Beach was defined using conjunction operator that
is interpreted with min (Table 1). So despite 〈image1_seg03 :
Sky ≥ 0.831〉 the minimum limit is set by〈image1_seg09 :
Sea ≥ 0.744〉 so we end up with 〈image1 : Beach ≥
0.744〉.

Fig. 3 a Original image,
b Original segmentation,
c Semantic segmentation using
FiRE
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Fig. 4 a Precision and b Recall for the different classification results for every concept

Figure 3 presents the obtained results for some images,
the initial output of the S-RSST and the semantically refined
regions merged by S-RSST using FiRE.

4.3 Evaluation of semantic segmentation

In order to evaluate the performance of the semantic segmen-
tation (S-RSST), we compare the recognition rates against a
baseline technique: We used a color-based RSST segmen-
tation to partition the image and trained an SVM classifier
for each concept Ci ∈ C. Each classifier returns a degree of
confidence for every region and precision/recall metrics are
calculated. The same metrics are computed for the output
of the semantic segmentation, which as already discussed,
performs image segmentation and region classification at the
same time. Some indicative examples of this evaluation sce-
nario are illustrated in Fig. 3, where column (b) displays the
result of the baseline technique and column (c) the results of
semantic segmentation. The latter, in most cases, continues
merging of regions based on their attached semantic labels,
resulting in a less segmented output and refined degrees of
those labels.

An important issue that was raised, was how to deal with
the fuzzy degrees of confidence resulting from the seman-
tic segmentation algorithm and how to compute the preci-
sion and recall figures given the available ground truth. We
employed a simple idea, where for every concept a differ-
ent defuzzification scheme was used, based on the histogram
of confidence values for the whole dataset. In consequence,
we considered that concepts were detected only when their
degree of confidence was greater to that certain (concept-
specific) threshold. Figure 4 illustrates the (a) precision and
(b) recall values for all 15 concepts.

Additionally we calculated the overall performance of the
above two techniques (RSST + SVM, Semantic RSST), irre-
spectively of the concept, using a weighted average of preci-
sion and recall values of each concept. Each concept’s weight
depends on the frequency of appearance of that concept in the

Table 3 Average classification results for all concepts

Technique Precision Recall F-measure

RSST + SVM 0.40 0.64 0.49

Semantic RSST 0.43 0.74 0.55

dataset according to the ground truth. Moreover, the weighted
harmonic mean (F-measure) of precision and recall was
calculated to measure the effectiveness of the classification
(Table 3).

4.4 Retrieval examples

The main benefit of the FiRE integration with Sesame is the
ability to perform CTQs and GFCQs. The extracted implicit
knowledge together with refined region results are stored in
a Sesame repository. The user can perform fuzzy CTQs like
the one in Example 5 using the FiRE query interface shown
in Fig. 5.

Example 5 x,y <- Beach(x) >= 0.4 ˆ contains(x,y) >= 1.0
ˆ Person(y) >= 0.8

The semantic meaning of the degrees in such a query is inher-
ited by their original production by the SVM classifier. In
other words when the user requires that Person(y) >= 0.8,
he or she requires a segment y that was evaluated by the SVM
classifier as Person with a degree of confidence greater than
0.8. Due to the inaccurate nature of most classifiers only
few segments have been classified to a label with degree 1.
Hence Person(y) >= 0.8 is very likely to be a person while
Person(y) >= 0.5 is possible to be a blurry person.

It is important to note that the proposed representation
allows not only image retrieval, but also retrieval of seg-
ments with a specific label. Hence, on the left of Fig. 5 the
query panel is shown that consists of the query input and the
retrieved results, while on the right the user can browse the
retrieved images or segments.
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Fig. 5 FiRE query interface

Fig. 6 Images retrieved for a “person in beach” query

Table 4 “Person in beach” query ranking of Examples 5 and 6

Image Sea Sky Beach Person CTQ GFCQ
FT FA

(g) 0.90 0.87 0.87 0.86 0.87 1.00 0.92

(b) 0.83 0.91 0.83 0.80 0.80 1.00 0.89

(d) 0.69 0.66 0.66 0.81 0.66 1.00 0.85

(h) 0.60 0.83 0.60 0.85 0.60 1.00 0.84

(a) 0.47 0.92 0.47 0.84 0.47 0.87 0.81

(f) 0.63 0.47 0.47 0.85 0.47 0.87 0.81

(c) 0.46 0.91 0.46 0.86 0.46 0.86 0.81

(e) 0.44 0.73 0.44 0.83 0.44 0.84 0.80

Figure 6 presents the first eight images that satisfy the
query of Example 5. As mentioned in Sect. 3.4.1 the answers
to CTQs queries are a matter of true or false, in other words
an evaluation either is or is not a solution to a query. On the
other hand these images can also be retrieved using GFCQs
that offer a ranking of the results. The query syntax is of the
form:

Example 6 x <- Beach(x):0.6 ˆ contains(x,y) : 1
ˆ Person(y) : 0.8

A weight criterion is assigned to every atom of the query,
thus an image with a relevance rank is retrieved. The ranking
varies on the chosen semantics.
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Table 4 illustrates the ranking for these images. Beach
has been defined as an image that contains Sea and Sky. For
that purpose we present the participation degrees of these
concepts and the resulting degree for Beach that is their
minimum degree based on the semantics of fuzzy conjunc-
tion using GLB. In a similar manner we present the degrees
of Person and since the relation assertions are crisp (i.e. they
have degree of participation equal to 1) we evaluate the mini-
mum degree of Person and Beach as a ranking criterion for
the CFQs while columns FT and FA illustrate the rankings
of the query of Example 6 using fuzzy threshold and fuzzy
aggregation GFCQs respectively.

Fuzzy threshold GFCQs use a fuzzy threshold with the
aid of fuzzy R-implications, instead of a crisp threshold.
Hence, the ranking evaluated by this kind of queries cor-
responds to the difference of the degrees of participation in
the concepts/roles of the query atoms from the correspond-
ing weight criteria. So, images (g), (b) and (d) in Table 4 that
have degrees of participation in the atoms greater than the
corresponding weight criteria are ranked with 1.

On the other hand, fuzzy aggregation GFCQs rank images
according to fuzzy aggregation functions. Hence the weight
criterion in this case operates as a coefficient which is used
together with the degrees of participation in the concepts-
roles of the query atoms to rank the results. Observing fuzzy
aggregation ranking for images (b) and (d) we can see a
significant difference in the Beach values. However, their
ranking values are close due to the Person values that are
assumed to be more important since they are weighted higher
in the query of Example 6.

5 Conclusions

In this paper we have presented an automatic semantic anno-
tation methodology consisting of several novel and state of
the art techniques. An image is initially processed by a
knowledge-assisted analysis module which produces a seg-
mentation mask and region-associated concepts. A seman-
tic segmentation methodology incorporating object detection
simultaneously with region merging, provides input for
region-based classification resulting in a list of concepts
(together with degrees of confidence for each one) that have
been linked to the image. The expressive fuzzy DL f-SHIN
and the reasoning engine FiRE that supports it, can use this
information for the extraction of additional, implicit knowl-
edge, improvement of region-based classification by incor-
porating spatial relations and neighborhood information and
finally inferring of abstract concepts on a global image basis.
The final results are stored in an online semantic repository
and in cooperation with FiRE user can perform semantic
retrieval and ranking of images.

Experiments confirmed the usefulness and potential of
our approach and based on the satisfactory evaluation results
we believe that further improvements towards this direction
can be made for efficient and effective multimedia indexing.
Furthermore the use of expressive fuzzy DLs together with
fuzzy queries reveals semantic ranking of images. The vari-
ous rankings provided depend on the semantics used by fuzzy
queries and can be interpreted in different ways according to
the application scenario. Finally the proposed architecture
can be easily adapted to video sequences permitting seman-
tic browsing of scenes.
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